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ABSTRACT 

In the present network economy, businesses are becoming increasingly reliant on information technology (IT) to perform 
their operations and exchange information with business partners. This heavy dependence on IT, however, poses a potential 
threat for an organization. When natural or man-made disasters strike and cause malfunction to its computing and 
communicating systems, it would be vulnerable to business discontinuity. Severe consequences resulting from such IT 
breakdown may include the loss of sales, damages to reputation and consumer confidence, penalty incurred by failure to 
fulfill the orders, and so on. As a result, the issue of how to strengthen IT capabilities so that a company can prevent or 
quickly recover from disasters becomes a serious concern. In this paper, we present a discrete optimization model to allocate 
redundancy to critical IT assets for disaster recovery planning. The objective is to maximize the overall survivability of an 
organization’s critical IT functions by selecting their appropriate redundancy levels while still satisfying a budgetary resource 
constraint. A solution procedure based on probabilistic dynamic programming is proposed to solve the formulated problem, 
and two concrete examples are discussed to illustrate its usage and effectiveness. 

Keywords 

IT disaster recovery, redundancy allocation, discrete optimization, decision-making, dynamic programming. 

INTRODUCTION 

Modern organizations have become increasingly dependent on information technology (IT) to facilitate their businesses. 
Large-scale databases handled by high-speed computers retrieve, analyze and synthesize data collected from different 
sources. Communication networks like the Internet exchange, share, and transmit information in real time between suppliers, 
vendors and buyers in an industry value chain to carry out business transactions. Computer-aided design technologies help 
the product development team capture more customer requirements and develop better products to meet their specific needs. 
These few examples demonstrate that IT is being harnessed as a key enabler for an organization’s operations in the present 
network economy. The prowess of advanced IT represents numerous business benefits for a firm, including enhanced 
productivity, increased flexibility, better quality, and reduced costs. Utilized properly and creatively, IT can provide 
competitive advantages for a firm to improve its competitive position by removing competition barriers based on time and 
distance (Iyer and Sarkis, 1998).  

This increased reliance on IT, however, poses a potential threat for an organization. When the occurrence of catastrophic 
events or disasters affects its IT operations and causes their failures, the organization may suffer from the interruption of their 
supported business functions. Severe consequences resulting from such IT breakdown may include the loss of sales, damages 
to reputation and consumer confidence, penalty incurred by failure to fulfill the orders, and so on. As a consequence, the 
issue of how to strengthen IT capabilities so that a company can prevent or quickly recover from disasters becomes a serious 
concern. Clearly, an organization depending on IT to support its business processes and functions needs effective IT security 
measures to ensure business continuity in the event of disaster strikes (Lewis, Watson, and Pickren, 2003). 

Many kinds of potential disasters may immobilize an organization’s IT capabilities (Chengalur-Smith, Belardo, and Pazer, 
1999). Natural disasters like flood, earthquake, hurricane, tornado, blizzard, etc. are frequently encountered. Disasters can 
also be man-made, either intentional or unintentional, such as terrorist attacks, computer hackers, virus attacks, union strikes, 
unreliable hardware, and faulty software. Management has to be aware of the risks to which their business operations are 
exposed and recognize the threats and events that are likely to occur in the environment in which their firm is operated 
(Jenkins, 2000). Further, firms in the network economy no longer suffer alone from disasters. When a disaster occurs, 
business partners, both upstream and downstream in the industry value chain, may too suffer from the concomitant 
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consequences. In other words, the effects caused by a disaster can migrate to other entities over either the virtual or physical 
network. A thorough decision analysis aids in identifying, evaluating, and strengthening critical IT functions that must be 
maintained in case of a disaster (Tamura, Yamamoto, Tomiyama, and Hatono, 2000).  

