
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2008 Proceedings Americas Conference on Information Systems
(AMCIS)

2008

Language-Critical Enterprise and Software
Engineering
Erich Ortner
Technische Universitat Darmstadt, ortner@winf.tu-darmstadt.de

Follow this and additional works at: http://aisel.aisnet.org/amcis2008

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Ortner, Erich, "Language-Critical Enterprise and Software Engineering" (2008). AMCIS 2008 Proceedings. 57.
http://aisel.aisnet.org/amcis2008/57

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301347955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2008%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2008?utm_source=aisel.aisnet.org%2Famcis2008%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2008%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2008%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2008?utm_source=aisel.aisnet.org%2Famcis2008%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2008/57?utm_source=aisel.aisnet.org%2Famcis2008%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Ortner Language-Critical Enterprise- and Software Engineering

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 1

Language-critical Enterprise and Software Engineering

Erich Ortner
Technische Universität Darmstadt, Development of Application Systems

ortner@winf.tu-darmstadt.de

ABSTRACT

With service-oriented architectures and the process-centric development of application systems, we are experiencing the
beginning of a reorientation in how information technology is used in the global economy as well as in our private lives.
Language-critical Organization Theory has thus become a discipline in research and teaching. Because of the global nature of
these endeavors, it is important to look for a common basis for possible cooperation partners in this field. The necessary
efforts are enormous and can only be managed successfully by working together. Looking at how the philosophy of science
has developed throughout the twentieth century seems to imply that a) the primarily American analytic philosophy of science
paired with b) the methodical constructivism of predominantly German origin (Erlangen and Constance) could form this
common basis. In this paper, both philosophies, well-grounded in the works of Wittgenstein (1889-1951) and Frege (1848-
1925), will form the foundation (Lorenzen, 1994) substantiating practical development in the field of e.g. service-oriented
architecture. The common foundation will also disclose what people must be able to do or, respectively, what they must
know (understand) if they want to work successfully in the IT-industry in the future.

Keywords

Enterprise Modeling, Language-Critical Development of Application Systems, IT-Management in Enterprises.

INTRODUCTION

This paper has been written against the background of the (practical) academic fields of “Mechanical Engineering”,
“Industrial Engineering” and “Applied Computer Science”. Though, further interdisciplinary orientation in this case would
prove to be beneficial. The mentioned academic fields together with the analytical philosophy of science (see e.g. Quine,
1960) and the methodical constructivism (see e.g. Lorenzen, 1968) constituted the background, when the language-critical
approach on the development of application systems was first published as book (Wedekind and Ortner, 1980). This paper
presents the further development of this approach (figure 1) to language-critical Enterprise Engineering.

The past 27 years have provided the insight that any noteworthy advances that support the further development of the
language-critical enterprise engineering approach stem primarily from research in the field of Business Administration (e.g.
Scheer, 1984) rather than German Business Informatics. Today, almost the entire Business Informatics community follows a
non-language-critical path. About 15 years ago, a majority of members of the German Business Informatics community
verifiably agreed on ignoring the language-critical approach (Wedekind and Ortner, 1980) in their work and even the work of
their students and research assistants. If not ignored, the approach has been denounced as irrelevant or incomprehensible.

Language-critical Software Engineering (Ortner, 1993) has attracted more attention in “pure” (theoretical) Computer Science,
which is however not willing to sustain the extension of the approach by language-critical Enterprise Engineering
(Heinemann and Ortner, 2007).

Ortner Language-Critical Enterprise- and Software Engineering

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 2

Figure 1. Historical versus Methodological Development of Application Systems

PROCESS-CENTRIC DEVELOPMENT OF APPLICATION SYSTEMS

The iterative orchestration of application systems (see figure 2) is one particular feature of service-oriented architectures in
the following aspects:

• optimized work processes,
• ideal assignment of employees, and
• dynamic use of information technology using services.

Services, or more precisely service schemas, are application software that implements work procedures. They are developed
on the basis of components and specified as algorithms.

