
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2007 Wirtschaftsinformatik

February 2007

Integration of Conceptual Process Models by the
Example of Event-driven Process Chains
Carlo Simon
Universität Koblenz-Landau, simon@uni-koblenz.de

Jan Mendling
Wirtschaftsuniversität Wien, jan.mendling@wu-wien.ac.at

Follow this and additional works at: http://aisel.aisnet.org/wi2007

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2007 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Simon, Carlo and Mendling, Jan, "Integration of Conceptual Process Models by the Example of Event-driven Process Chains" (2007).
Wirtschaftsinformatik Proceedings 2007. 41.
http://aisel.aisnet.org/wi2007/41

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301347525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2007%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2007?utm_source=aisel.aisnet.org%2Fwi2007%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2007%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2007?utm_source=aisel.aisnet.org%2Fwi2007%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2007/41?utm_source=aisel.aisnet.org%2Fwi2007%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

In: Oberweis, Andreas, u.a. (Hg.) 2007. eOrganisation: Service-, Prozess-, Market-Engineering; 8.
Internationale Tagung Wirtschaftsinformatik 2007. Karlsruhe: Universitätsverlag Karlsruhe

ISBN: 978-3-86644-094-4 (Band 1)
ISBN: 978-3-86644-095-1 (Band 2)
ISBN: 978-3-86644-093-7 (set)

© Universitätsverlag Karlsruhe 2007

Integration of Conceptual Process Models

by the Example of Event-driven Process Chains

Carlo Simon

Institut für Management
Universität Koblenz-Landau
56016 Koblenz, Deutschland

simon@uni-koblenz.de

Jan Mendling

Institut für Wirtschaftsinformatik und Neue Medien
Wirtschaftsuniversität Wien

1090 Wien, Österreich
jan.mendling@wu-wien.ac.at

Abstract

It has become common place in business life that companies with related operations engage in a

so-called merger in order to benefit from synergies or from combined products and services. In

order to handle the complexity of such an endeavour, it is important to utilise a structured ap-

proach for finding similarities and contradictions in business process models of both partners. In

this paper, we present a suitable procedure for this task. Furthermore, we demonstrate how to

identify those specific activities within the overall business processes which must be adapted. In

particular, we discuss how such integration can be conducted if the processes of both parties are

modelled with Event-driven Process Chains, one of the most popular conceptual business proc-

ess modelling languages. By the help of a running example we illustrate the join operator for the

integration of these models and the interpretation of the result.

677

1 Introduction

It has become common place in business life that companies with related operations engage in a

so-called merger in order to benefit from synergies or from combined products and services.

The rationale behind such a merger is that the combination of both companies’ operations is

expected to result in lower total cost as for the sum of both and a wider range of capabilities. It

is a prerequisite for the leveraging of these benefits that the operational infrastructure of the

business processes of the merging partners is integrated. Since the complexity of such an

endeavour is a considerable challenge, the enterprise model repositories of both companies play

an important role to guide and structure this integration procedure.

Several perspectives have been proposed to document information systems of enterprises. The

control flow perspective of the business process is the most important one mentioned e.g. by

[ÖBH91, p. 173, Sch00, p. 41]. Other views are organisation, function and data in accordance

with the St. Galler information system's architecture of Österle et al. [ÖBH91, p. 173]. Scheer

extends this model by output and control within the architecture of integrated information sys-

tems (ARIS) [Sch00, p. 41]. Axenath et al. [AKR05, p. 6] add authorisation and authentication

as well as assignment as further perspectives. These rather technical views on businesses may

be extended by strategies as proposed by Frank [Fra94, p. 170] or Krcmar [Krc05, p. 43].

With respect to the integration of information models in case of a merger, there is extensive

work reported in the database community on view and schema integration of data models. In the

1980s, Batini et al. [BLN86] provide a comparative analysis of schema integration methodolo-

gies. They distinguish preintegration, comparing, conforming, merging, and restructuring as

schema integration activities. Several contributions focus on specific activities of this integra-

tion process. Rahm and Bernstein provide a survey on how matches across different schemas

can be identified automatically [RB01]. Rizopoulos and McBrien discuss a hypergraph data

model (HDM) with a set of semantic relationships to support the merge operation [RM05]. A

comprehensive integration method is provided by [SS05].

While the integration of data models is a rather mature research discipline, surprisingly little

work has been conducted on the integration of process models in theory and practice. Most of

these contributions offer integration procedures on the level of Petri nets with only a few like

[GRSS05a, GRSS05b] covering generic aspects. For this paper, we adopt the integration proc-

ess for a conceptual process modelling language as presented in [MS06] since it provides a

straight forward support for Event-driven Process Chains (EPCs). For further related work on

678

behaviour integration, we also refer to [MS06]. The approach which is presented in the follow-

ing builds on general insights from database schema integration and integration operators that

borrow ideas from the Semantic Process Language [Sim06]. Moreover, it focuses on the control

flow aspect of business process models. The remainder of the paper is structured as follows.