A disaster recovery plan is defined as a system for internal control and security that focuses on quick restoration for critical 
organizational processes when there are operational failures due to natural or man-made disaster (Bryson, Millar, Joseph, and 
Mobolurin, 2002). The objective of an IT disaster recovery plan is to ensure that an organization’s computing and 
communication systems operate smoothly and uninterruptedly during and after the occurrence of a disaster. Once equipped 
with an effective IT disaster recovery plan, an organization is better prepared and can minimize potential loss by identifying, 
prioritizing and safeguarding valuable IT assets that need protection. On the contrary, an unprepared business without an IT 
disaster recovery plan in place is likely to suffer from the loss of information and the inability to continue its operations due 
to disaster.  

Despite the unequivocal importance of IT disaster recovery planning, little research has been done so far on the formal 
modeling of its decision-making process. It has been suggested that many of the issues encountered in disaster recovery 
planning can benefit from the application of quantitative decision-making techniques (Bryson, Millar, Joseph, and 
Mobolurin, 2002). In this paper, a discrete optimization model is proposed to assist IT managers in allocating appropriate 
redundancy level for valuable IT assets so that the overall risks against potential disasters can be reduced. Our model takes 
into account the criticality and costs of various IT assets as well as the resource limitation subject to budget availability.  

The remainder of this paper is organized as follows. Section 2 discusses the concept of using redundancy as a protective 
means to prepare for IT disasters. The mathematical optimization model for redundancy allocation is presented in Section 3. 
A solution procedure based on probabilistic dynamic programming is proposed in Section 4, along with the illustration of two 
specific examples. Finally, the conclusion and some topics suggested for future research are given in Section 5. 

REDUNDANCY FOR IT DISASTER RECOVERY 

The use of redundancy in preparation for disasters is of potential advantage because it can simultaneously address two 
aspects of disaster preparation – proactive prevention and reactive recovery. Before a disaster occurs, redundant components 
can mitigate the potential risks by working as backup facilities and thus preventing the disastrous consequences in advance 
(Grabowski, Merrick, Harrald, Mazzuchi, and van Dorp, 2000). After the occurrence of a disaster, organizations can quickly 
restore business functions and processes back to normal by substituting redundant components for the primary but disabled 
parts while they are being repaired and restored.  

So far the practice of IT disaster recovery planning has been focused on data recovery and program resumption. Most 
organizations nowadays already have daily backup procedures for data and programs, but these procedures alone may not be 
sufficient for restoring business functions and processes back to normal promptly enough to ensure business continuity (Iyer 
and Sarkis, 1998). While these backup and recovery procedures are necessary for resuming the information flow, they are 
essentially reactive and passive in nature, limited in their functionality. There are many other vital IT functions that also need 
be enacted. Such reaction-based measures thus can be enhanced by incorporating redundancy for every critical IT asset. 

In an organization, the same IT function can be implemented by a number of IT assets. For example, the data backup 
procedure can be performed using inexpensive magnetic tapes, moderately expensive CD-RW, expensive redundant array of 
independent disks (RAID), or a combination of these technologies together for redundancy. The IT assets considered here are 
comprehensive and vary in scope. They can include tangible computing hardware, communication links, IT personnel, and 
other infrastructure that serve as the means by which data are transmitted, processed, or presented for certain IT functions. 
Alternatively, they can be intangible assets like databases containing sensitive customer information or software programs 
developed for data manipulation. In terms of scope, these IT assets can be as small as redundant modules for fault-tolerant 
software, or be as large as a backup hot site that has replicated almost everything for the whole IT department.  

Clearly, IT assets differ in their potential risks and costs. As such, redundancy at different levels also has different cost and 
benefit implications. A redundant module in fault-tolerant software would likely cost only a little to develop but the risk 
mitigated by its presence is probably small as well. On the other hand, a full-scale duplicated hot site requires a large 
investment but can provide a much better protection against a disaster; thus, it may be a viable option for large size 
companies only. The objective is thus to select among these competing alternatives for redundancy level and reap the best 
returns subject to resource limitations. A quantitative analytical model can provide the guidelines for allocating the optimal 
redundancy level to critical IT functions that need the most protection in a cost-conscious and rational way. 

