
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2007 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2007

Collaborative Recommender Systems for Online
Shops
Uwe Leimstoll
University of Applied Sciences Northwestern Switzerland

Henrik Stormer
University of Fribourg

Follow this and additional works at: http://aisel.aisnet.org/amcis2007

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2007 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Leimstoll, Uwe and Stormer, Henrik, "Collaborative Recommender Systems for Online Shops" (2007). AMCIS 2007 Proceedings. 156.
http://aisel.aisnet.org/amcis2007/156

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2007%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2007?utm_source=aisel.aisnet.org%2Famcis2007%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2007%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2007%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2007?utm_source=aisel.aisnet.org%2Famcis2007%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2007/156?utm_source=aisel.aisnet.org%2Famcis2007%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Leimstoll/Stormer  Collaborative Recommender Systems 
 

1

COLLABORATIVE RECOMMENDER SYSTEMS 
FOR ONLINE SHOPS 

Uwe Leimstoll 
University of Applied Sciences 

Northwestern Switzerland 
uwe.leimstoll@fhnw.ch 

Henrik Stormer 
University of Fribourg, Switzerland 

henrik.stormer@unifr.ch 

Abstract 
Recommender systems are often used in electronic shops in order to suggest similar or related products, 
potentially interesting products for a given customer or a set of products for a marketing campaign. Most 
recommender systems use the collaborative filtering method in order to provide the personalization 
information. The collaborative filtering method is a very efficient and convenient way of achieving 
personalization as there is no need to introduce semantic information about the products or to manually 
link products and users together. In the last years, a number of optimizations for collaborative filtering 
techniques have been developed. This paper collects the ideas and shows which of them could be integrated 
successfully in order to optimize a collaborative recommender system for online shops. 
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Introduction 
 

In the past years, the number of personalization applications has strongly increased, especially in the field of electronic 
commerce where personalization becomes an important success factor (Manber et al. 2000, Schubert/Koch 2002). The term 
personalization means the filtering of information for each particular person in order to provide customers a customized or 
personalized interaction with a company’s products, services, web site and employees (Deitel et al. 2001). The 
personalization concept is a fundamental requirement for online shops. In contrast to traditional shops, electronic shops 
cannot provide the personal contact and the individual consultation, which are important means of the customer relationship 
management.  

Recommender systems are one of the most well-known personalization mechanisms. They can be used to suggest similar 
related or potentially interesting products for a given customer or a set of products for a marketing campaign. Most 
recommender systems use the collaborative filtering method in order to provide the personalized information. The starting 
point for collaborative filtering is an m-by-n-matrix (called rating matrix) with m referring to customers (rows) and n 
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referring to products (columns). By using different techniques, the similarities between the products (item-based technique) 
or between the users (user-based technique) are calculated. 

The information used to fill the rating matrix can either be gained explicitly or implicitly. Explicit information is entered by 
the customer directly, whereas implicit information is retrieved from the user’s interaction with the shop. Explicit information 
includes product ratings given by the customer. Implicit information includes the orders and the clickstream analysis. The 
collaborative filtering method is a very efficient and convenient way of achieving personalization, as there is no need to 
introduce semantic information about the products or to manually link products and users together. The customer’s 
interaction with the shop is the only required information. 

When applying recommender systems to online shops, a number of parameters have to be analyzed in order to optimize a 
recommender system. One parameter is a seasonal product, for example a winter jacket. It is of no use to recommend such a 
product in summer. The goal of this paper is to show a reference process that can be used when implementing a recommender 
system for an online shop. The process contains a number of optimization methods, including seasonal products, topic 
diversification and recommending products when they have already been purchased.  

The remainder of the paper is divided into seven sections and is structured as follows: The second section provides a deeper 
insight into the field of recommender systems. The third and fourth sections show suggestions on some practical aspects of 
the application and implementation of recommender systems. Based on our experiences, different alternatives of optimizing 
recommendations are presented in the fifth section. In the sixth section a reference process to facilitate the process of 
implementing and optimizing a recommender system is proposed. Finally, the seventh section discusses some attributes that 
could be used to configure the recommender system. The last section contains the conclusion and an outlook. 