Rather than having oboes, violins or triangles at ones disposal, the orchestration of application systems (see figure 2) makes
use of human beings, organizational structures and technology. Whereby anyone who specifies e.g. organizational processes
in the same way as computer processes and does not distinguish between human-related symbol processing and computer-
based symbol processing (Oberweis and Broy, 2007), is not suitable for the development of process-centric application
systems. Such a person lacks the interdisciplinary knowledge taught by some of the forward-looking chairs of Applied
Computing and Application Systems at universities worldwide today.

Figure 2. Iteration Paths of Orchestration: Organization - Technology - Man

Language-critical Enterprise Engineering

Language-critical (Embedded) System Engineering

+ Processes & Humans

Language-critical Software Engineering

+ Hardware & Technology Carrier

H
istory

M
et

ho
do

lo
gy

: Organization
centric

: Information Technology
centric

(Work) Process Reconstruction
(BPMN, Use Cases)

Rekonstruktion
der (Arbeits-)Prozesse
(BPMN, Use Cases)

Process Improvement
(Simulation, Optimization, etc.)

Service Discovery
(e.g. permanent or transient resp.

Internal or External Services)

Service Schema as Product
(e.g. Service Provider)Provide

Select

Provide

Select

Work Plan as Product
(Human capital
management)

: Human centric

Optimized
Process
Organization

Dynamic
Organization
Structure

Supporting
Information
TechnologyLegend:

Ortner Language-Critical Enterprise- and Software Engineering

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 3

INTERDISCIPLINARY LANGUAGE-CRITICAL SPECIFICATION OF IT-USE

Which skills and what kind of knowledge do developers, i.e. “business architects,” “application developers,” “solution
architects,” and so on, need for process-centric application development in order to successfully participate in projects of this
kind or even execute such a project on their own? In his book “Der Flug der Eule” (The flight of the owl), Mittelstraß (1989)
gives us an answer that is as clearly defined as it is simple:

“Anyone […] who has not studied interdisciplinary cannot perform interdisciplinary research.”

The acquisition of interdisciplinary schemas and the understanding of them is a prerequisite for interdisciplinarity. Anyone
who has only studied how to apply something will not be able to develop process-centric application systems. The following
is a simple example that illustrates the profound understanding of the development process. The example reconstructs a data
schema in Applied Computer Science.

Schematize the following sentence in object-language,

a) “Smith is a customer who is willing to pay.”
by means of computer sciences, specifically the meta-language “relational model”:

b) “Relation Name (key attribute(s); non-key attributes)”
in an interdisciplinary way, i.e. by different disciplines simultaneously. In order to accomplish this, a developer must not
solely understand the sentence in object-language a) with respect to its business-driven generalization (schematization,
norm), but additionally, the user must have agreed on the norm derived from it. In our example, this would mean that a
society (language community) tolerates the following object-language norm:

a’) “If we identify a person as a customer, we are allowed to characterize the customer more closely by the attribute
‘payment behavior’.”

Furthermore, it is necessary to realize or understand that the “relational model” is merely a different grammar (meta-schema)
for representing the standardized (schematized) object-language “content”. It is our goal to maintain customer data efficiently
on the computer. Through modeling, we achieve the significant result of our interdisciplinary schematization:

b’) “Customer (name; payment behavior)”.
Interdisciplinary schematization (modeling) is one of the core tasks in Applied Computer Science such as Business
Informatics. For the acquisition of interdisciplinary knowledge, e.g. in university courses of study, there is even a so-called
“methodical order” (see figure 1). We can formulate it as follows, whereby the figures in brackets indicate the “sequence”,
i.e., the methodical order. Today specified processes are means for ends.