While the technique of integer programming has recently been applied to the selection of disaster scenarios (Jenkin, 2000), 
most studies have either focused on the area of risk analysis (Tamura, Yamamoto, Tomiyama, and Hatono, 2000) or been 
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reactive in nature by primarily dealing with the post-disaster operational activities (Pidd, deSilva, and Eglese, 1996). In 
answer to the call for more rigorous quantitative analyses of the pre-disaster IT recovery planning (Bryson, Millar, Joseph, 
and Mobolurin, 2002), we develop a discrete optimization model to help ensure that IT disaster recovery plans function as 
expected when put into work. 

REDUNDANCY ALLOCATION MODEL 

Suppose a firm is planning for disaster recovery by considering incorporating redundancy level for its IT functions, and the 
budget is limited. Several possible disasters have been identified with the potential to cause business discontinuity by 
affecting the supporting IT functions. The question is how to allocate redundancy to these IT functions such that the overall 
survivability of these IT functions against disasters is maximized and the cost remains under budget. Below are the parameter 
notations and their definitions used in the model.  

D: number of potential disasters + 1 (the last one for no disaster occurring); 

pd: probability of disaster d occurring, pd ∈ (0, 1) and ; 1
1

=∑
=

D

d
dp

M: number of IT functions the organization needs to perform; 

wm: importance weight (or frequency of usage) of IT function m, wm ∈ (0, 1) and ; 1
1

=∑
=

M

m
mw

nm: number of solutions (assets) available for IT function m to select from; 

Xmi: 1 if solution i (= 1, …, nm) is selected for IT function m, or 0 otherwise; 

Cmi: cost of selecting solution i for IT function m; 

Smid: survivability of solution i for IT function m against disaster d; 

emid: failure probability of solution i for IT function m against disaster d, emid = 1−Smid; 

B: available budget. 

The following model is formulated to maximize the overall survivability of the M independent IT functions: 
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It is assumed the occurring probability pd of a certain disaster d is known or can be estimated. The parameter D is equal to the 
number of potential disasters plus one. The last additional one corresponds to the case when no disaster actually occurs (i.e., 

). Moreover, the IT functions are regarded as separate and independent. The criticality of a certain IT 

function is measured by its frequency of usage. The rationale is that the more frequently an IT function is used to support 
business operations, the more importance it carries for the organization. There exists a pool of n

∑
−
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−=
1

1
1

D

d
dD pp

m candidate IT assets 
(solutions) to select from for IT function m. When a certain IT asset i is selected for IT function m, its corresponding decision 
variable Xmi is set to 1, or 0 otherwise.  
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In (RAP), the objective function tries to maximize the overall survivability of all IT functions against all potential disasters. It 
reflects the fact that an IT function m fails against a certain disaster d only when all of its selected solutions fail at the same 
time. In other words, as long as one of the selected solutions survives the disaster, IT function m would still be operational, 

thus . Constraint (1) ensures that at least one IT solution be selected and allocated to each IT function. 

This, however, implies that it is possible for some IT functions to have only one solution allocated without redundancy. In 
case we must have at least some standby solution for every IT function, we need to only change the constant on the right 
hand side of constraint (1) from 1 to 2. Constraint (2) guarantees that the total costs of redundancy allocation not exceed the 
budget limitation. To provide a systematic view on the problem, Figure 1 illustrates the scenario that (RAP) attempts to 
resolve. 
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Figure 1. Redundancy Allocation Scenario for Disaster Recovery Planning 

 

