
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2002 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2002

END-USERS' NON-CONSISTENT
DATABASE VIEWS: ANALYSIS,
MAINTENANCE, AND MANAGEMENT
David Chao
San Francisco State University

Robert Nickerson
San Francisco State University

Follow this and additional works at: http://aisel.aisnet.org/amcis2002

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2002 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Chao, David and Nickerson, Robert, "END-USERS' NON-CONSISTENT DATABASE VIEWS: ANALYSIS, MAINTENANCE,
AND MANAGEMENT" (2002). AMCIS 2002 Proceedings. 16.
http://aisel.aisnet.org/amcis2002/16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301347597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2002%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2002?utm_source=aisel.aisnet.org%2Famcis2002%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2002%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2002%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2002?utm_source=aisel.aisnet.org%2Famcis2002%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2002/16?utm_source=aisel.aisnet.org%2Famcis2002%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

96 2002 � Eighth Americas Conference on Information Systems

END-USERS' NON-CONSISTENT DATABASE VIEWS:
ANALYSIS, MAINTENANCE, AND MANAGEMENT

David Chao
San Francisco State University

dchao@sfsu.edu

Robert C. Nickerson
San Francisco State University

rnick@sfsu.edu

Abstract

Database views typically are maintained to be consistent with the database at a specific point in time. In some
applications, however, users may prefer or require views that are not consistent with the database. Typically,
this non-consistency is due to users� requirement of excluding qualified records from the views and/or including
deleted records in the views. This paper examines the characteristics of non-consistent views and investigates
their maintenance and management.

Introduction

Supporting an end-user�s information needs for decision making is a major objective of database management. Database views
have been used to support an end-user�s information needs for decision making. A database view is the part of database in which
a particular user is interested. It can be defined as any legal query operation over single or multiple base tables to meet a user�s
need. Typically, views are maintained to be consistent with the database reflecting the state of the database either at the current
time or at a specific point in time as a snapshot view (Adiba and Lindsay, 1980).

Formally, a consistent view CV is the realization of the function CV(A, C, T, D(T)) where A is the sequence of relational
algebraic operations needed to select the view, C is the set of logical conditions used with A, T is a point in time called the
consistent point, and D(T) is the database state at T. Base table records satisfying the condition C are said to be qualified to the
view. A consistent view reflects all the database updates relevant to the view up to the consistent point.

In many applications, however, specifying the operations A and the conditions C is insufficient to fully express the user�s criteria
for selecting view records. There may exist other criteria that cannot be expressed in A and C. The following examples illustrate
this point. Consider a table stored in a database: EMPLOYEES = (Essn, Ename, Address, Sex, Title, HireDate, Salary).

Example 1
In applications that sample a database, typically only a small fraction of a large, qualified population is selected. The following
consistent view retrieves all female employees� record:

CREATE VIEW FemaleEmp AS
SELECT * FROM Employees WHERE SEX = �F�;

If in a study about female employees the analyst needs only 5% of all the qualified records for the study, then the view needed
by the analyst is a small subset of the above consistent view. The 5% requirement cannot be expressed in the WHERE clause.

Example 2
Conventional databases model an organization as it changes dynamically with a snapshot at a particular time (Snodgrass and Ahn,
1986). The state of a database changes when an update is committed; its past state is not remembered. Views that include past
data that no longer exists in the database won�t be a consistent view. Many trend analyses require aggregated historical data.

Chao & Nickerson/End-Users�s Non-Consistent Database Views

2002 � Eighth Americas Conference on Information Systems 97

Aggregate functions are applied at different periods of time to gather the needed data. As an example, a consistent view is defined
below to compute the current month employee count (assuming the existence of the Now function that returns the current date
and the Month function that returns the month of a date), and is to be run on each month�s payroll date. This view is not sufficient
to perform the trend analysis because it contains only the current month count.

CREATE VIEW MonthlyEmpCount AS
SELECT Month(Now()) as Mon, Count(Essn)
FROM Employees;

In order to perform the trend analysis this view needs to be computed on the payroll date every month and the results kept in the
view. These are views that contain snapshots of the same definition but at different points in time. They include the current view
CV and historical data which cannot be specified with the query operations A and criteria C.