Computer Science: form (4) follows function (3)

Business Informatics: applications (3) follow processes (2)
Business and Social Sciences: means (2) follow ends (1)

Theoretically, the methodical order, or course can be avoided. However, in practice, it is recommended to adhere to it. It is
most advisable to “put on the socks before putting on the shoes”, although, at least in theory, it may be possible to consider
the reversed order. The problem in some of the programs of study in Computing Sciences is that interdisciplinary knowledge
is not taught – even at the recently appointed German superior universities, an apparent lack in IT-architects has lead to the
fact that students in bachelor programs of study merely concern themselves with pure computer sciences, i.e. (3) and (4). For
those students who have not entered a practical profession by then, the Masters program of study will “ensure that they are
acquainted with matters of Applied Computer Science” (Oberweis and Broy, 2007). Well, it is conceivable that disciplines
become extinct!

Organization Modeling

For successful organization modeling (Enterprise Engineering) – especially with respect to optimization – differentiation is
vitally important. Figure 3 illustrates the possibilities regarding work processes and structures.

The capability to differentiate clearly is critical to the ability to optimize. This is important for the object-language level, the
application field, as well as for the meta-language level, the diagram language field. On both levels, the point is the
reconstruction of connector words (e.g. to do) and topic words (e.g. to work). On the meta-language level, the developer gets

Ortner Language-Critical Enterprise- and Software Engineering

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 4

to know the modeling method in greater detail. On the object-language level, the grammar of the modeling language plays a
vital role. In the latter case, the organizational expert knowledge of the relevant application domain must be represented in a
structured way.

Figure 3. Differentiated Work Organization

Modeling (topic words of the application field) and structuring (connector words of the modeling language) are different but
they supplement each other as complementary parts.

Even before the object-oriented system design, diagram languages have proved to be suitable modeling languages for the
organization of a company’s structures and processes. Use cases for example are especially useful for the structural aspect
(see figure 4), while the Business Process Modeling Notation (BPMN) is suited ideally for the procedural aspect (see figure
5).

Figure 4. Use Case Diagram of Finished Goods Inventory

Detailed descriptions of modeling languages can be found in various case collections (Cockburn, 2001) or OMG manuals.
However, anyone who later, in the system design, intends to specify the flow of work processes in greater detail is well
advised to distinguish the aspects like “operations”, “work procedures” and “sequence of work” or “workflows”
orthogonally. The same applies to the organization structure and aspects such as “workplace”, “vacancy”, “employee” or
“work material” (see figure 3). The optimization can now be considered sensibly and from different angles (aspects).

+

+

+

+8.1 IE Collects Goods From Production
And Checks Identity

+

+

+

+8.2 IE Checks Quality

8.3 IE Sorts Goods

8.4 IE Reports Change In Stock To IM

Employee Of
Finished Goods

Inventory (IE)

Production

Inventory
Management (IM)

8. Finished Goods Inventory

(Work) Processes

(Work) Structure

Process

Architecture

Movement

Inventory

Means for Work
- software
- knowledge
- device

(Whereby?)

Work Input
- basic material
- operating supply

item
- data
(What from?)

Work Output
- product
- service schema

(Wherefore?)

Performer
- man
- machine
- interaction

(Who?)

Workplace
- any
- fixed

(Where?)

(What?)
Operation

(When?)
Work Sequence

(How?)
Work Procedure

Work Object
- physical
- intellectual

(Whereof?)

Ortner Language-Critical Enterprise- and Software Engineering

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 5

Figure 5. BPMN Diagram of Incoming Finished Goods

Method-Neutral Knowledge Reconstruction

The method-neutral knowledge reconstruction (Ortner, 1997) is primarily communicative and hardly any diagram
representations are used.

In order to get a first picture of the important tasks, which are performed in close cooperation with the users, we classify them
roughly in the following three parts:

• Collection of propositions that are relevant for development by talking to the users.

• Clarification and reconstruction of the expert terminology that has been used.
• Establishment of a common enterprise expert language.
The collection of propositions relevant to the development can be done by using a model, as shown in figure 6.

The model is intended to aid the collection and to ensure that all potential types of results for the system design have been
scrutinized in consideration of their underlying expert knowledge. The following list contains several propositions that can be
assigned to the above fields (see figure 6):

a) An account has an account number.
b) An account is opened.
c) Opening an account results in an opening balance.
d) The total of all debit line items must be the same as the total of all credit line items in double entry accounting.
e) A (personal) account is assigned to a business partner.
f) Shipment of goods is related to posting business transactions.
g) At the end of an accounting period, all of the accounts are closed, their values are entered in a profit and loss account and

ultimately gathered in the balance.