SOLUTION PROCEDURE AND EXAMPLES 

The proposed model of (RAP) is a 0-1 integer programming problem with a nonlinear objective function. For small problem 
instances, total enumeration or mathematical software packages can be used to solve (RAP). However, for relatively large 
problems, such approaches are likely impractical. Further, owing to the non-linearity of the objective function, Lagrangian 
relaxation cannot be employed to help tackle this discrete optimization problem. As such, a partial enumeration solution 
procedure based on probabilistic dynamic programming (Winston, 1987) is presented to help the solution of (RAP). We first 
can reformulate (RAP) as a minimization problem by rewriting the objective function as follows: 
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IT function due to any disaster. Next, we define a state of system T as the budget available, and stage m to represent IT 
function m for m = 1, …, M. Let Fm(T) be the failure rate of the system composed of IT functions m, m + 1, …, M, given that 
T is the remaining budget for IT functions 1, …, m − 1. The recursive formula for Fm(T) when m < M is: 
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For stage (IT function) m, state (budget) T cannot exceed the total available budget B minus the minimum costs to be 
allocated for the remaining stages 1, …, m − 1, and it must be at least equal to the cost of the least expensive solution in the 
current stage to guarantee at least one solution for IT function m. Thus, Fm(T) should be evaluated for all T values in the 
range:  
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For states not in the specified range, Fm(T) can be defined as 1 so it would not become the minimum chosen by Eq. (4) for 
stages 1, …, m − 1. 

The solution procedure is based on probabilistic dynamic programming because, unlike deterministic dynamic programming, 
Fm(T) of Eq. (4) deals with the uncertainty of disaster occurring and involves the calculation of expected failure rate of IT 
function m based on the remaining budget T. The solution procedure solves (RAP) by working backwards with the initial 
stage m = M and  
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Finally, the optimal objective function value F* is obtained as F1(B) and represents the minimum overall failure rate of the 
whole system composed of M independent IT functions with a budget of B. That is, the original maximum overall 
survivability S* of (RAP) is equal to 1 − F1(B). 
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Example 1 

To demonstrate the effectiveness of the proposed model and solution procedure, we consider a hypothetical example in which 
a company performs two IT functions (M = 2) for its business operations. IT function 1 is used 30% of the time (w1 = 0.30) 
and IT function 2 is used 70% of the time (w2 = 0.70). The company is susceptible to a flooding disaster that occurs with a 
likelihood of 0.05 (p1 = 0.05 and p2 = 0.95 for no disaster). The company is now considering incorporating redundancy for 
the two IT functions with a budget B = 14. 

For IT function 1, four solutions are available (n1 = 4), with associated costs of C11 = 8, C12 = 3, C13 = 7, and C14 = 5. Their 
survival rates against the flooding are S111 = 0.10, S121 = 0.05, S131 = 0.08, and S141 = 0.12 (i.e., e111 = 0.90, e121 = 0.95, e131 = 
0.92, and e141 = 0.88). Their reliabilities when no disaster occurs are S112 = 0.95, S122 = 0.88, S132 = 0.92, and S142 = 0.85 (i.e., 
e112 = 0.05, e122 = 0.12, e132 = 0.08, and e142 = 0.15). For IT function 2, three solutions are available (n2 = 3), with associated 
costs of C21 = 4, C22 = 6, and C23 = 3. Their survival rates against the flooding are S211 = 0.06, S221 = 0.10, and S231 = 0.20 
(i.e., e211 = 0.94, e221 = 0.90, and e231 = 0.80). Their reliabilities when no disaster occurs are S212 = 0.92, S222 = 0.78, and S232 = 
0.84 (i.e., e212 = 0.08, e222 = 0.22, and e232 = 0.16). The original maximization problem for this example is formulated: 

 

( ) ( )[ ]
( ) ([ ]
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To apply the solution procedure to this problem instance, we start with stage m = 2. Since the least expensive solution for IT 
function 2 has cost C23 = 3 and the least expensive solution for the only remaining IT function 1 also has cost C12 = 3, the 
valid range for T is 3 ≤ T ≤ 11 (= 14 − 3). Eq. (6) then calculates F2(T) for T = 3, …, 11. For instance, F2(7) is calculated as: 

{ } ])16.0()22.0()08.0)(95.0()80.0()90.0()94.0)(05.0( )[70.0(  min)7( 232221232221
2

XXXXXXF +=  

where the variables X2i satisfy X21 + X22 + X23 ≥ 1 and 4X21 + 6X22 + 3X23 ≤ 7. There are four sets of X2i qualified for F2(7), 
and they are  (X21, X22, X23) = (0, 0, 1), (0, 1, 0), (1, 0, 0), and (1, 0, 1). The minimum F2(7) = 0.0348 is found associated with 
(X21, X22, X23) = (1, 0, 1). The complete results for F2(T) are shown in Table 1. 