 

Recommender Systems Basics 
 

The purpose of recommender systems is to recommend products according to the user’s preferences. Well-known 
applications of recommender systems can be found in the field of books (Linden et al. 2003), music (McCarthy/Anangnost 
1998, Chao et al. 2005) and movies (Ling et al. 2005). The broad area of recommender systems has been introduced in the 
mid-1990s by some early papers on collaborative filtering (Resnick et al. 1994). Meanwhile, the term recommender system is 
more common because it does comprise content-based filtering, collaborative filtering as well as hybrid approaches.  

 

Recommender System Classification 
 

Recommender systems can be classified in three groups, based on the approach used to generate the recommendations 
(Adomavicius/Tuzhilin 2005): 

1. Content-based filtering approach 

2. Collaborative filtering approach 

3. Hybrid approach 

For the content-based filtering approach attributes are assigned to each product. By using information retrieval techniques on 
those attributes it is possible to derive the similarity between the products, so that two products with common attributes have 
a grade of similarity (Basu et al. 1998). The advantage of content-based filtering is the possibility of precisely defining 
relations between products, namely for cross- or up-selling. However, this advantage comes up at a high price. On the one 
hand, this approach requires the manual definition of a great number of additional information, e.g. keywords and attributes 
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for each product. On the other hand, the content-based filtering uses complicated data mining techniques to generate 
recommendations. 

In contrast to content-based filtering, the collaborative filtering approach only needs information about user interaction and 
transaction such as products ratings, orders or clickstream information in order to provide recommendations. When browsing 
the websites or buying and rating products, users continuously provide all of this information. Another major difference is 
that the collaborative filtering approach is based on customer context information. So the strength of this approach is its full 
automation and its user-based semantic. However, this approach requires a certain amount of data in order to provide 
valuable results, i.e. the number of customers and, more important, the quantity of users’ transactions (often called the cold 
start problem and the first-rater problem). 

The third class of recommender systems uses a hybrid approach, which is a combination of the content-based and the 
collaborative filtering (Burke 2002). This approach combines the advantages of having a precise description of the relation-
ships between the objects based on the keywords and on the users’ interactions. This allows pertinent recommendations from 
the beginning with a continuous improvement over time by gathering and using more and more users’ information. 

Another well-known classification distinguishes between the way to pre-calculate results (Adomavicius/Tuzhilin 2005):  

1. Memory-based approach 

2. Model-based approach 

The process for calculating recommendations consists of an offline and online part. In the offline stage, data from the 
customer's profile is read and processed to improve the performance when calculating recommendations in the online part. 
Memory-based algorithms do not pre-calculate any results. This is sometimes called lazy learning. Model-based approaches 
try to create a model in the offline stage. The algorithm presented in this paper falls into this class. Other approaches are 
based on Bayesian networks (Breese et al. 1998) or statistical techniques (Hofmann 2004). 

 

User-based and Item-based Collaborative Filtering 
 

The collaborative filtering approach can be implemented using user-based or item-based methods. Both take as input the 
rating matrix with the customers in the row dimension and the products in the column dimension. This two-dimensional 
matrix represents the relationships between users and products either based on product ratings, purchased products or 
clickstream data. If product ratings are considered, each element at the intersection of a product and a customer will contain a 
value between -1 and +1 representing the judgment of the customer for the product where -1 denotes a strong dislike and +1 a 
strong affection.  

