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Abstract

Decision tree (DT) induction is among the more popular of the data mining techniques. An important
component of DT induction algorithms is the splitting method, with the most commonly used method being
based on the conditional entropy family. However, it is well known that there is no single splitting method that
will give the best performance for all problem instances. In this paper we explore the relative performance
Conditional Entropy family and another family that is based on the Class-Attribute Mutual Information (CAMI)
measure. Our results suggest that while some datasets are insensitive to the choice of splitting methods, other
datasets are very sensitive to the choice of splitting methods. For example, some of the CAMI family methods
may be more appropriate than GainRatio (GR) for datasets where all non-class attributes are nominal; some
of the CAMI methods perform as well as GR for datasets where all the non-class attributes are either integer
or continuous. Given the fact that it is never known beforehand which splitting method will lead to the best DT
for the given dataset, and given the relatively good performance of the CAMI methods, it seems appropriate
to suggest that splitting methods from the CAMI family should be included in data mining toolsets.

Keywords:  Decision trees, entropy, splitting methods, classification, machine learning

Introduction

Over the past two decades there has been an increased interest in the use of data mining techniques to address problems in various
fields. Among the more popular of these tasks is classification, and for this task various classification algorithms have been
proposed, such as decision trees, neural networks, linear discriminant analysis, nonparametric methods, and statistical methods
(e.g. Bradley et. al., 1999; Wu and Urpani, 1999; Cheesean and Stutz, 1996; Ching et. al., 1995; Safavian and Landgrebe, 1991;
Quinlan, 1986). In this study we concentrate on decision tree (DT) induction algorithms, and in particular those that use entropy-
based splitting methods.

A splitting method is the component of the DT induction algorithm that determines both the attribute that is selected for a given
node of the DT and also the partitioning of the values of the selected attribute into mutually exclusive subsets such that each subset
uniquely applies to one of the branches that emanate from the given node. While the most commonly used splitting methods are
based on the conditional entropy (CE) family (e.g. Quinlan's C4.5 family of decision tree induction algorithms), it is well known
that there is no single splitting method that will give the best performance for all problem instances. A question that interested
us is how well would other families of entropy measures perform compared to the Conditional Entropy family of entropy
measures. With this in mind we chose to compare the performance of the Conditional Entropy (CE) family and another family
that is based on a measure called Class-Attribute Mutual Information (CAMI) that was proposed by Ching et. al. (1995).  Bryson
(2000) had previously identified some of the conceptual links between both families, and developed a new splitting method,
EffCAMI. Our computational exploration had the objective of testing the measures using a wide-variety of datasets from different
problem domains and with different data characteristics, and directly comparing the classification accuracy results from both
families.
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This paper is organized as follows: in Section 2 we present an overview of the entropy-based splitting methods as families, and
introduce a new measure, called EffCAMI. In Section 3 we present the results of our experiments that compare the six entropy
measures using twenty-five (25) datasets. Section 4 presents our analysis and conclusions.

Overview of the Two Entropy-Based Families

Definition of Terms

Let n be the total number of examples in the dataset; nj� be the total number of examples in interval j of the given attribute; n�s
be the total number of examples in class s; nj^s be the total number of examples in interval j and class s; pj� = (nj�/n) be the
estimated probability of being in interval j;  p�s = (n�s/n) be the estimated probability of being in class s; pj^s = (nj^s/n) be the
estimated probability of being in interval j and class s; ps|j = (nj^s/nj�) = (pj^s/pj�) be the conditional probability of  an example being
in class s given that it is in interval j; S be the set of classes.

Conditional Entropy family

The Information Gain measure, (e.g. Quinlan, 1993) is based on maximizing the �gain� in selecting a particular attribute for
branching when creating the tree. In the equation below, the first term represents the entropy considering all the attributes together
and the second term represents the entropy between the class and attribute. The attribute that results in the largest difference
represents the best attribute on which to split. In other words, the goal is to attempt to measure the increase in the information that
results from the discretization of an attribute that takes its values from an ordered domain. 