In the clarification and reconstruction of the identified expert terminology the following “defects” are discussed and
examined thoroughly with the future users or the company’s experts.

Checking synonyms
Check for words with the same meaning (extension and intension) that can be interchanged.
e.g.: MEMBER and ASSOCIATE have the same meaning for DATEV.
(DATEV is a computer center and software house for the German-speaking tax profession where the author worked as executive manager in software
development for seven years.)

Eliminating homonyms
Check for words that are written or pronounced in the same way but have a different meaning.
e.g.: STALK, which can mean either part of a plant or to follow someone around

Identifying equipollences

Different names are used for the same objects (extension) from different perspectives (intension).
e.g.: Goods or merchandise of a company is referred to as STOCK from a quantitative perspective and INVENTORY
ACCOUNT from a value perspective.

Account Stock Changes

Report Stock ChangesStock FGCheck QualityReceive FG And
Check Identity

Incoming
Finished Goods (FG)

G
ea

rI
nc

.

G
oo

ds
In

ve
nt

or
y

In
ve

nt
or

y
M

an
ag

em
en

t

Ortner Language-Critical Enterprise- and Software Engineering

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 6

Clarifying vagueness
As there is no clear delimitation (definition) of the terms in regard to their content (intension), it may not be clear which
objects belong to each term (scope, extension)
e.g.: Does RESIDENCE, the place where a CONSULTANT works, belong to the term CHAMBERS for DATEV or not?

Replacing wrong designators
Discrepancies between the actual meaning of a word and the meaning assumed at first (intension and extension)
e.g.: For DATEV, the CONSULTANT NUMBER does not define the function of a tax CONSULTANT, but it defines
the USER RIGHTS a tax CONSULTANT has within DATEV.

Figure 6. Classification Schema for Propositions about an Enterprise

This clarification results in further propositions relevant for development. Their relevance for the result types (system design)
can be examined with the help of a classification schema (see figure 6). Work on building a common expert language for a
company, which is aimed at integrating all of a company’s knowledge resources, can be organized in different ways.

1. With the help of a repository, a kind of glossary will be created and administered. This glossary will contain all the terms
that are important for an organization (language community), and should be designed for internal and external use.

2. A much more complex way, in comparison to (1.), of representing a company’s knowledge is with an encyclopaedia.
The encyclopaedia amounts to a conceptual schema for data but will go substantially further in respect to terminological
coherences. This approach will distinguish inward and outward knowledge, which will be administered in a repository as
an enterprise knowledge base.

3. The enterprise expert language is a rational interim language that is implemented on a meta-meta language level in the
repository (Ortner, 1999). It is used for integrating and translating other languages used in a company. For users, it is not
necessary to know the interim language itself.

Currently, the three variants discussed above can be found in industry worldwide. Vendor-independent research is done in the
field of SOA under the catchword Enterprise Application Integration (EAI). Furthermore, companies like Oracle look into
Application Integration Architecture (AIA) and offer products such as Fusion. Other vendors offer products like WebSphere
(IBM) or NetWeaver (SAP) for the integration task.

General Object-Oriented System Design

After the development-relevant knowledge (see figure 6) has been reconstructed neutral to specific methods and technology
(e.g. according to Ortner, 1997), and integrated into the overall knowledge base of an enterprise using common language,
then, in the system design, this knowledge is transformed into the result types of an object-oriented solution to the task.
Figure 8 shows an object-oriented software design according to Ortner and Schienmann (Ortner and Schienmann, 1996) that
has been extended for the design of service-oriented architectures of an enterprise (figure 7).