When applying the user-based method, in a first step, similarities between users are calculated. This calculation can be 
achieved by applying different mathematical formulas. In this paper, the similarity between the users is assessed using the 
cosine method (Resnick et al. 1994). Once the similarities between all users have been calculated, a matrix with the 
customers on both dimensions and the similarities as entries is returned: 

 

Table 1 Similarities between customers 

Mr. Smith Mr. Johnson Mrs. Miller 

Mr. Smith -1 +1 

Mr. Johnson -1 -0.8 

Mrs. Miller +1 -0.8 
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Based on this matrix, it is possible for each user to extract the group of most similar users (nearest neighbors). This group is 
then used in a second step to derive the product recommendations. The principle of the recommendation is pretty obvious; if 
Mr. Smith is very similar to Mrs. Miller and if Mrs. Miller strongly likes a product that Mr. Smith has not bought yet, the 
chance that Mr. Smith also likes this product is rather high. The user-based method returns personalized recommendation as 
each user receives propositions based on his profile. In our example, it is likely that Mr. Smith is fond of the product DVD 
Lost in Translation because he is very similar to Mrs. Miller who has rated this product high. 

In contrast to the user-based method, the item-based method directly derives the similarities between products. Once again, 
several mathematical approaches can be used to calculate these similarities. In this paper, the methodology of Deshpande and 
Karypis (2004) has been chosen. This methodology calculates the probability that a product X will be bought if a product Y 
has already been bought.  

A deeper introduction to the common algorithms used for user-based and item-based collaborative filtering as well as an 
analysis can be found in the paper of Sarwar et al. (2000). 

 

Selecting the Proper Recommender Algorithm and Input Data 
 

Information Source and Matrix Density 
 

When deciding which recommender algorithm to use, the available input data is most important. As stated before, all classes 
of algorithms offer different advantages and disadvantages. Practically, collaborative filtering algorithms are favored because 
of their full automation and easy way of implementation. 

In order to fill the rating matrix, a collaborative filtering algorithm needs user profile data. In an online shop, the following 
different information sources can be utilized to fill the rating matrix: 

Customer’s products ratings: The products ratings are the best source of information an online shop can obtain because 
they reflect the final judgment of a customer for a given product. Unfortunately, this information is rare, as customers 
normally rate only the products they have bought and only a rather small group of users does use this functionality. For 
product ratings, the five star model is very popular. A customer can rate a product with a value between 1 and 5 stars. A 
linear transformation to the rating matrix would be values of -1 for one star, -0.5 for two stars, 0 for three stars, +0.5 for four 
stars and +1 for five stars. Other researchers propose to base the ratings on an average rating by a customer 
(Lemire/Maclachlan 2005). 

The bought items derived from the orders: The order information is another good way of deriving the customer’s 
preferences. This information is easily accessible and is much more dense than the product ratings. However, people 
sometimes buy products they actually do not like. This is the case for a movie they have not seen yet and think they might 
like it. Therefore an explicit rating is more reliable than order information. 

The clickstream information: The clickstream data is the last kind of information, which can lead to the definition of the 
users taste. This is the most substantial but also the most doubtful information source. There is, however, a correlation 
between the visited web pages and the user’s interest, especially if the user visited several times the same product’s page. 

External Information: The shop administrator can provide external information for customers. This includes products a 
customer liked or did not like. 

An important factor of this information is the resulting matrix density. Analyses have shown that the quality of the 
recommendations depends on the matrix density (Sarwar et al. 2000, Stormer et al. 2006). By combining all available 
information sources, it is possible to increase the matrix density. 

Explicit ratings have a much better impact than implicit ones (Herlocker et al. 2004). Therefore, explicit ratings should be 
used when available. 
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Product Variants 
 

Important properties of products are variants. With the success of mass customization (Reichwald et al. 2000) variants are 
becoming more and more popular. A product variant is defined as a distinct unit within a brand or product line that is 
distinguishable by size, price or appearance (Govers/Schoormans 2005). Typically, it is of no use to distinguish between 
different variants in a recommender system. Therefore, all variants should be aggregated to one product. 

Even more problematic are products that are created individually. Those products are typically not offered in predefined 
variants but are designed new for each customer. In this case, the matching between similar products becomes problematic as 
the same product is rarely sold to two different customers. 