Example 3
In some applications an InitialSalary view, with the fields Essn, Ename, and Salary, would be needed to keep track of employees�
initial salary. This view is different from the CurrentSalary view defined below which shows employees� current salary:

CREATE VIEW CurrentSalary AS
SELECT Essn, Ename, Salary
FROM Employees;

The Salary field of an employee�s record may have or have not been updated depending on whether the employee�s salary has
been changed. Both the InitialSalary and CurrentSalary views will contain salary records that have not been updated. For those
updated, the CurrentSalary view will contain the latest version and the InitialSalary view will contain the earliest version of the
salary. The requirements of keeping the earliest version and not the latest version of salary in the InitialSalary view cannot be
specified with the query operations A and criteria C.

The above examples illustrate that even with the same query operations and condition the views requested by the users are
different from the consistent views due to users� other criteria. We call this type of view a non-consistent view NCV. A non-
consistent view shares the same query operations and selection criteria with the consistent view. The discrepancy between a NCV
and a CV is due to a user�s other requirements in selecting records. Non-consistent views usually require support from customized
programs. By supporting only the consistent views, database systems do not serve users adequately. This paper shows how to
incorporate the users� other criteria of selecting view records into the view definitions. We will analyze and examine the various
kinds of non-consistent views and investigates their management.

Analysis of Non-Consistent Views

In this section we first define non-consistent views, then we analyze possible causes for non-consistent view.

Defining Non-Consistent Views

A NCV and its matching CV affect the same set of qualified records. A user can control the discrepancy between a NCV and
a CV at the time the view is first created as in the case of the example 1 above. It is also possible that initially the NCV and the
CV are equivalent and the discrepancy occurs during the process of view updating as in the case of the example 2 above. Treating
modification as the deletion of the old record followed by the insertion of the new record, there are basically two kinds of database
updates: insertion and deletion. In maintaining a consistent view, a view deletion occurs when its matching record in the base
table is either deleted or becomes unqualified for the view due to modification, and a view insertion occurs when a new qualified
record is inserted to the base table or an old base table record becomes qualified for the view due to modification (Chao et al.
1996). A CV becomes non-consistent if user purposely keeps all or some of the view deletions, and/or excludes all or some of
the view insertions.

Therefore, a non-consistent view NCV is the realization of the function NCV(A, C, T, D(T), U) where A, C, T, and D(T) are as
before, and U is the user�s requirement for including and/or excluding view records. Note that the set of records affected by U
may be null or non-null at the time when view is created, but eventually the set may become non-null. Records affected by U
belong to one of the two sets: UI (user include) and UE (user exclude). UI (user include) is a set of records that are supposed to

Databases and Data Management

98 2002 � Eighth Americas Conference on Information Systems

Figure 1. Relationship between
NCV and CV

be deleted from the view but that the uses wishes to include, and UE (user exclude) is a set of records that are supposed to be
included in the view but that the user wishes to exclude. Hence a non-consistent view is a consistent view with user-identified
records included or excluded; it is not a random view because its inconsistency is controlled and managed.

Algebraically, NCV = CV + UI � UE. Since UE is a subset of CV and UI is a subset of NCV, UI = NCV - CV and UE = CV -
NCV. The relationship between NCV and CV is shown in Figure1.

At the time a NCV is created, UI must be null because no updates have
been applied to the view records yet. UE may be non-null if the NCV
definition initially excludes some qualified records from the view as in the
case of example 1; otherwise UE will be null and the NCV is equivalent to
the CV. Eventually, in the process of updating the view, UI will become
non-null when a user keeps some view deletions, and UE will become non-
null if a user rejects some view insertions. Therefore, there are three
possible cases for a non-consistent view:

Case 1: UI is null and UE is non-null. In this case NCV is a subset of CV.
The example 1 above is one such case. It also happens when the user does
not keep view deletions while rejects some view insertions.

Case 2: UI is non-null and UE is null. In this case the user prefers to keep
some view deletions while accepting all qualified view records. Hence, CV
is a subset of NCV. The example 2 above is one such case.

Case 3: UI is non-null and UE is non-null. In this case the user keeps some
view deletions and rejects some view records. The example 3 above is one such case.

We discuss possible causes for each case of NCV below.

