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Abstract 
This work analyzes the sign of the relationship between input accuracy and output accuracy in two basic 
information processing operations – the Boolean binary logical OR and logical AND. These operations are 
often used in the course of decision-making and problem solving tasks. The analysis shows a surprising 
result: the sign of the relationship varies. Conditions that determine the sign are specified, and those under 
which the association is negative are explained and illustrated. 

 
Keywords: Data Management, Data Accuracy, GIGO. 

Introduction  
 
The relationship between input accuracy and output accuracy is of great interest in numerous problem domains, and has been 
investigated—under different assumptions and titles—in various research areas. Some research areas are computer science, 
statistics, political science, econometric forecasting, physical sciences, and information systems. Nonetheless, our 
understanding of that relationship is only partial at present. In fact, even the sign of the relationship is not well understood. 
Many researchers have embraced the belief in GIGO (Garbage In, Garbage Out), and have largely treated GIGO as an axiom. 
Originally coined in the computer industry, this acronym, which indicates a strong positive link between input accuracy and 
output accuracy, is nowadays popular in general. However, there is a growing literature that hints to a more complex 
association.  

One example emerges from a theory, established in several domains, that statistical dependence relationships among 
data sources, or data errors, can have a dramatic effect on the accuracy of the information that an integration process produces 
(e.g., Barabash 1965; Frantsuz 1967; Toussaint 1971; Cover 1974; Clemen and Winkler 1985; Berg 1993; Ladha 1995; 
Askira Gelman 2004; Kuncheva et al. 2003). In some cases, negative correlation between data sources or data errors has a 
remarkable positive effect on the accuracy of the output information (e.g., Clemen and Winkler 1985; Berg 1993; Ladha 
1995; Kuncheva et al. 2003). Consequently, higher data accuracy can lead to higher, or lower, output accuracy, subject to 
variations in such dependencies. A second example is based on studies of prediction model-building paradigms, which 
indicate that adding noise to a data sample that serves in the construction of a model can improve the accuracy of the model 
(e.g., Bishop 1995; Raviv and Intrator 1996; Skurichina et al. 2000). Evidently, controlled levels of noise can compensate for 
limitations of the model-building algorithms. That is, information-processing optimality seems to be a factor that can affect 
the sign of the link between input accuracy and output accuracy. 

This work addresses the question of the sign of the association between input accuracy and output accuracy. It is a 
theoretical investigation, part of a research project that aims to expand our understanding of the effect of errors in 
fundamental information processing operations. Two basic information processing operations are examined in this paper: the 
Boolean binary logical OR, and logical AND. These operations are often used in the course of decision-making (Einhorn 
1970). The scenario assumed here is simple—an operation applies two inputs, both of which are not free of errors. The 
correct input values as well as error occurrences are random; there are no dependencies. The relationship between input 
accuracy and output accuracy is interpreted as a relationship between the probability of input error occurrence and the 
probability of output error occurrence, and analyzed using statistical properties of random variables. The analysis produces a 
surprising result: the sign of the relationship varies.  

A description of the method and notation follows next. Later, the conditions that determine the sign are specified, 
and conditions in which the association is negative are explained. A subsequent section offers illustrations of conditions in 
which the association is negative.  
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Method and notation 
 
Our analysis is based on statistical properties of random variables. The measure of accuracy that the analysis employs is 
probability of error occurrence (which is the same, in this instance, as the expected value of the corresponding variable).  

The variables in use by this analysis are listed and defined below: 

♦ U, V: The ideal, correct input; U and V are dichotomous random variables that accept the values 1 and 0, which 
correspond to true and false, respectively.  

♦ W: The desired, correct output; W is a dichotomous random variable that accepts the values 1 (true) and 0 (false). 

♦ Ua, Va: The available, possibly incorrect input; Ua and Va are dichotomous random variables that accept the values 1 
(true) and 0 (false). 

♦ DU, DV: The occurrence of an input error as reflected by the value of the available input. DU and DV are dichotomous 
random variables that accept the values 1 and 0, which correspond to error and no error, respectively.  

♦ Wa: The output that is generated based on the available input; Wa is a dichotomous random variable that accepts the 
values 1 (true) and 0 (false). 

♦ DW: The occurrence of an output error as reflected by the value of the available output; DW is a dichotomous random 
variable that accepts the values 1 (error) and 0 (no error). 