 

Implementing an Item-Based Algorithm in Practice 
 

Deshpande and Karypis (2004) describe one of the best algorithms for implementing recommendations using webshop order 
data. This algorithm expects a binary rating matrix where cell (i,j) is equal to 1 if customer i has bought product j. To weight 
customers higher that have only bought a few items in contrast to customers that have purchased a large number of different 
products, this rating matrix is normalized. This is achieved by dividing all customer vectors by the number of products the 
customer has purchased. 

Deshpande and Karypis (2004) define the number of different users that bought a product as Freq, thus Freq(i) is the number 
of nonempty entries in the rating matrix for the column of product i. The following formula is used to calculate the equality 
between products (α is a parameter between 0 and 1): 

α))(()(
),( 0: ,

,

jFreqiFreq

R
ppsim jqRq jq

ji ×
=

∑ >∀

When this formula is to be implemented in an online shop, the rating table has to be initialized first. In a simple case, the 
rating table has three columns, namely productId, userId and rating. By looping through all orders retrieved, this table can 
easily be filled. 

The next step is to calculate the similarity between products using the formula presented above. For this step, each product 
vector has to be compared with all other vectors. The results could be saved in another item table, containing the columns 
productId1, productId2 and similarity. For a product x that should be compared to a product y, the numerator of the above 
presented formula can be calculated by summing up all ratings retrieved by the following SQL statement: 

SELECT rating FROM rating WHERE productId in  
(x,y) GROUP BY userId HAVING COUNT(userId)=2 
The denominator can be retrieved by two SQL statements, one for the frequency of product x: 

SELECT count(*) FROM rating WHERE productId=x 
and the same one with productId=y. All three values need to be combined to get the final similarity. At the end, three SQL 
SELECT statements and one SQL INSERT statements are sufficient for calculating the similarity between two products. To 
improve the performance for large rating matrices, caching strategies should be evaluated. 

Finally, all recommendations can be read from this table. Two different ways are possible: 
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Non-personalized recommendations: Non-personalized recommendations for one product with productId x can be 
extracted from the item table by a simple select statement that returns the products with the highest similarity: 

SELECT productId2 FROM item WHERE  
productId1=x ORDER BY similarity DESC 
If the database supports to restrict the result set only the first n products can be retrieved. 

Personalized recommendation: Personalized recommendations are also possible by using the already bought products of 
each customer. In a first step, the IDs of all products a customer y has already bought are extracted from the rating table: 

SELECT productId FROM item WHERE userId=y 
Then, for all those products the recommendations are retrieved and combined. If a product is contained in more than one 
recommendation list all similarities are summed up. Fortunately, this can be done with only one SQL statement if (p1, p2, ... , 
pn) is a list of all productIDs retrieved by the first statement: 

SELECT productId2 FROM item WHERE productId1 in  
(p1,p2,...,pn) GROUP BY productId2  
ORDER BY SUM(similarity) desc 
 

Optimizations to Improve Recommendations 
 

Time Optimizations 
 

A customer’s interest might change over time. Therefore, newer ratings, clickstreams and orders are more important than 
older ones. Weighting data with a newer timestamp higher can accomplish this. Weng and Liu (2004) suggest to use a self-
defined weight greater one and multiply this with the original rating value if the rating was done within the last k days. 

 

Consumer Products 
 

Products typically differ in the number of buys per customer. Products like books or DVDs are typically only sold once, 
whereas food or detergents are sold more than once to the same customer. Today’s recommender systems usually do not 
recommend items a user has already bought. This strategy could be changed for products that have been sold more than once 
to the customer. If, for example, a user always buys the same bar of chocolate, the recommender system could recommend 
this item if his current order does not include the chocolate. 

 

Seasonal Products 
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A seasonal product is a product that is only sold during a special period within a year. Seasonal products include Christmas 
trees, winter coats or sunglasses. Figure 1 shows two seasonal products, the working gloves “Wintermercedes” and 
“88PBWA”. The first one, as the name indicates, is designed for the usage in winter times. Therefore, the orders are mainly 
done during September to February. The glove “88PBWA” is a summer glove that is sold during February to October. 