User�s Non-Consistency Requirements for NCV

At the initiation of a NCV, a user can specify which qualified records are excluded from the view. Most other types of
discrepancy are due to user�s requirements about updates. The following discussions concern user�s requirements for updates.

User�s Requirements for Insertions The default action for a consistent view record insertion is to include it. If the user chooses
to exclude all or some of the inserted records, then UE is non-null, and the result may be either a case 1 or case 3 NCV. We will
use the phrase no insertion to express the user's non-consistency requirement for excluding all view insertions, and the phrase
selective insertion to express the user's non-consistency requirement for excluding only part of the insertions. For selective
insertion, the user should also give the criteria to exclude or include insertions.

The no insertion requirement is related to applications that do not accept new records. As an example, many doctor�s offices have
a policy of not accepting new patients. The selective insertion requirement is related to applications that do not include all
qualified records, such as the sampling application in example 1.

User�s Requirements for Deletions The default action for a consistent view record deletion is to exclude it. If the user chooses
to include all or some of the deleted records in the view then UI is non-null, and the result may be either a case 2 or case 3 NCV.
We will use the phrase no deletion to express the user's non-consistency requirement for including all view deletions, and the
phrase selective deletion to express the user's non-consistency requirement for including only part of the deletions. For selective
deletion, the user should also give the criteria to exclude or include deletions.

User�s Requirements for Modifications Treating a modification as the deletion d of the before-image followed by the insertion
i of the after-image, due to possible repeated updates, a modified view record may associate with multiple pairs of updates, {(d,
i)} where {} denotes repetition. Note that the d of the first pair is the original value, and the i of the last pair is the latest value.
The default action for a view modification is to exclude the before-image and include the after-image. The non-consistency due
to modifications occurs when a user includes all or some of the before-images, and/or excludes all or some of the after-images.

Chao & Nickerson/End-Users�s Non-Consistent Database Views

2002 � Eighth Americas Conference on Information Systems 99

If the user chooses to include the before-images in the view then UI is non-null, and the result may be either a case 2 or case 3
NCV. There are two meanings of keeping the before-image. The first is to keep only the original value of a modified record,
i.e., the d of the first pair of updates. We will use the phrase keep original to express the user's non-consistency requirement for
including the original before-images. The second is to keep all the before-images of a modified record, i.e., all the d in the
updates. We will use the phrase keep modified to express the user's non-consistency requirement for including all the before-
images. Note that keep modified implies that a record's update history is kept in the view. A user may choose to keep some of
the before-images. One typical practice is to keep only the recent updates. We will use the phrase keep modified last n to express
the user's non-consistency requirement for including the most recent n before-images in the view. Alternatively, a user may keep
before-images that meet certain criteria. We will use the phrase keep selective modified to express the user's non-consistency
requirement for including only the qualified before-images. For the selective deletion, the user should also give the criteria to
exclude or include deletions.

If the user chooses to exclude the after-images then UE is non-null, and the result may be either a case 1 or case 3 NCV. Among
the pairs of update, {(d, i)}, the i of the jth pair becomes the d of the j+1th pair. Hence, the i of the last pair is the only true after-
image. We will use the phrase no current to express the user's non-consistency requirement for excluding the after-images. This
situation is where a user does not want to include any updated information in the view.

Table 1 summarizes user�s options in managing view updates. As an example, assume an employee�s salary has been updated
three times, from 4000 to 4500 ,4500 to 5000 and 5000 to 6000. The keep original option will keep 4000 in the NCV. The keep
modified last 2 option will keep 4500 and 5000 in the view. The keep modified option will keep 4000, 4500, 5000, and 6000 in
the view. The keep modified option combined with the no current option will keep 4000, 4500, and 5000 in the view.