Statistical parameters: 

♦ Up , Vp ,
UDp ,

VDp ,
WDp : Expected values; subscripts identify the relevant random variables. For example, the 

expected value of U is denoted by Up , i.e., ( ) Pr( 1)Up E U U= = = . Note that the expected value of a random 
variable that represents the occurrence of an error is the same as the probability of occurrence of that error.  

♦ Uσ , Vσ ,
UDσ ,

VDσ : Standard deviations; subscripts identify the relevant random variables. Additional notations, 

including ( )Stdev UV and similar notations, represent the standard deviations of the products of selected random 
variables (here, the standard deviation of the product of U and V). 

♦ UVρ ,
U VD Dρ ,

VUDρ ,
UVDρ ,

VVDρ ,
UUDρ : Correlation coefficients; subscripts identify the relevant random 

variables. Additional notations, including ( , )U VCorr UV D D and comparable notations, correspond to 
correlation coefficients involving products of random variables (in this case, the correlation coefficient between 
the product of U and V and the product of DU and DV). 

The relationship among Ua, DU, and U is given by: 

 (1 ) (1 ) 2a U U U UU D U D U U D UD= − + − = + − (1) 

If the value of DU is zero, that is, if this variable indicates that no error has occurred, then (1) is reduced to Ua=U. However, 
if the value of DU indicates an error, then (1) assigns a value of one to Ua if U is zero and a value of zero if U is one. An 
equivalent relationship exists among Va, DV, and V, and among Wa, DW, and W:

(1 ) (1 ) 2a V V V VV D V D V V D VD= − + − = + − (2) 

 (1 ) (1 ) 2a W W W WW D W D W W D WD= − + − = + − (3) 

Mean values are constrained:    
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0< 
UDp <0.5,  0< 

VDp <0.5,  0< Up <1,  0< Vp <1                                    (4) 

These constraints are mostly natural. However, the assumption that both 
UDp and 

VDp are strictly positive, namely, that both 

inputs have errors, is crucial to the outcome of this model. The significance of this assumption will be clarified in the 
following sections.  
 

Logical disjunction (OR) 
 
An error-free disjunction operation is portrayed by: 

 W U V UV= + − (5) 

The consistency of (5) with the definition of logical disjunction can be easily verified through a systematic evaluation of W for 
each possible combination of the values of U and V.

Similar to real-world settings, the relationship among the actual output, Wa, and the actual inputs, Ua and Va, is the 
same as the relationship among the correct output and inputs: 

a a a a aW U V U V= + − (6) 

Using (1)-(6), the connection between the probability of an output error, and statistical properties of the correct input 
and error terms, is described by Lemma 1. Lemma 1 asserts that the probability of an output error is equal to an aggregate of 
the expected values of DU, DV, VDU (i.e., the product of V and DU), UDV, DUDV, and UVDUDV. In this aggregate, the sign of 
the expected value of DU, DV, and UVDUDV is positive, while the remaining elements are negative.  

Lemma 1: Assuming (1)-(6): 

 ( ) ( ) ( ) ( ) ( ) 2 ( )
WD U V V U U V U Vp E D E D E UD E VD E D D E UVD D= + − − − + (7) 

A quick glance at (7) reveals that the outcome of an input error varies depending on both the correct values and error 
occurrence in the opposite input. We will use Lemma 1 to examine the direction of the effect of higher input accuracy on 
output accuracy. We first re-express (7) as a function of the input error probability 

VDp (although (8) focuses on 
VDp , an 

analog function applies to 
UDp due to a symmetry of the inputs): 

1/2 1/2

1/2 1/2 1/2

[ ( (1 )) ] ( ) [ ( (1 )) ]

2 ( , ) ( )[( ( (1 )) )(1 ( ( (1 )) ))]

2 (

 
W V U V V V V U V U V V U V

U V U V V U V U V U V V U V

D D D UD U D D U D U D D D D D D D

U V D D D D D D D D D D D D D D

p p p p p p p E VD p p p p

Corr UV D D Stdev UV p p p p p p p p

E U

= + − − + − − − +

+ − + − − +

+

ρ σ ρ σ

ρ σ ρ σ

1/2)[ ( (1 )) ]
U V U V V U VD D D D D D DV p p p p− +ρ σ

 (8) 

For the sake of simplicity, this work assumes that none of the random variables is involved in any dependence, such 
that all the correlation coefficients in (8) are zero. Notably, the main findings of this research can be produced under 
considerably weaker assumptions, such that the independence assumption is not critical.  