As the example shows, it is not useful to recommend the glove “Wintermercedes” in July because it is typically sold in 
winter. If an online shop wants to control seasonal products, two steps need to be fulfilled: 

1. All seasonal products together with their best selling period need to be identified. 

2. The recommender system should recommend a seasonal product only during the selling period. 

 

Jan.
0

Feb. March April May June July Aug. Sep. Oct. Nov. Dec.

5

10

15

20

Month

Number
Of
Buys

88PBWA

Wintermercedes

Figure 1 Two seasonal products 

 

The first step can be done automatically by analyzing the ordering information. For the second step, the resulting 
recommendation list has to be reordered. A general approach is shown in the next paragraph. 

 

Shop Administrator Interests 
 

Typically, a recommender system returns a recommendation list (often called Top-N list) that contains all recommendations 
for a product or a customer. However, a shop administrator might not be interested in promoting all products within this list. 
There are a number of reasons why a certain product should or should not be recommended, these include: 
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Margin: The margin is one of the most important attributes for shop administrators. The margin is the difference between 
purchase price and selling price. Typically this value differs from product to product. The shop administrator is more 
interested in selling products with a high margin. 

Quality: The quality of the product is another very important attribute. When a low quality product is sold, the chances for 
service costs are higher compared to a high quality product. Therefore, the shop administrator will try to sell high quality 
products to avoid service costs. If the online shop offers its customers the opportunity to give explicit product ratings, they 
can be a good indicator of the product quality. Another good indicator is the experience gained from the service and support 
of a product, like the number of returns because of quality problems. 

Size: Size could be another important attribute. For large products, a big effort has to be made in order to send it to a 
customer. This includes packing, providing a logistics enterprise that transports the product and finally billing. Additionally, 
large products occupy a greater amount of the inventory space. 

Supplier Charge: In brick and mortar stores, suppliers often pay for putting their products on an emphasized place. The shop 
administrator could retrieve a supplier charge for recommending their products. 

Stock: The amount and kind of items on stock influence the interest of the shop administrator to recommend products. A 
shop administrator is much more interested in selling items he has on stock than in reordering certain items for individual 
customers. 

In a simple approach, a product can be excluded from the recommendation list, for example by storing a flag that can be 
turned on manually. More complex approaches use information about the product to reorder the product list. 

 

Recommendation Diversity 
 

The problem of collaborative recommender systems is that the best recommendations are often very similar. An interesting 
approach to reduce this problem is to optimize the resulting recommendation list by reordering it so that different products 
are on top. This idea is presented in the work of Ziegler et al. (2005). The algorithm uses an arbitrary taxonomy to calculate 
the differences between product sets (Ziegler et al. 2004). Afterwards, the recommendation list is reordered to present 
different products on top according to their taxonomy. Smyth and McClave (2001) have done a similar work. They also try to 
balance the similarity of a product compared to the other products in the top-n list.  

 

A Reference Process for Implementing and Optimizing a Recommender System 
 

The presented optimizations have to be included in the process of calculating the recommendations. Therefore, this paragraph 
shows a reference process that includes all presented optimizations. Dependent on the data available and the need to 
implement the optimizations, the reference process can be implemented also partially by removing the not required steps.  

The reference process is divided in two parts. The first part shows the initialization steps needed to calculate the similarities 
between products. The second part describes the activities that could be accomplished when a top-n product list should be 
generated to recommend products to the customer. 
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Initialization process 
 

The initialization is a process that is started to calculate the similarities between the products. Figure 2 shows the 
initialization process in using a UML activity chart. 