The Information Gain (IG) for a discretization Γg of an attribute into g intervals is defined as: 

IG(g) = -∑s∈S p�slog2(p�s)  -  ∑j∈JΓg pj�(-∑s∈S ps|jlog2(ps|j)),

where JΓg  is the index set of the intervals that are included in a particular discretization Γg that consists of g = |Γg| intervals. An
alternate approach involves the maximization of the Gain Ratio GR(g) = IG(g)/SI(g), where SI(g) = ∑j∈JΓg -pj�log2(pj�) is called
the Split Information for the partition Γg with g intervals, by Quinlan (1993). However, for some datasets the Gain Ratio measure
�overcompensates� [18] and so must be moderated by choosing the attribute with the Max Gain Ratio and an above average
Information Gain. An examination of the Information Gain formula shows a component (i.e. the Unconditional or A Priori
Entropy) that is the same for all attributes and all values of g, and a second major component that is dependent on the relevant
attribute and also on the value of g. This second component is called Conditional Entropy H(Class| ai)  for attribute ai , and is
defined as H(Class|ai) = - ∑j∈JΓgi pj�ås∈S ps|j log2(ps|j). With this measure the objective is to minimize the conditional entropy
between class and attribute. The reasoning is that the attribute that gives the lowest conditional entropy value with a particular
class represents the best attribute to split on. The reader may have observed that maximizing the Information Gain is equivalent
to minimizing the Conditional Entropy.

Class-Attribute Mutual Information (CAMI) Entropy Family

The Class-Attribute Mutual Information (CAMI) measure proposed by Ching et. al. (1995) is a non-decreasing function of
the number of intervals g, where g > 1. The CAMI measure is defined as CAMI(g) = ∑ j∈JΓg ∑s∈S pj^slog2(pj∩s/pj�p�s), where 'g

represents a discretization with g intervals. Bryson (2000) showed that for g ≤ |S|,  SupCAMI(g), the maximum possible value
of CAMI(g), is equal to ∑j∈JΓg -pj�log2(pj�), which is the same as Quinlan�s Split Information Measure (Quinlan, 1993) for a
discretization of the attribute into g intervals based on partition 'g.; and for g ≥  |S|, SupCAMI(g) is equal to ∑sÎS -p�slog2(p�s).
Because CAMI(g) is a non-decreasing function of the number of intervals g (g > 1), Ching et. al. defined a second measure, the
Class-Attribute Interdependence Redundancy (CAIR) such that CAIR(g) = CAMI(g)/Max{log2(|S|), log2(g)}, and proposed
that the attribute discretization problem could be solved by finding the value of g that maximized CAIR(g). They based this
approach on a claim that Max{log2(|S|), log2(g)} was the maximum value of CAMI(g), and so CAIR(g) = 1 if there is perfect
attribute/class interdependency, and CAIR(g) = 0 if there is absolutely no attribute/class interdependency. Bryson (2000) proved
that Ching et. al.�s assertion, that the maximum possible value of CAMI(g)  is equal to Max{log2(|S|), log2(g)}, is not correct. A
more plausible rationale for using CAIR(g) is that it provides a trade-off between the improvement in the class-attribute mutual



Osei-Bryson & Giles/Splitting Methods for DT Induction

2002 � Eighth Americas Conference on Information Systems 57

information and the cost of the number of intervals. Bryson (2000) proposed a new measure for this family: EffCAMI =
Max{CAMI(g)/SupCAMI(g), g = 2,�, gprac}, where gprac is the maximum number of intervals that are appropriate for the given
decision tree induction algorithm, and EFFCAMI could be considered as a measure of the relative strength of the class-attribute
interdependence provided by partition 'g of the given attribute.