Table 1. A User�s Options in Including and Excluding View Updates

Non-Consistent Requirements Applied
Update Default To All Updates To Some Updates

Insertion Include all No insertion Some insertion
Deletion Exclude all No deletion Selective deletion
Modification:

Before-image Exclude all Keep original/
Keep modified

Keep selective modified/
Keep modified last n

After-image Include all No current NA

Implementation and Maintenance of Non-Consistent Views

Conventional database views can be implemented either as a virtual view or as a materialized view. Virtual views exist only as
a definition, and are generated only when they are accessed. Hence, virtual views require a full regeneration and are more
expensive to maintain if they are accessed frequently. Also, users have no control of the consistent point because virtual views
are always consistent with the current database. Materialized views exist physically as a separate copy, and can be maintained
efficiently by a differential refresh scheme. A differential refresh scheme keeps track of updates that have occurred at the base
tables since the view was created or last refreshed, and applies those updates to the views to keep them up-to-date. This
differential refresh process can be performed immediately as the update occurs at the base tables, or by a delayed update scheme.
The immediate view update is typically initiated by the database system. With immediate update materialized views are always
consistent with the current database and users have no control of the consistent point. The delayed update scheme first batches
updates in a differential file and later applies the differential file to update the view. Unlike the immediate update, the delayed
update process can be initiated by the database system, or be initiated in response to user�s request. An advantage of the user-
initiated delayed update is users can control the consistent point by refreshing the view to a new consistent point other than the
current time.

Similarly, non-consistent views can be implemented as virtual views or materialized views, maintained by full refresh or
differential refresh. In the following, we discuss the major issues in maintaining NCV without elaborating the technical details.

Implementing NCV as Virtual View To implement a NCV as a virtual view, a database system must be able to keep track of
all qualified insertions and deletions since the view was defined so that it can generate UE and UI based on the user�s non-

Databases and Data Management

100 2002 � Eighth Americas Conference on Information Systems

consistency requirement. When the NCV is requested a full generation is performed to create the CV, and the NCV is created
by:

 NCV = CV � UE + UI

Implementing NCV as Materialized View A materialized view can be more efficiently maintained by a differential refresh
scheme. Treating modification as a pair of deletion and insertion, a CV can be maintained by the following differential refresh
process:

New CV = Old CV - Deletions + Additions

where Deletions and Additions are the net changes since the last time the view was refreshed. Maintaining a NCV is an extension
of maintaining a CV. To maintain a non-consistent view, the maintenance scheme, in addition to generating the Deletions and
Additions, must be able to generate UI and UE since the NCV was last refreshed according to the non-consistent clause.
Algebraically, a NCV can be refreshed differentially by the following expression:

New NCV = Old NCV - (Deletions - UI) + (Additions - UE)

Commands for Managing Non-Consistent Views

Defining views and refreshing views are two major tasks in managing views. In this section we propose SQL-like commands
to define and refresh NCVs. The CREATE NON-CONSISTENT VIEW command below allows users to define (1) the type of
NCV to create, (2) the query operations and criteria in identifying qualified view records, (3) the user�s non-consistency
requirements, and (4) the user�s requirements in maintaining the view. The command consists of four parts indicated by numbers
which corresponding to the command�s four functions.

(1) CREATE NON-CONSISTENT [MATERIALIZED] VIEW viewname
(2) AS query operations

WHERE criteria
(3) NON-CONSISTENCY REQUIREMENT

[AT INITIATION: criteria]
[AT UPDATE:

[(NO INSERTION|SELECTIVE INSERTION: criteria),]
[(NO DELETION|SELECTIVE DELETION: criteria),]
[{(KEEP ORIGINAL|KEEP MODIFIED|KEEP MODIFIED LAST n |KEEP SELECTIVE MODIFIED: criteria),}]
[NO CURRENT]

(4) [REFRESH (AUTOMATIC|ON DEMAND)]

In the syntax, words in italic are user-entered values; clauses enclosed in the brackets are optional; clauses separated by the
vertical bars are possible choices for non-consistency requirements; clauses enclosed in the braces indicates more than one clause
may be selected.