Object
Structure

ProcessThing
oriented

Occurence
oriented

a) b) c)

e) f) g)

Internal

External

Constraints d)

Ortner Language-Critical Enterprise- and Software Engineering

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 7

Figure 7. Extended Object-oriented Enterprise Design

When we speak of entirely object-oriented development of application systems, the enlightening step is the introduction of
objects from computing sciences as grammatical objects. Grammatical objects are target points of language actions (e.g.
writing, speaking, thinking) in a sentence, whereby they can also be replaced by pronouns in the sentence (e.g. one, he, him,
this one). At school we have learned to speak of direct and indirect objects, genitive objects and various prepositional objects.

In contradiction to what many computer scientists still believe, when modeling and programming in computer science we do
not concern ourselves with concrete or “ontological objects” such as this chair, that apple or my laptop. When speaking of
objects “informatically” (i.e. modeling and programming), it is of particular importance that abstract types such as “class” in
a repository or the term “invoice” in an application, are to be thought of as target points. The concrete, “ontological objects”
are usually found in the application fields.

Figure 8. Object-oriented Software Design

Computer science is the science where students learn how to talk constructively about language (grammatical) objects, or
more precisely, about abstract objects. Needless to say, we can still start from the concrete objects of the application fields in
“Requirements Engineering” and when introducing the implemented solution, we can refer back to the users’ concrete
(ontological) objects.

The object-oriented approach in the development of application systems goes back to Platon. Platon classifies objects from
the perspective of human beings and their languages into things (nouns, proper names) and actions, which can also be
considered occurrences (verbs). If we transfer this classification to operating with data on a computer, the object-orientation
(resp. its object) will be classified into the fields of data orientation (things) and procedure orientation (occurrences). This
classification shows why object-orientation is universal. It encompasses data orientation (data classes) as well as procedure
orientation (procedural classes).

Based on the results of organization modeling (enterprise engineering) and (embedded) system design (see figure 1), the
results from figure 7 are modeled (enterprise engineering) in the following methodical order:

1. Process modeling:
� BPMN diagrams (from organization modeling)
� State machine diagrams
� Activity diagrams
� ...
� Constraints (e.g. in Object Constraint Language (OCL))

Service
Application

(Procedure Part)

Result Type Inventory Procedure Process

Internal

External

Conceptual
Schema

Organization

Service
Application
(Data Part) Participation

Restrictions
of

Work
Occurences

Operations

Object View Static Functional Dynamic

Internal

External Relationships

Alterations

Sequences

Attributes

Participation

Restrictions

Ortner Language-Critical Enterprise- and Software Engineering

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 8

2. Participation modeling:
� Use cases (from organization modeling)
� Sequence diagrams
� Job descriptions (in the sense of structural organization)
� ...
� Constraints (e.g. organizational standards such as signature regulations)

3. Procedure modeling:
� Class diagrams (data classes and procedural classes)
� State machine diagrams
� Activity diagrams
� ...
� Constraints (e.g. plausibility checks at data entry in service-oriented applications)

4. Inventory modeling:
� Object type diagrams (for the conceptual schema)
� Dataflow diagrams (for specification of data that are exchanged)
� External schemas (extended as data classes)
� ...
� Constraints (e.g. semantic integrity rules for DBMS-enforced integrity)

Enterprise Engineering and the reconstruction of development-relevant expert knowledge from the application fields are
highly communicative processes. Here, users and developers communicate very “intensively” (in great detail and clearly)
with each other. Diagram languages play a minor role in this context. In contrast, the (entirely) object-oriented design of a
SOA with diagram languages must be performed in an already highly "significative" way. This means that the terms of the
object language and the meta-language (e.g. ”invoice” as an object-language terminus and “procedural class” as a meta-
language terminus) should be displayed as independent as possible from their use in the judgment-context. The focus is on
disclosing the types (software, concepts) that shall be implemented later. Diagrams are ideally suited for this purpose.

The diagram languages for procedure modeling are of course very similar to the diagram languages for process modeling.
Procedure modeling comprises of the process parts (algorithms), which run as service-oriented applications while a process is
being executed, as well as of those process parts, which can be specified in less detail since they involve human work (e.g.
following work plans).