Experimental Exploration

Software Environment 

As mentioned previously we wanted to explore the relative performance of our entropy measures from both families with regard
to the generation of decision trees. We thus implemented these entropy measures (i.e. Gain Ratio, Conditional Entropy, CAMI,
EffCAMI, and CAIR) in the Weka library implementation of the well-known C4.5 algorithm, complete with pruning and statistic
calculation (http://www.cs.waikato.ac.nz/~ml/index.html). The C4.5 algorithm uses Information Gain and Gain Ratio as the
decision criteria for choosing an appropriate attribute for branching. In order to test Conditional Entropy, CAMI, CAIR, and
EffCAMI, we wrote our own Java programs and classes to use the C4.5 algorithm structure in the Weka Java library, and
substituted the other entropy measures in place of Information Gain and Gain Ratio. Table 1 contains a summary of the entropy
measures we used and the decision rule for each measure.

Table 1. Induction Algorithm Decision Rules for Selecting The Best Attribute

Entropy Measure Decision Rule
GainRatio For those attributes whose InfoGain > Average(InfoGain), select the attribute that provides

Max(GainRatio).
Conditional Entropy Select the attribute that provides Min(ConditionalEntropy).
CAMI Select the attribute that provides Max(CAMI).
CAIR For those attributes whose CAMI > Average(CAMI), select the attribute that provides

Max(CAIR).
EffCAMI_0 For those attributes whose CAMI > Average(CAMI), select the attribute that provides

Max(EffCAMI).
EffCAMI_1 For those attributes whose CAMI > (Average(CAMI)  - StandardDeviation(CAMI)), select the

attribute that provides Max(EffCAMI).

Test Problems 

We ran our entropy measures on 25 publicly available benchmark data mining datasets that we obtained from the UCI Irvine
machine library: IRIS, Breast Cancer, Car, Credit Approval, Abalone, Glass, Soybean, Page Blocks, Mushroom, Waveform, Wine,
Yeast, Zoo, Pima Indians, Nursery, Audiology, Heart, Hepatitis, Tumor, Chess, Letter, Segment, Sick, Sonar, and Splice (Murphy
and Aha, 1994). These datasets are from a variety of problem domains and have different combinations of nominal and numerical
attribute values. Some have missing values and noisy data. 

Test Results

Tables 2 and 3 display the test results. A few observations can be made from the evidence presented in these tables:

1. No one particular entropy measure stands out above all the others over the collection of datasets used in the study. 

2. Some datasets are insensitive to the choice of splitting methods (e.g. Page Blocks, Mushroom, Chess, Letter, Segment, Sick)
while other datasets are sensitive to the choice of splitting methods, with some being extremely sensitive (e.g. Splice,
Audiology, Glass, Soybean, Heart). An interesting observation is that by using a relaxed rule for determining which attributes
are considered, EffCAMI_1 gives a performance that was significantly better than EffCAMI_0 for the Splice dataset.
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3. In some cases, such as with the Splice dataset, the within-family differences were greater than the differences in the best
performances of both families. In other cases, such as with the Heart dataset, one family outperformed the other. 

4. EffCAMI_1 and CAIR may perform better than GR on datasets where all non-class attributes are nominal; while GR and
EffCAMI_1 performances are approximately the same when all non-class attributes are either continuous or integer (i.e. {C},
{I}, {C,I}).

5. If the dataset only consists of continuous non-class attributes and the splitting method only does binary discretization then
there is no difference between CAMI and CAIR, because for each attribute CAIR = CAMI/2, and so for each node of the DT
the choice of attribute based on CAIR would be the same as that based on CAMI.