 
Independence Assumption: None of the variables in {U, V, DU, DV} or products of such variables is statistically dependent 
on any other variable in {U, V, DU, DV} or any product of such variables. 
 
The partial derivative of (8) with respect to 

VDp under this assumption is: 

/ 1 2 1 (1 2 )
W V U U U UD D U D U V D U V D Dp p p p p p p p p p p∂ ∂ = − − + = − − −  (9) 

The direction of the link between input error probability and output error probability is determined by the sign of (9). 
A positive sign of such derivative implies a positive link, while a negative sign indicates a negative link. Proposition 1 applies 
(9) for addressing the sign of the effect of input error probability on output error probability.  
 
Proposition 1: A higher value of 

VDp implies higher value of 
WDp if and only if:  
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(1 2 ) 1
UU D U Vp p p p+ − < (10) 

Surprisingly, (10) does not necessarily hold. Conditions in which (10) does not hold are illustrated in a later section. 
Roughly, when U has a low probability of a zero value and V has a high probability of a zero value, then an increase in input 
error probability 

VDp can produce lower output error probability. This is specifically true if the actual input Ua is not highly 

accurate. Intuitively, if both inputs have errors when the means of the correct values of the inputs are unequal enough, then 
errors in the data source with the low mean have the role of “good errors.” That is, they offset the “bad errors” in the other 
data source. Therefore, a higher error rate in the data source with the low mean can actually enhance output accuracy.  
 

Logical Conjunction (AND)  
 
In the case of logical conjunction, the ideal logical conjunction operation—where inputs are error-free—is captured by: 

 W UV= (11) 

The consistency of (11) with the definition of logical conjunction can be verified through a systematic evaluation of 
W for each possible combination of the values of U and V. The relationship between the actual input Ua and the ideal input U
is described by (1). Similarly, the relationship between the actual input Va and the ideal input V is described by (2). The 
relationship among the actual output Wa, and the actual inputs, is the same as the relationship among the correct output and 
inputs:  

a a aW U V= (12) 

The relationship between the actual output Wa and the ideal output W is specified by (3). We assume, again, certain 
constraints on mean values (4). 

Using (1)-(4), (11), and (12), the link between the probability of output error and statistical properties of the correct 
input and respective error terms is described by Lemma 2. Lemma 2 asserts that the probability of an output error is equal to 
an aggregate of the expected values of the products VDU, UDV, DUDV, UDUDV, VDUDV, and UVDUDV. In this aggregate, the 
sign of the expected value of VDU, UDV, DUDV , and UVDUDV, is positive, and the remaining terms are negative.  
 
Lemma 2: Assuming (1)-(4), (11), and (12):  

 ( ) ( ) ( ) 2 ( ) 2 ( ) 2 ( )
WD U V U V U V U V U Vp E VD E UD E D D E UD D E VD D E UVD D= + + − − + (13) 

We see again that the outcome of input errors varies depending on the correct values and error occurrence in the 
opposite input.  For studying the relationship between input accuracy and output accuracy, we re-express (13) as a function of 
the input error probability 

VDp :

1/ 2 1/ 2

1/ 2

1/ 2

[ ( (1 )) ] ( ) [ ( (1 )) ]

2 ( 2 ( ) ( )( (1 )) 2 ( )

2 ( ) ( )( (1 )) 2 (

 ) ,

 ,

W V V V V U V U V V U V

V V V V

V V

D UD U D D U D U D D D D D D D

U D U V U D D U D

U V U D D

p p p p p E VD p p p p

E UD Corr UD D Stdev UD p p E VD p

Corr VD Stdev VD p p Corr UV

p

D

= − + + + − +

− − − −

− − +

ρ σ ρ σ

1/ 2 1/ 2 1/ 2

1/ 2

, ) ( ) 

[( ( (1 )) )(1 ( ( (1 )) ))]

2 ( )[ ( (1 )) ]

 
U V U V V U V U V U V V U V

U V U V V U V

U V

D D D D D D D D D D D D D D

D D D D D D D

D D Stdev UV

p p p p p p p p

E UV p p p p

× − + − − +

+ − +

ρ ρ σ

ρ σ

σ

(14)        

The sign of the link between the input error probability and the output error probability is determined by the sign of 
the partial derivative of (14) with respect to 

VDp . Such derivative is calculated assuming statistical independence, as before:  

 / 2 ( )
W V U UD D U D D U V U Vp p p p p p p p p∂ ∂ = + − + − (15) 

Next, Proposition 2 applies (15) for addressing the sign of the effect of input error probability on output error 
probability.  