Part 1 allows users to specify the type of view to create. Note that many researches consider view materialization a system
performance problem that is transparent to users (Labrinidis and Roussopoulos, 2000). We allow users to explicitly specify
materialization because it allows users to control the consistent point. Part 2 allows users to specify query operations and criteria
to identify qualified records. Part 3 Allows users to specify the non-consistency requirements at the view initiation and at update.
The keywords we used to specify the non-consistency requirements have been described earlier. Note that for partial inclusion/
exclusion users must also specify the criteria to include or exclude updates. Without specifying the non-consistent requirements,
the default actions of processing updates are assumed. Part 4 allows users to specify the refresh method. AUTOMATIC indicates
the view�s refresh is handled by the database system without user�s interference whereas ON DEMAND indicates the view is
refreshed only at user�s request. Without the optional REFRESH clause, the default refresh method for a view is AUTOMATIC.
If a view is refreshed ON DEMAND, the user must issue the following REFRESH command to update the view:

REFRESH VIEW viewname
[AS OF consistent point]

Chao & Nickerson/End-Users�s Non-Consistent Database Views

2002 � Eighth Americas Conference on Information Systems 101

With the optional AS OF clause users can specify the exact new consistent point for the view. Otherwise, the view is refreshed
to the current time.

To illustrate, we will use the CREATE command to define the three NCVs examples in section 1.

Example 1
The following command will create a view containing 5% of female employees :

CREATE NON-CONSISTENT VIEW FemaleEmpSample
AS SELECT * FROM Employees

WHERE SEX = �F�
NON-CONSISTENCY REQUIREMENT

AT INITIATION: random 5%
AT UPDATE: SELECTIVE INSERTION: random 5%

REFRESH AUTOMATIC

With this view, assuming the system implemented a random selection criteria, about 5% of female employees will be included
at the time view is created, and any new female employee will also have 5% chance to be included; deletions and modifications
will be processed by default actions.

Example 2
The following command will create an aggregate view that contains current month and the last 5 months� count of employees:

CREATE NON-CONSISTENT MATERIALIZED VIEW SixMonthEmpCount
AS SELECT Month(Now()) as Mon, Count(Essn)

FROM Employees
NON-CONSISTENCY REQUIREMENT

AT UPDATE: KEEP MODIFIED LAST 5
REFRESH ON DEMAND

At the initiation, the view will contain only the count of that month. During the second month the user issues a refresh command.
Since there is only one record in this aggregate view, the new count is actually an update of the old count, and due to the KEEP
MODIFIED LAST 5 request, the old count is kept. This process will continue every month, and eventually the last 5 counts will
be kept in the view with the current count.

Example 3
The following command will create a view containing current employees� initial salary since the view was created:

CREATE NON-CONSISTENT VIEW EmpInitialSalary
AS SELECT Essn, Ename, Salary

FROM Employees
NON-CONSISTENCY REQUIREMENT

AT UPDATE: KEEP ORIGINAL, NO CURRENT

This view initially is a consistent view. A new employee�s record will be added to the view as usual, and an old employee�s
record will be deleted when the employee leaves the company. When an employee�s salary is changed, due to the KEEP
ORIGINAL, NO CURRENT request, the original salary record is kept and the updated salary is excluded from the view.

Conclusion

This paper defined NCVs and analyzed the causes of non-consistency. We incorporate a user�s requirements of view maintenance
in the view definition while creating views that fit a user�s information needs. In a decision support environment, NCVs can be
a useful tool to support end-users. We proposed SQL-like commands to define and refresh NCVs. This paper ignored the detailed

Databases and Data Management

102 2002 � Eighth Americas Conference on Information Systems

technical implementation of the NCV maintenance scheme. The regular view maintenance schemes need to be changed to
maintain NCVs. We continue our research in developing NCV maintenance schemes.

References

Adiba, M. and Lindsay, B. �Database snapshots,� Proceedings of the 6th International Conference on Very Large Data Bases,
1980, pp. 86-91.

Chao, D., Diehr, G., and Saharia, A. "Maintaining Join-based Remote Snapshots Using Relevant Logging," Proceedings of the
Workshop on Materialized Views, ACM-SIGMOD Conference, June 1996.

Labrinidis, A. and Roussopoulos, N. �Webview Materialization,� ACM SIGMOD International Conference on Management of
Data, May 14-19, 2000

Snodgrass, R., and Ahn, I. "Temporal Databases," IEEE Computer, Sept. 1986, pp. 35-42.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2002

	END-USERS' NON-CONSISTENT DATABASE VIEWS: ANALYSIS, MAINTENANCE, AND MANAGEMENT
	David Chao
	Robert Nickerson
	Recommended Citation

	End-Users' Non-Consistent Database Views: Analysis, Maintenance, and Management