6. The CAMI family of splitting methods performed impressively compared to the more popular CE family.

Given these observations it seems appropriate to suggest that splitting methods from the CAMI family should be included in data
mining toolsets. Although the question might be raised as to which splitting method should be selected by the data miner, it should
be noted that it is never known beforehand which splitting method will lead to the best DT for the given dataset. Many modern
data mining tools provide multiple options for splitting methods. For example SAS Enterprise Miner offers the data miner the
option of selecting either ChiSquared, Entropy (i.e. Gain Ratio), or Gini. Also modern data mining tools typically provides the
data miner with multiple parameters (e.g. depth of DT, pre-pruning & post-pruning rules) with multiple options for each. Gersten
et. al. (2000) notes that with regard to setting parameter values, there is �no practicable approach to select � the most promising
combinations early in the process� and as such �it is necessary to experiment with different combinations� in order to be able to
reliably pick the best DT. The process of DT induction in an industrial setting thus involves experimentation with different
combinations of parameter settings and in some cases with different training and validation datasets in order to be able to select the
most appropriate decision tree. Therefore, given that data miners already experiment with different splitting methods, it would be
worthwhile to include methods from a family that performs impressively against the currently most popular method.

Further, if the given dataset is relatively small it might be possible to apply several methods and then use the one that gives the best
performance with regard to criteria such as accuracy, stability, and simplicity. If the given dataset is relatively large, it might be very
costly to explore the performance of several splitting methods on the entire dataset. One approach in this case is to take a stratified
sample from the given dataset, apply the different splitting methods to this sample, and then apply the splitting method that gave the
best performance to the entire dataset. It should be noted that such an approach is also used in industrial applications, and as such
some commercial data mining tools provide convenient facilities for sampling of the dataset.

Conclusion

In this paper we have conducted a computational exploration of the performance of two families of entropy-based splitting methods,
Conditional Entropy and Class-Attribute Mutual Information (CAMI), using C4.5-like algorithms on test datasets from a variety of
problem domains. These results suggested that while some datasets are insensitive to the choice of splitting methods, that some of
the CAMI family methods may be more appropriate than GR for datasets where all non-class attributes are nominal; that if the only
type of discretization on continuous attributes is binarization then some of the CAMI methods perform as well as GainRatio for
datasets where all the non-class attributes are either integer or continuous; and that the new EffCAMI_1 method and the older CAIR
method performed very well, particularly when compared to the popular Gain Ratio method. Finally, we suggested strategies to pursue
when faced with choosing the appropriate measure to use when performing data mining on real datasets, large and small.
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Table 2.  Classification Accuracy of CE and CAMI Families

Dataset CE Family CAMI Family

Best-Worst
Winning
FamilyID Name

Gain
Ratio

Cond.
Entropy CAMI CAIR EffCAMI_0 EffCAMI_1

1 IRIS 95.33 94.67 94.67 94.67 94.67 94.67 0.66 CE
2 Breast Cancer 72.49 72.49 72.49 72.49 74.50 74.50 2.01 CAMI
3 Credit Approval 85.94 84.20 85.36 86.96 84.64 84.64 2.76 CAMI
4 Car 92.48 93.52 93.52 93.52 92.48 92.48 1.04 CAMI
5 Abalone 20.19 20.79 20.76 20.71 20.40 21.88 1.69 CAMI
6 Wave 77.02 76.74 76.76 76.76 75.66 75.24 1.78 **TIE**
7 Glass 65.89 67.76 67.76 67.76 71.96 69.63 6.07 CAMI
8 Soybean 92.09 87.56 89.02 89.02 92.09 92.68 5.12 CAMI
9 Page Blocks 96.95 96.99 96.99 96.99 96.97 96.78 0.21 **TIE**