Section 2 gives a theoretical foundation of the process integration methodology applied in this

paper. Section 3 provides a formal syntax definition of EPCs and introduces a running example

of two procurement EPCs. Section 4 applies the integration process as defined in Section 2 to

the two example EPCs. The paper closes with a conclusion in Section 5.

2 The Process Model Integration Process

The integration of two business process models needs to consider those parts of the processes

that coincide or contradict each other. This bears the following challenges:

•••• If the business processes are described using different modelling languages, then

a translation of these models into a unique representation must be made first. For

this reason a meta-model or concept-ontology must be defined for each language,

i.e. the source languages and the target language which, however, do not necessarily

have to be different. Beside the syntactical concepts also semantics must be de-

scribed and mapped to each other.

•••• A domain ontology is needed to identify those actions which can be used for the

synchronisation of the business process models. Therefore, the domain ontology

must describe the language of the various domain experts in order to match their

views of the modeled field of application.

•••• A formal integration operator must be defined to join two process models into a

single model which can then be used to advice mergers concerning their mutual

adoption of business processes. For conceptual process models, only heuristics can

be formulated for this task, since without a state semantic a formal equivalence rela-

tionship cannot be defined.

The purpose of an ontology for the development of information systems is to describe human

(domain specific) language in such a way that it can be represented and processed by software

[EGHS05, p. 204]. For the particular modelling problem discussed here we need such a formali-

679

sation of the domain which justifies each merge operation on event and function level. A possi-

ble representation of ontologies ranges from unstructured over semi-structured to fully struc-

tured [GFC04, p. 169]. An unstructured ontology is described in natural language, a semi-

structured ontology in natural language which is restricted to a specific form, and a structured

one is defined with the aid of a formal language which supports proofs concerning soundness

and completeness.

In this paper, we use a semi-structured approach to define the domain ontologies of the exam-

ples focusing on two aspects: first, the purpose of each process function is described by natural

language. Second, the relation to other functions within the process is taken down. While formal

integration of (business) processes has been reported by Simon [Sim06] for a Semantic Process

Language (SPL), for Petri nets in general by Best et al. [BDK01], and for Process Algebra

[BPS01, Fok00], we define and apply a process model integration process that is especially tai-

lored for conceptual business process modelling languages such as EPCs. We specify the merge

operator on the level of the formal syntax of EPCs. In this way, we extend previous work on the

integration of Petri nets (see e.g. [PCS01, Sim06]).

External
Schema

External
Schema

Federated

Schema

Export

Schema

Export

Schema

Component

Schema

Component

Schema

Local

Schema

Local

Schema

different data

representations

e.g. ER, OO,

relational model

common data

representations

homogenized

schemas

merged

schema

presentation
schema

e.g. GIM, HDM

e.g. GIM, HDM

e.g. GIM, HDM

e.g. ER, OO,
relational model

e.g. EPC, YAWL,

Petri Nets, BPEL

e.g. EPC, YAWL,
Petri Nets, BPEL

?

?

?

Schema Architecture Artifacts data models behavior models

Fig. 1: Database Schema Integration and Process Model Integration [MPZ05]

In essence, the process model integration process can be specified analogously to the database

schema integration process as defined in [SL90, SS05], compare Figure 1. While explaining the

integration steps of the process model integration process, we give the terms from database in-

tegration according to [SL90] in brackets to establish the link. The process takes two process

680

models as input (“local schema”). These models might comply with two different business

process modelling languages, e.g. one EPC and one BPEL model. In a first step, the models

have to be mapped to a common business process modelling language that is utilised throughout

the further integration. As a result, this yields the two models in the same language (“compo-

nent schema”). In a second step, the elements of the process models have to be matched. In par-

ticular, potential homonyms and synonyms have to be analysed with special attention. The re-

sulting models are called “export schemas” according to [SL90]. The third step represents the

application of the merge operator and we achieve an integrated process model (called “federated

schema” in [SL90]). Depending on user requirements, the integrated process model could be

mapped to another process modelling language for presentation purposes (“external schema”).

In this paper, we consider two business process models that are both modelled as EPCs. There-

fore, we do not have to apply the mapping to a common process modelling language. Further-

more, we have to select the right variant of the merge operator: if the process models capture

different views on the same business process, the integration is a kind of conjunction of the

models (“integration by specialization” in [PCS01]). If the models represent process variants,

the integration is a kind of disjunction (“integration by generalization” in [PCS01]). For a con-

junction based integration of EPC business process models and further related work, refer to

[MS06].