Proposition 2: A higher value of 
VDp implies higher value of 

WDp if and only if:  
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(1 2 2 2 ) 0
UU D U V U Vp p p p p p+ − − + > (16) 

Analog to Proposition 1, Proposition 2 hints that higher input accuracy may or may not produce higher output 
accuracy. Conditions in which (16) does not hold are illustrated next. Similar to logical disjunction, we will see that a higher 
input error probability can produce lower output error probability when the means of the correct values of the data sources are 
unequal enough. However, contrary to logical disjunction, errors are constructive when the mean of the correct data is high. 
Technically, the derivative (15) can be negative if Up is low enough and Vp is high enough. In this case, errors in the data 
source with the high mean may play the role of “good errors” by offsetting the “bad errors” in the other data source.  
 

Illustration  
 
Decision scenarios that entail dichotomous decision criteria in which the means of the correct values demonstrate great 
inequality are, in fact, common. We first consider an organizational decision in that class that uses logical disjunction. A 
decision of that kind generally aims to affect a large section of some target population. For that purpose, it applies a criterion 
for inclusion that is widely satisfied in the target population. Mainly, such criterion is accompanied by another criterion that 
ensures that a chosen subset of the members that are left out in this way is included as well. A specific example is an 
operational decision regarding a periodic machine checkup that applies the following criteria to determine if a given machine 
should undergo this preventative checkup: (a) the machine is at least two years old, and (b) the machine has been 
exceptionally heavily utilized since any preceding checkup (e.g., more than n hours). A machine is serviced if any of these 
conditions is met. Consider an organization where most of the machines have been bought a few years ago such that (a) is true 
for a large majority of the machines in use. In addition, by definition (b) is only true for a small number of the machines. 
Now, suppose that U is derived from (a) such that U=1 corresponds to a machine that is at least two years old and U=0 
otherwise. Likewise, V is derived from (b) such that V=1 corresponds to a machine that has been heavily utilized and V=0 
otherwise. Clearly, the means of these variables, Up and Vp , can differ greatly. We will assume that Up =0.95 and 

Vp =0.05.  
To illustrate conditions in which higher input error probability produces lower output probability under this scenario, 

we assume that the available data are inflicted with errors. In addition, faithful to the independence assumption of this paper, 
none of the variables or variable products is statistically dependent on any of the other variables or their products. Suppose, 
for example, that the probability of error in the machine age criterion, 

UDp , is 0.12. The effect of increasing the probability of 

error in the utilization criterion, 
VDp , from 0.01 to 0.49 is demonstrated in Figure 1. Note that the increase in error rate 

occurs in the input with the lower mean of correct values.  
Since inequality (10)  does  not  hold  under  the  outlined  assumptions ( /

W VD Dp p∂ ∂ = -0.0586), our analysis directs 

that higher values of 
VDp do not produce higher values of 

WDp . Figure 1 portrays 
WDp as a function of 

VDp . The values 
were computed based on equation (7). Essentially, as input error probability grows from 0.01 to 0.49, output error probability 
decreases from 0.1134 to 0.0853. 

Conditions in which higher input error probability produces lower error output probability under logical conjunction 
are not hard to depict either. The suitable decision targets a relatively small section of some population and applies a criterion 
for inclusion that is not commonly satisfied in the target population. However, in addition to such unique criterion, it applies a 
broad criterion in order to ensure that some basic requirement is met. A specific example that remains in the organizational 
setting described earlier is a decision regarding a more rare, and possibly more costly service in which the criteria to 
determine if a given machine should undergo the service or not are (a) and (b) as above. A machine is serviced only if both 
conditions are met.  
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Again, Up =0.95 and Vp =0.05. However, this time the probability of error in the data about machine utilization will 

be fixed at 
VDp =0.12, and we will examine the effect of increasing the probability of error in the data about the machine age, 

UDp , from 0.01 to 0.49. Notably, the increase in the error rate occurs in the source with the higher mean of correct values.  