 

T Solution F2(T) 

3 X21 = 0, X22 = 0, X23 = 1 0.1344 
4 X21 = 1, X22 = 0, X23 = 0 0.0861 
5 X21 = 1, X22 = 0, X23 = 0 0.0861 
6 X21 = 1, X22 = 0, X23 = 0 0.0861 
7 X21 = 1, X22 = 0, X23 = 1 0.0348 
8 X21 = 1, X22 = 0, X23 = 1 0.0348 
9 X21 = 1, X22 = 0, X23 = 1 0.0348 

10 X21 = 1, X22 = 0, X23 = 1 0.0348 
11 X21 = 1, X22 = 0, X23 = 1 0.0348 

Table 1. State T, Solution, and F2(T) for Stage 2 with B = 14 
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Next, we proceed to find the optimal solution F1(14) in the next stage m = 1:  

})14(])15.0()08.0()12.0()05.0)(95.0(                  

)88.0()92.0()95.0()90.0)(05.0)[(30.0( { min)14(
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i
ii

XXXX

XXXX
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F
 

where the variables X1i satisfy X11 + X12 + X13 + X14 ≥ 1 and 8X11 + 3X12 + 7X13 + 5X14 ≤ 14. There are seven sets of X1i 
qualified for F1(14), and they are  (X11, X12, X13, X14) = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 0, 0), (0, 1, 1, 0), 
and (0, 1, 0, 1). The minimum F1(14) is found associated with (X11, X12, X13, X14) = (0, 0, 1, 0) with F* = F1(14) = 0.0714 
using F2(7) = 0.0348. Therefore, the maximum overall survivability S* against flooding is 1 − F* = 1 − 0.0714 = 0.9286 by 
selecting solution 3 for IT function 1 (X13 = 1) as well as solutions 1 and 3 for IT function 2 (X21 = X23 = 1).  

Example 2 

Let us examine the effect of having more budgetary resources for redundancy allocation. Suppose all the data are the same as 
in Example 1. The only exception is that the company now has a greater budget B = 16. Starting with stage m = 2, the valid 
range for T becomes 3 ≤ T ≤ 13 (= 16 − 3). The values of F2(T) for T = 3, …, 11 are the same as in Table 1. We thus only 
need to compute F2(T) for T = 12 and 13. The results are shown in Table 2. 

 

T Solution F2(T) 

3, …, 11 Same as in Table 1 − 
12 X21 = 1, X22 = 0, X23 = 1 0.0348 
13 X21 = 1, X22 = 1, X23 = 1 0.0256 

Table 2. State T, Solution, and F2(T) for Stage 2 with B = 16 

 

We next find the optimal solution F1(16) in the next stage m = 1:  
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where the variables X1i satisfy X11 + X12 + X13 + X14 ≥ 1 and 8X11 + 3X12 + 7X13 + 5X14 ≤ 16. There are nine sets of X1i 
qualified for F1(16), and they are  (X11, X12, X13, X14) = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 0, 0), (1, 0, 0, 1), 
(0, 1, 1, 0), (0, 1, 0, 1), and (0, 0, 1, 1). The minimum F1(16) is found associated with (X11, X12, X13, X14) = (0, 1, 0, 1) with F* 
= F1(16) = 0.0525 using F2(8) = 0.0348. Thus, the maximum overall survivability S* against flooding has been increased to 1 
− F* = 1 − 0.0525 = 0.9475 by selecting solutions 2 and 4 for IT function 1 (X12 = X14 =1) as well as solutions 1 and 3 for IT 
function 2 (X21 = X23 = 1). In this arrangement, each IT function now has at least one redundant component for disaster 
recovery.  