The order (1.-4.) chosen here serves merely as a recommendation. The modeling process is an iterative process, as every
well-educated developer will know from practical projects (see figure 2).

CONCRETION IN THE LARGE

Process-centric development of application systems has been derived from data-centric (Wedekind and Ortner, 1980)
development. The development paradigm “applications follow processes”, which is valid in today’s service-oriented
architectures, complements, but does not replace the data-centric approach. Therefore, SOA stands for a new paradigm, not a
shift in paradigm. The data-centric approach remains as important as ever, but due to the triumphant progress of object-
orientation and component-based development, it is integrated in the overall architecture and work processes in a more
“intelligent” way (Platon was right!). In addition to data processing, work organization (enterprise engineering) has become a
subject in applied computer science (software engineering).

Figure 9 illustrates an enterprise that is organized as an application system in a process-centric way, considering the expert
field (domain) and the logical structure (architecture).

Ortner Language-Critical Enterprise- and Software Engineering

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 9

Figure 9. 4-Tier-Architecture of an Enterprise (SOA or WfM-Application)

Figure 10 shows an enterprise represented by software in an entirely object-oriented way. On the right, implementation
aspects can be found; the right side lists the specific details of the information technology available for implementation today.
We are therefore only talking about a “concretion in the large”. “IT and solution architects”, “integration developers” and
“deployment managers” must be able to deliver this concretion for the enterprises (domains) that use information technology
(Jablonski, Petrov, Meiler and Mayer, 2004).

Figure 10. Entirely Object-oriented Concretion of SOA – The Software-Part

“Code development”, which is of course also important, in particular from the point of view of the “service and solution

testers” on site, is currently done in so-called “low-wage countries” by well-trained people (near and offshoring). In
complementation to a “concretion in the large”, we are now talking about a “concretion in the small.”

DYNAMIC SUPPORT AND OPTIMIZATION OF WORK PROCESSES

For the dynamic management of application systems (see figure 9), it is necessary to create and use a meta-information
system whose most important part is the repository system (Ortner, 1999) as for example described by (Berbner, Grollius,
Repp, Heckmann, Ortner, and Steinmetz, 2007). In accordance to the much-noted work “The Quest for Resilience” by Hamel
and Välikangas (Hamel and Välikangas, 2003), future enterprise networks will be implemented as elastic ecosystems
(Corallo, Passiante and Principe, 2007) built from components of different categories. These systems must be assembled in
the best possible way, thereby facilitating the systems to respond, possibly even self-actingly, to changing situations.

Coordination
Class

Application-Server

DB-Server

Web-Server

Client/Organization

EJB and
J2EE, etc.

EJB, WSXL,
Apache, etc.

4.

3.

2.

1.

PC‘s, control devices, various instruments

Presentation Class

Procedural
Classes

Data
Classes

Conceptual Schema Relational DBMS

HTML,
Java(Script),

Ajax, etc.

Presentation Layer

Coordination Layer

Application Layer

Administration Layer

Service-oriented Architecture (SOA) of an Enterprise (WfMS)

SCM ERP CRM

Database Platform
Data Inventory/

IT-Infrastructure

Application Software/
Services

Workflow/
Processes

Employee/
Structural

Organization

IT
-S

er
vi

ce
-

M
an

ag
em

en
t

Information
Technology (IT)

ISM

Business
Process

BPM

B
us

in
es

s-
Pr

oc
es

s-
M

an
ag

em
en

t

Ortner Language-Critical Enterprise- and Software Engineering

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 10

The ever changing job design (e.g. due to product changes) and work organization is crucial to this approach. This is done
considering

a) the aspects: optimized processes, best possible employee assignment and dynamic IT-support (e.g. IT-services), as well
as

b) the fact that some of the jobs that are part of these processes, are performed by employees who come from everywhere,
or respectively, the jobs are done where personnel is available at low cost.