10 Mushroom 100.00 100.00 100.00 100.00 100.00 100.00 0.00 **TIE**
11 Wine 94.94 95.51 95.51 95.51 94.94 94.94 0.57 **TIE**
12 Yeast 54.78 53.03 53.03 53.03 55.39 54.72 2.36 CAMI
13 Zoo 92.08 94.06 94.06 94.06 92.08 92.08 1.98 **TIE**
14 Pima 74.09 72.14 72.14 72.14 71.48 71.61 2.61 CE
15 Nursery 97.11 97.10 97.10 98.13 97.11 97.11 1.03 CAMI
16 Audiology 77.88 67.26 77.43 77.43 77.88 79.65 12.39 CAMI
17 Heart 77.78 72.59 72.59 72.59 73.33 73.33 5.19 CE
18 Hepatitis 79.35 78.06 80.65 80.65 80.00 80.00 2.59 CAMI
19 Tumor 40.71 43.01 40.41 40.41 42.18 44.25 3.84 CAMI
20 Chess 99.53 99.44 99.44 99.44 99.47 99.47 0.09 **TIE**
21 Letter 87.76 87.96 87.96 87.96 87.68 87.67 0.29 **TIE**
22 Segment 97.14 97.10 97.10 97.10 96.93 96.97 0.21 **TIE**
23 Sick 98.65 98.52 98.97 98.91 98.67 98.67 0.45 **TIE**
24 Sonar 74.04 73.08 73.08 73.08 75.97 75.96 2.89 CAMI
25 Splice 93.98 51.88 51.88 93.51 51.88 93.67 42.10 **TIE**

**TIE** indicates that the difference in the Classification Accuracy is 0.50% or less
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Table 3. Selected Pairwise Comparisons of Splitting Methods

Dataset Comparison

ID

Non-Class
Attribute Data

Type(s)

GR
vs
CE

GR
vs EffCAMI_0

GR
vs

EffCAMI_1

GR
vs

CAIR

CAIR
vs

EffCAMI_0

CAIR
vs

EffCAMI_1

CE
vs

CAIR

CAMI
vs

CAIR
1 C GR GR GR GR TIE TIE TIE TIE
6 C TIE GR GR TIE CAIR CAIR TIE TIE
7 C CE EffCAMI_0 EffCAMI_1 CAIR EffCAMI_0 EffCAMI_1 TIE TIE

11 C CE TIE TIE CAIR CAIR CAIR TIE TIE
12 C GR EffCAMI_0 TIE GR EffCAMI_0 EffCAMI_1 TIE TIE
24 C GR EffCAMI_0 EffCAMI_1 GR EffCAMI_0 EffCAMI_1 TIE TIE

9 C, I TIE TIE TIE TIE TIE TIE TIE TIE
14 C, I GR GR GR GR CAIR CAIR TIE TIE
17 C, I GR GR GR GR EffCAMI_0 EffCAMI_1 TIE TIE
22 C, I TIE TIE TIE TIE TIE TIE TIE TIE
23 C, I TIE TIE TIE TIE TIE TIE TIE TIE

2 I TIE EffCAMI_0 EffCAMI_1 TIE EffCAMI_0 EffCAMI_1 TIE TIE
21 I TIE TIE TIE TIE TIE TIE TIE TIE

4 N CE TIE TIE CAIR CAIR CAIR TIE TIE
8 N GR TIE EffCAMI_1 GR EffCAMI_0 EffCAMI_1 CAIR TIE

10 N TIE TIE TIE TIE TIE TIE TIE TIE
15 N TIE TIE TIE CAIR CAIR CAIR CAIR CAIR
16 N GR TIE EffCAMI_1 TIE TIE EffCAMI_1 CAIR TIE
19 N CE EffCAMI_0 EffCAMI_1 TIE EffCAMI_0 EffCAMI_1 CE TIE
20 N TIE TIE TIE TIE TIE TIE TIE TIE
25 N GR GR TIE TIE CAIR TIE CAIR CAIR

5 N, C CE TIE EffCAMI_1 CAIR TIE EffCAMI_1 TIE TIE
3 N, C, I GR GR GR CAIR CAIR CAIR CAIR CAIR

18 N, C, I GR EffCAMI_0 EffCAMI_1 CAIR CAIR CAIR CAIR TIE
13 N, I CE TIE TIE CAIR CAIR CAIR TIE TIE

C: Continuous I: Integer N: Nominal 
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