MODEL APPLICATIONS IN ORGANIZATIONS 

The application of the proposed redundancy allocation model to real-world risk analysis of disasters for modern organizations 
can be enhanced by many techniques that have been developed and employed by companies and institutions in the insurance 
industry. For example, the likelihood of potential disasters assumed in the model can be estimated to a certain degree by 
historical data and sophisticated forecasting tools. In addition, the survivability of IT assets to be selected from the pool for 
each critical IT function can be further guaranteed by either the contracts with vendors or the warrantee offered for IT assets. 
While the modeling details may be too complicated for managers to fully comprehend, this should not pose any difficulty for 
its users. For example, the model can be designed as a decision support system with a user-friendly interface to shield 
managers from such technical intricacies. Managers thus can perform sensitivity analysis easily on IT disaster recovery 
planning by using the decision support system that incorporates the proposed redundancy allocation model. 
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CONCLUSIONS 

The continued rapid advance in computer and communication technologies enables their widespread use of supporting 
business processes and functions. Moreover, extensive changes in business process automation and redesign have been made 
possible by IT as well. The ability of IT to facilitate communication and information exchange in real time has resulted in 
numerous benefits for a business operating in the present network economy. With the increased importance of IT for the 
operations of modern organizations, we can anticipate an even greater IT adoption by more industries for a wide variety of 
applications in the near future.  

However, computer and communication systems that serve as the backbone of today’s business functions also represent 
potential vulnerabilities to disasters. When a disaster strikes and causes disruption to a firm’s IT functions and thus their 
supported operations, the event may easily threaten the survival of a business. Managers must perform a business impact 
analysis to both evaluate the degree to which their IT operations are susceptible to disasters and measure the potential losses 
caused by such disasters. Then they must take necessary actions to strengthen these IT functions according to their criticality. 

The discrete optimization model proposed in the paper can fulfill the need for a structured decision analysis of IT disaster 
recovery planning. The model attempts to maximize the overall survivability of IT functions against potential disasters by 
allocating appropriate redundancy levels while taking into account the tradeoff between survival rates and costs of IT 
solutions selected. The feasible use of mathematical optimization is demonstrated as an effective decision support tool for 
better resource allocation of redundancy to cope with disaster recovery. The main purpose is to ensure IT capabilities are 
uninterrupted and their supported business processes operate continuously by using redundant solutions as backup means to 
weather potential disasters.  

It is noted that the proposed model is a generalization of the reliability optimization models for software and hardware 
(Ashrafi and Berman, 1992). When no disaster is considered possible (i.e., D = 1 in our model), (RAP) is reduced to a 
reliability problem dealing with fault tolerance (Kuo and Prasad, 2000). In other words, the model proposed in the paper is 
able to handle such special cases of software and hardware reliability as well. In addition, (RAP) is related to the general 
discrete resource allocation problems (Ibaraki and Katoh, 1988; Shao and Rao, 2001), but it considers a variety of IT resource 
types for supporting specific IT functions, instead of general resources that can be allocated to any activity or agent. 

Some topics are suggested for future research. The IT functions considered by our model are treated as separate and 
independent, which means there is no physical or logical link between any two IT functions. This assumption may have an 
effect on the granularity of IT assets being relatively large since finer-grained IT assets typically can serve multiple purposes. 
For example, a workstation may be used simultaneously as web server, database server, and email server to support IT 
functions of e-commerce transactions, data storage, and information communication, respectively. In future study, the 
proposed model can be extended to address interrelated IT functions by modifying the objective function. The approach of 
probabilistic dynamic programming would still be applicable for solving this extended problem (Berman and Ashrafi, 1993).  

Moreover, we can categorize IT assets as hardware, software, human capitals, and other types to examine the impacts of 
specific characteristics of each IT asset type on the redundancy allocation decisions for disaster recovery planning. For 
example, tangible hardware cannot be duplicated without purchasing two equipments, but software with proper licenses can 
be easily deployed to many IT assets. Their costs implications thus are expected to be different. Another promising avenue 
would be to look at redundancy allocations at the industry value chain level and analyze disaster recovery planning across 
business partners in a coordinated and collaborative manner. 
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