In this regard, organizing potential assignments for employees in work plans and establishing a global workflow management
system (see figure 11) is exceedingly relevant. Such a system allows neutral (assignment-free) storage and maintenance of
work processes. It could contain the IT-services (data and program schemas) that are used anywhere in the world as program-
technological means (to work plans) for work in those processes. This way, an enterprise’s IT-department organizes and
controls the company’s work processes worldwide in division of labor and dynamically using the Internet.

Figure 11. World Wide Workflow Management System (Jablonski, Petrov, Meiler and Mayer, 2005)

The protruding innovation of SOA is the extension of the concept of application systems by work and organizational
processes of enterprises. This makes organization theory as it is found in Business and Social Sciences, the Engineering
disciplines or in Enterprise Engineering an “integral”, that is an interdisciplinary part, of Applied Computer Science. And this
in a way that has not been enough seen in previous years.

Concepts and institutions like the German REFA-Association for Work Design or Methods-Time-Measurement (MTM)
founded in 1924 (These are systems for time allotment that have been used in Sweden as of 1950, in Switzerland since 1957
and in Germany since 1960) suddenly constitute a field of activity and provide IT-businesses and enterprises worldwide with
the knowledge that information and computing scientists possess. Due to Ubiquitous Computing, however, this also affects
the courses of study of Enterprise Engineering, Business and Social Sciences, Mechanical Engineering, Electrical
Engineering or Civil Engineering, as all of them are concerned with work science and process organization.

From the perspective of an employee, there are three possibilities to be considered when setting out to optimize work
processes using IT:

Ortner Language-Critical Enterprise- and Software Engineering

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 11

1. to reduce people’s workload through automation (resource: “software”)
2. to support human work as for example using interactive applications (resources: “software” and “knowledge”), or
3. to improve people’s work qualifications (resource: “knowledge”)
Industrialization and automation were so successful in the previous decades that it is very advisable to revert our efforts with
respect to the listing above. With globalization in mind as well as taking into consideration our worldwide division of labor,
we should “invest much more in education and as little as possible in further automation efforts.” Technological progress
cannot be stopped, but a world which is becoming increasingly compact, can only cope with progress, if it is flanked by
human education.

OUTLOOK

In Applied Computer Science, from a global standpoint, process-centric software and enterprise development constitute a
new paradigm, but do not result in a paradigm shift. Managing data and managing processes are complementary and lead to
entirely new job descriptions. In the expert languages of globally interacting IT-enterprises these new professions are called:

• IT-Architect
• Business Analyst

• Application Developer
• Service and Solution Tester
• Software Developer
• Deployment Manager
• Integration Developer
• Solution Architect
• Code Developer

• etc.
Nevertheless, people, who perform these jobs throughout the world, have the least say in who performs which kind of work
when and where.

There is nothing more important for our survival than that the humanities take up the challenge to newly enter in a process of
enlightenment. Logic, Mathematics, Linguistics and Computer Science, for example, are studies of the humanities.
“Normative Logic and Ethics” (Lorenzen, 1984) as well as their advancement to an “Encyclopedia Philosophy and
Philosophy of Science” (Mittelstraß, 1996) provide us with the necessary fundamental education and terminology, in the
sense of a Universal Literacy, to fulfill this task.

Therefore, we appeal for language-critical computer science (Mittelstraß, 1996) to become basic education for all citizens. As
a matter of course, this basic education should be graded and differentiated into interdisciplinary (rather universities) and
infradisciplinary (rather schools) knowledge.

The root of the matter is teaching a disciplined and reflected use of language.

A great difficulty of our profession, however, lies in the inability to become language-critical overnight. Being language-
critical is the consequence of a long and committed process of reflection and self-observation while using language. Despite
this difficulty there does not exist a more effective way for attaining (work-) process centric application systems solutions
than the language-critical way.

Therefore, the challenge is to provide curricula which help to shorten and level, at early stages, the path for young people to a
language-critical life in times of mobile communication and the participation of all in the boundless offers of the World Wide
Web.