Table 1. The decrease in 
WDp as 

VDp increases under logical disjunction (a sample) 

Up Vp
UDp

W

V

D

D

p

p

∂

∂

Up Vp
UDp

W

V

D

D

p

p

∂

∂

Up Vp
UDp

W

V

D

D

p

p

∂

∂

Up Vp
UDp

W

V

D

D

p

p

∂

∂

0.99 0.01 0.02 -0.01 0.99 0.33 0.21 -0.06 0.91 0.17 0.33 -0.14 0.83 0.33 0.49 -0.05 
0.11 -0.10  0.29 -0.09   0.41 -0.19  0.38 0.49 -0.01 
0.17 -0.16  0.37 -0.12   0.49 -0.25 0.75 0.01 0.26 -0.01 
0.25 -0.24  0.49 -0.16  0.25 0.18 -0.01  0.33 -0.08 
0.33 -0.31  0.41 0.09 -0.01  0.25 -0.05  0.41 -0.15 
0.41 -0.39  0.15 -0.02  0.33 -0.09  0.49 -0.23 
0.49 -0.47  0.21 -0.03  0.41 -0.13  0.09 0.3 -0.01 

0.09 0.03 -0.01  0.29 -0.04  0.49 -0.18  0.37 -0.07 
0.09 -0.06  0.37 -0.06  0.33 0.25 -0.01  0.49 -0.17 
0.15 -0.11  0.49 -0.08  0.37 -0.06  0.17 0.35 -0.01 
0.21 -0.16  0.48 0.09 -0.01  0.49 -0.11  0.41 -0.06 
0.29 -0.23  0.15 -0.01  0.41 0.41 -0.01  0.49 -0.12 
0.37 -0.29  0.21 -0.01  0.49 -0.03  0.25 0.41 -0.01 
0.49 -0.39  0.29 -0.01 0.83 0.01 0.18 -0.01  0.49 -0.06 

0.17 0.03 -0.01  0.37 -0.01  0.21 -0.04  0.33 0.49 -0.01 
0.09 -0.05  0.49 -0.01  0.29 -0.12 0.67 0.01 0.34 -0.01 
0.15 -0.09 0.91 0.01 0.10 -0.01  0.37 -0.19  0.41 -0.07 
0.21 -0.13  0.17 -0.08   0.49 -0.31  0.49 -0.15 
0.29 -0.18  0.25 -0.16  0.09 0.21 -0.01  0.09 0.39 -0.01 
0.37 -0.24  0.33 -0.23  0.29 -0.08  0.49 -0.10 
0.49 -0.32  0.41 -0.31  0.37 -0.14  0.17 0.44 -0.01 

0.25 0.03 -0.01  0.49 -0.39  0.49 -0.25  0.49 -0.05 
0.09 -0.04  0.09 0.12 -0.01  0.17 0.25 -0.01  0.23 0.49 -0.01 
0.15 -0.07   0.17 -0.05  0.31 -0.05 0.55 0.01 0.47 -0.01 
0.21 -0.10   0.25 -0.12  0.37 -0.10  0.49 -0.03 
0.29 -0.14   0.33 -0.19  0.49 -0.18  0.03 0.48 -0.01 
0.37 -0.18   0.41 -0.25  0.25 0.31 -0.01  0.49 -0.02 
0.49 -0.24   0.49 -0.32  0.37 -0.05  0.05 0.49 -0.01 

0.33 0.07 -0.01  0.17 0.15 -0.01  0.49 -0.12  0.06 0.49 -0.01 
0.15 -0.04   0.25 -0.08  0.33 0.39 -0.01 0.53 0.01 0.49 -0.01 

Figure 2.
WDp as a function of 

UDp under the 
logical conjunction operation 

 

Figure 1.
WDp as a function of 

VDp under the      
logical disjunction operation 
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Inequality (16) does not hold under these circumstances ( /
W UD Dp p∂∂ = -0.0586), such that, according to the 

analysis, higher values of 
UDp do not produce higher values of 

WDp . Figure 2 describes 
WDp as a function of 

UDp . The 

values of 
WDp were computed based on (13). Evidently, as input error probability grows from 0.01 to 0.49, output error 

probability decreases, again, from 0.1134 to 0.0853. 
Table 1 shows the value of /

W UD Dp p∂∂ for a sample of the values of Up , Vp , and 
UDp where the partial 

derivative under logical disjunction is negative. Table 1 echos the fact that the link between 
VDp and 

WDp can be negative for 

any Vp <0.5 and any 
UDp <0.5, if the value of Up is high enough. Table 1 also suggests that higher values of Up and 

UDp ,

and lower values of Vp , drive the partial derivative down. These facts are easily derived from (9) and (10). 