 

Collect
Clickstream

Data

Collect
Transaction

Data

Collect
Review
Data

Combine
Data

Apply
Similarity

Calculation

Product
Similarities

Apply
Time

Optimization

Changed
Rating
Matrix

Rating
Matrix

Figure 2 The initialization process 

 

In the first three steps, the available data from the different business systems have to be collected, formatted and evaluated to 
generate the rating matrix. The combination of the different data available could be done as described. This results in a rating 
matrix. Then, the above described time optimization could be run. This weights current orders, reviews and clickstreams 
higher than older ones. The resulting rating matrix is the input for calculating similarities by either implementing an existing 
algorithm or using an available library. The similarities between the products are typically stored in a database. The 
initialization process ends with this storage. 

 

Top-N List Generation 
 

The second process describes the necessary activities to retrieve a top-n list for a customer. This process is executed 
whenever products should be recommended to a customer. The top-n list generation process is presented in Figure 3. 

 

Retrieve
Product(s)

Query
Similar

Products
Top-N List

Check
Seasonal
Products

Revised
Top-N List

Include Shop
Administrators

Interest

Reordered
Top-N List

Apply
Topic

Diversification

Reordered
Top-N List

Present Top X
Products

from Top-N List

Figure 3 The process for generating a top-n list 
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The process starts by retrieving the products on which the recommendation is based. These are either the old products that 
have been clicked, reviewed or bought by a customer, or the products in the cart of the customer, or a combination of both. It 
has been shown that a first top-n list can be retrieved from the database containing the product similarities with only one SQL 
statement. After the top-n list is obtained, seasonal products could be filtered out. This reduces the top-n list to products that 
should be recommended within the current season. Afterwards, the shop administrator’s interests could be used to reorder the 
top-n list. Finally, topic diversification could be used to reorder the top-n list a second time. The resulting top-n list can be 
shown to the customer. 

 

Integration of a Recommender System into an Online Shop 
 

Integrating a Recommender System in an existing online shop could be done for one concrete instance or generally. In the 
latter case, the developers of the online shop system need to define attributes that enable their customers to fine-tune a 
recommender system. In several workshops, the authors and industry partners identified three attributes that could be 
included in an online shop recommender system in order to fine-tune the recommendations: 

1. Product’s Half-Life: What is the maximum age of a product that should be recommended? 

2. Season: What is the low and high season of a product (if it exists)? 

3. Shop Interests: An attribute to push single products or to exclude them from the recommendations list. 

The product’s half-life is an interesting attribute to limit the recommendations only to newer products. This leads to the effect 
that products slide down or disappear from the recommendations list automatically after they reached a specified age. 

A high seasonality of the products requires a parameter to specify the period (e.g. high or low season, month, Easter, 
Christmas) in which a product has to be recommended. This will avoid the recommendation of a winter glove in summer and 
other inappropriate suggestions. 

In order to realize selling strategies, suppliers may wish to push single products using the recommender system (e.g. to 
promote a product or to dispose of slow sellers). Or they want single products to be excluded from the recommendations list. 
To enable the manipulation of recommendations either way, a parameter is needed which could be created as a slider. The 
slider shifts the product’s position in the recommendations list to foster or lower the sales of this specific product. 

The list of presented attributes to optimize recommendations is not comprehensive. More research has to be done and more 
experiences have to be collected in this area. 

 

Conclusion and Outlook 
 

The analysis of recent collaborative filtering techniques and different alternatives to optimize recommendations shows that 
the implementation and optimization of a collaborative recommender system for online shops is an extensive process. To 
decide which kind of optimizations could suitably be integrated in a concrete case, a reference process is introduced. The 
described reference process should be a valuable means to facilitate the implementation and optimization of a recommender 
system in an online shop. The selecting and adjusting of the relevant parameters should be supported and the process of 
parameterization should be automated. 
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The next step will be to validate the presented statements by practical implementations of recommender systems. The 
experiences from these implementations will lead to further insights regarding the coordination of optimization techniques. 
More research is needed to develop instruments for adapting a general recommender system to a specific case. Three relevant 
aspects have been presented. Now, further work is needed to find out how the adaptation could be simplified – not only for 
developers but also for the operating company. 
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