REFERENCES

1. Berbner, R., Grollius, T., Repp, N., Heckmann, O., Ortner, E. and Steinmetz, R. (2007) Management of Service-oriented
Architecture (SoA)-based Application Systems, Enterprise Modelling and Information Systems Architectures, 2, 1, 14-
25.

Ortner Language-Critical Enterprise- and Software Engineering

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 12

2. Cockburn, A. (2001) Writing Effective Use Cases, Addison-Wesley, Boston.
3. Corallo, A., Passiante, G. and Prencipe, A. (2007) Digital Business Ecosystems, Edward Elgar Publishing, Cheltenham.
4. Ghani, H., Koll, C., Kunz, C., Sahin, T. and Yalcin, A. (2007) Concept for the BITKOM University Challenge 2007

“Best Process Architecture”, http://www.bitkom.org.
5. Hamel, G. and Välikangas, L. (2003) The Quest for Resilience, Harvard Business Review, Sept. 2003.
6. Heinemann, E. and Ortner, E. (2007) Memorandum zum Verhältnis von System- und Anwendungsinformatik,

http://www.metainformationen.de/downloads/unternehmensingenieur/MemorandumZumVerhltnisVonSystemUndAnwe
ndungsinformatik.pdf, 24.04.2008.

7. Jablonski, S., Petrov, I., Meiler, Ch. and Mayer, U. (2005) Guide to Web Application and Platform Architectures,
Springer, Berlin.

8. Lehmann, F.R. (1999) Fachlicher Entwurf von Workflow-Management-Anwendungen, B.G. Teubner
Verlagsgesellschaft, Stuttgart.

9. Lorenzen, P. (1968) Normative Logic and Ethics, B.I.-Wissenschaftsverlag, Zurich.
10. Lorenzen, P. (1994) Konstruktivismus, Journal for General Philosophy of Science, 25, 1, 125-133.
11. Mittelstraß, J. (1989) Der Flug der Eule – Von der Vernunft der Wissenschaft und der Aufgabe der Philosophie,

Suhrkamp Verlag, Frankfurt.
12. Mittelstraß, J. (ed.) (1996) Enzyklopädie Philosophie und Wissenschaftstheorie, J.B. Metzler Verlag, vol. 1 (1980), vol.

2 (1984), vol. 3 (1995), vol. 4 (1996), Stuttgart.
13. Nussbaum, D., Ortner, E., Scheele, S. and Sternhuber, S. (2007) Discussion of the Interaction Concept focusing on

Application Systems, Proceedings of the IEEE International Conference on Web Intelligence 2007. In press.
14. Oberweis, A. and Broy, M. (2007) Informatiker disputieren über Anwendungsnähe der Disziplinen, Computer Zeitung,

Monday, 16.07.2007.
15. Ortner, E. (1997) Methodenneutraler Fachentwurf – Zu den Grundlagen einer anwendungsorientierten Informatik, B.G.

Teubner Verlagsgesellschaft, Stuttgart.
16. Ortner, E. (1999) Repository Systeme, Teil 1: Mehrstufigkeit und Entwicklungsumgebung, Repository Systeme, Teil 2:

Aufbau und Betrieb eines Entwicklungsrepositoriums, Informatik-Spektrum, 22, 4, 235-251 resp. 22, 9, 351-363.
17. Ortner, E. and Schienmann, B. (1996) Normative Language Approach – A Framework for Understanding, Proceedings

of the 15th International Conference on Conceptual Modeling, Cottbus, Germany, October 7-10, Springer, Berlin, 261-
276.

18. Quine, W.v.O. (1960) Word and Object, The MIT Press, Cambridge.
19. Scheer, A.-W. (1990) EDV-orientierte Betriebswirtschaftslehre, 4th ed., Springer, Berlin.
20. Wedekind, H. and Ortner, E. (1980). Systematisches Konstruieren von Datenbankanwendungen – Zur Methodologie der

Angewandten Informatik, Carl Hanser Verlag, Munich.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2008

	Language-Critical Enterprise and Software Engineering
	Erich Ortner
	Recommended Citation

	Microsoft Word - $ASQ4305187_File000005_58818358.doc