Likewise, Table 2 shows the value of /
W UD Dp p∂∂ under logical conjunction for a sample of the values of Up , Vp ,

and 
VDp where the partial derivative is negative. Table 2 reflects the fact that the link between

UDp and 
WDp can be negative 

for any Up >0.5 and any 
VDp <0.5, if the value of Vp is low enough. Higher values of Up and 

UDp , and lower values of 

Vp , drive the partial derivative /
W UD Dp p∂∂ down. 

 

Table 2. The decrease in 
WDp as 

VDp increases under logical conjunction (a sample) 

Up Vp
UDp

W

V

D

D

p

p

∂

∂

Up Vp
UDp

W

V

D

D

p

p

∂

∂

Up Vp
UDp

W

V

D

D

p

p

∂

∂

Up Vp
UDp

W

V

D

D

p

p

∂

∂

0.99 0.01 0.02 -0.01 0.99 0.41 0.42 -0.01 0.91 0.33 0.49 -0.10 0.75 0.01 0.49 -0.24 
0.11 -0.10   0.49 -0.07  0.41 0.47 -0.01  0.09 0.3 -0.07 
0.17 -0.16  0.47 0.49 -0.01   0.49 -0.03   0.37 -0.11 
0.25 -0.24 0.91 0.01 0.02 -0.01 0.83 0.01 0.18 -0.11   0.49 -0.18 
0.33 -0.31   0.12 -0.09   0.21 -0.13  0.17 0.35 -0.03 
0.41 -0.39   0.25 -0.20   0.29 -0.18   0.41 -0.07 
0.49 -0.47   0.33 -0.26   0.37 -0.24   0.49 -0.12 

0.09 0.1 -0.01   0.41 -0.33   0.49 -0.32  0.25 0.41 -0.01 
0.15 -0.06   0.49 -0.39  0.09 0.21 -0.06   0.49 -0.06 
0.21 -0.12  0.09 0.12 -0.01   0.29 -0.11  0.31 0.49 -0.01 
0.29 -0.19   0.17 -0.05   0.37 -0.17 0.67 0.01 0.34 -0.11 
0.37 -0.27   0.25 -0.12   0.49 -0.25   0.41 -0.13 
0.49 -0.39   0.33 -0.19  0.17 0.25 -0.01   0.49 -0.16 

0.17 0.18 -0.01   0.41 -0.25   0.31 -0.05  0.09 0.39 -0.07 
0.21 -0.04   0.49 -0.32   0.37 -0.10   0.49 -0.11 
0.29 -0.12  0.17 0.21 -0.01   0.49 -0.18  0.17 0.44 -0.03 
0.37 -0.19   0.25 -0.04  0.25 0.35 -0.01   0.49 -0.05 
0.49 -0.31   0.33 -0.11   0.37 -0.03  0.23 0.49 -0.01 

0.25 0.26 -0.01   0.41 -0.18   0.49 -0.12 0.55 0.01 0.47 -0.04 
0.29 -0.04   0.49 -0.25  0.33 0.44 -0.01   0.49 -0.04 
0.37 -0.11  0.25 0.3 -0.01   0.49 -0.05  0.03 0.48 -0.03 
0.49 -0.23   0.33 -0.04  0.38 0.49 -0.01   0.49 -0.03 

0.33 0.34 -0.01   0.41 -0.10 0.75 0.01 0.26 -0.12  0.05 0.49 -0.02 
0.37 -0.04   0.49 -0.17   0.33 -0.16  0.06 0.49 -0.02 
0.49 -0.15  0.33 0.39 -0.01   0.41 -0.20 0.53 0.01 0.49 -0.02 

Concluding remarks 
 
Understanding the relationship between input accuracy and output accuracy is important for effective and efficient data and 
information system design and management. However, our understanding of that relationship is limited.  This study addresses 
the question of the sign of the relationship in two basic information processing operations, the Boolean operations of logical 
OR and logical AND. The results suggest that when the correct values of the input variables vary widely in their means, the 
sign of the relationship between input accuracy and output accuracy can be negative. These results are surprising and 
troubling. Their practical implications may be of substantial interest, especially since the assumptions of the theoretical model 
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are not very restrictive for the most part. In particular, although the independence assumption is a strong assumption, it can be 
shown that the results are not highly sensitive to the independence assumption; the pre-requisite that errors are random can be 
significantly relaxed. A critical assumption of this model is that both inputs have errors. If only one of the inputs has errors 
and their rate is reduced, then it can be easily proved that the output error rate will decrease too, consistent with GIGO. 
However, unfortunately, the assumption that both inputs have errors may hold in numerous real-world settings.  

The findings of this research imply that, in essence, errors should not all be treated equally. Of course, if accuracy 
could be improved to the extent that data are error-free, such distinction would be immaterial. However, when resources are 
limited, the ability to set priorities while taking into account the intended use of the data can be valuable. For instance, a 
potentially useful strategy in the example of the machine checkup—if the economic consequence of the application that uses 
logical disjunction is dominant—is to set high priority for improving the accuracy of the machine age data (where the mean of 
the correct value of the respective indicator is high). Alternatively, if the economic consequence of the application that uses 
logical conjunction takes control, then an opposite strategy can have better outcome. The accuracy of the machine utilization 
data—where the respective indicator has a low correct input mean—should be a priority. An attempt to decrease the error rate 
of the machine age data before the utilization data have been corrected would be inefficient in this case, and can cause actual 
losses.  
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Appendix 
 
Proof of Lemma 1: Using (1), (2), (4), and (5), we derive from (3) that:  

 ( 2 2 2 2 2 2 4 )/(1 2( ))W U V U V V U U V V U U V U V U VD D D UD VD UD VD D D UVD UVD UD D VD D UVD D U V UV= + − − − − − + + + + − − + − (A.1) 

We show that:  .                 

( 2 2 2 2 2 2 4 )/(1 2( ))

2
U V U V V U U V V U U V U V U V

U V V U U V U V

D D UD VD UD VD D D UVD UVD UD D VD D UVD D U V UV

D D UD VD D D UVD D

+ − − − − − + + + + − − + −

= + − − − +
(A.2) 

by calculating the value of the left-hand-side expression of (A.2) and the value of the right-hand-side expression of (A.2) 
given each of the possible variable-value combinations, and demonstrating that the expressions have the same value.  

 

DU DV U V LHS of (A.2) RHS of (A.2)
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 1 1
1 0 0 1 0 0
1 0 1 0 1 1
1 0 1 1 0 0
1 1 0 0 1 1
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 1 1

It follows that: 

 

( ) (( 2 2 2 2 2 2 4 )/(1 2( )))

( 2 ) ( ) ( ) ( ) ( ) ( ) 2 ( )  
WD W U V U V V U U V V U U V U V U V

U V V U U V U V U V V U U V U V

p E D E D D UD VD UD VD D D UVD UVD UD D VD D UVD D U V UV

E D D UD VD D D UVD D E D E D EUD EVD E D D EUVD D

= = + − − − − − + + + + − − + −

= + − − − + = + − − − +
(A.3) 

End of proof. 
 

Proof of Lemma 2: Using (1), (2), (11), and (12), we derive from (3), that:  

( 2 2 2 2 4 ) /(1 2 )W V V U U U V U V U V U VD UD UVD VD UVD D D VD D UD D UVD D UV= − + − + − − + − (A.4)            
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We show that: 

 
( 2 2 2 2 4 ) /(1 2 )

2 2 2
V V U U U V U V U V U V

U V U V U V U V U V

UD UVD VD UVD D D VD D UD D UVD D UV

VD UD D D UD D VD D UVD D

− + − + − − + −

= + + − − +
(A.5) 

by calculating the value of the left-hand-side expression of (A.5) and the value of the right-hand-side expression of (A.5) 
given each of the possible variable-value combinations, and demonstrating that the expressions always have the same value.  
 

DU DV U V LHS of (A.5) RHS of (A.5)
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 0 0
0 1 1 0 1 1
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 1 1

It follows that:  

( ) (( 2 2 2 2 4 ) /(1 2 ))

( 2 2 2 )

( ) ( ) ( ) 2 ( ) 2 ( ) 2 ( )

 
WD W V V U U U V U V U V U V

U V U V U V U V U V

U V U V U V U V U V

p E D E UD UVD VD UVD D D VD D UD D UVD D UV

E VD UD D D UD D VD D UVD D

E VD E UD E D D E UD D E VD D E UVD D

= = − + − + − − + −

= + + − − +

= + + − − +

(A.6) 

End of proof.  
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