3 Event-driven Process Chains (EPCs)

Event-driven Process Chains (EPCs) are a conceptual business process modelling language.

EPCs capture the temporal and logical dependencies of activities of a business process

[KNS92]. So called function type elements represent activities of a business process. Event type

elements describe pre- and post-conditions of functions, and three kinds of connector types in-

cluding AND, OR, and XOR. Control flow arcs are used to link these elements. Connectors

have either multiple incoming and one outgoing arc (join connectors) or one incoming and mul-

tiple outgoing arcs (split connectors). As a syntax rule, functions and events have to alternate,

either directly or indirectly when they are linked via one or more connectors. The syntax of

EPCs can be formally defined as follows (cf. [MS06]):

681

Notation 1 (Predecessor and Successor Nodes) Let N be a set of nodes and A ⊆ N × N a binary

relation over N defining the arcs. For each node n ∈ N, we define the set of predecessor nodes

•n = {x ∈ N | (x, n) ∈ A}, and the set of successor nodes n• = {x ∈ N | (n, x) ∈ A}.

Definition 1 (EPC) An EPC = (E, F, C, l, A) consists of three pair wise disjoint sets E, F, C of

nodes, a mapping l: C → {AND, OR, XOR}, and a binary relation A ⊆ (E∪F∪C) x (E∪F∪C)

such that

• |•e| ≤ 1 and |e•| ≤ 1 for each e ∈ E. An element of E is called event.

• |•f| = 1 and |f•| = 1 for each f ∈ F. An element of F is called function.

• Either |•c| = 1 and |c•| > 1 or |•c| > 1 and |c•| = 1 for each c ∈ C. An element of C is

called connector.

• The mapping l specifies the type of a connector c ∈ C as AND, OR, or XOR.

• A defines the control flow as a coherent, directed graph. An element of A is called arc.

We define the semantics of the different EPC connector types in an informal manner since we

only consider the structure of an EPC in the integration process. For an overview of formalisa-

tion approaches refer to [Ki06]. An AND split activates all subsequent branches in concurrency

while the XOR split activates one of the subsequent branches. The OR split triggers at least one

and at most all of multiple branches. The AND join synchronises all incoming branches, then it

activates the subsequent EPC element. The OR join sychronises all active branches. This feature

has been debated as non-local semantics (see e.g. [Ki06]). The XOR split has also non-local

semantics. Either there is one input branch active (which is the expected case) and it activates

the subsequent EPC element, or there are multiple branches active and it blocks.

In the remainder of this section, we discuss two example EPCs that both represent a standard

procurement process. The labels of the second EPC were translated from German. The first pro-

curement process considered here is taken from [Roh96, p.49]. The start event represents the

readiness to calculate procurement requirements on base of a master requirements plan and in-

ventory data. The corresponding calculations are repeated until all open items are handled. Af-

terwards, these calculated net requirement orders are taken to generate and release an order and

the actual procurement is conducted. Figure 2 shows the EPC model of this procurement proc-

ess.

682

Ready for

calculation

xor

Calculate

requirements

Requirements

calculated

Check inventory

Inventory

checked

Calculate net

requirements

xor

Net requirements

calculated

Generate order

and

Items open

Order generated

Release order

Order terminated

Procurement

finished

Make procurement

Procurement

determined

Master

requirements

Inventory level

Order date Procurement data

Fig. 2: Procurement process in adoption of [Roh96, p. 49]

The second procurement process is taken from [BS96, p. 65]. A fund manager starts a procure-

ment process on behalf of a recognised demand with stocktaking of the requested products in

the warehouse or in sourced out third-party warehouses. On base of the currently available

amount of goods the purchase order quantity is calculated and an order is initiated which in-

creases the warehouses. Figure 3 depicts this business process in a diagram.

683

Disposition request

of employee

Stocktaking

xor

Third-party ware-

house checked

Inventory

checked

xor

Determine purchase

order quantity

Purchase order

quantity determined

Conduct procurement

xor

Conduct third- party

order

Conduct warehouse

order

Release third-

party order

Third-party

order released

Release warehouse

order

Warehouse order

released

Fig. 3: Procurement process in adoption of [BS96, p. 65]

4 Merging EPCs based on Process Model Integration

Since both models are developed as EPCs, a concept ontology is not needed for an integration if

this operation can be applied immediately to the EPC models. In the subsequent section the

theoretical foundations will be laid for this and the integration operator is applied to the exam-

ples.

Domain ontologies for the examples must explain all used functions and events. As an input for

their specification, we utilise both the (narrative) description of the functions in the EPC models

684

and their sequence relation to other functions. These facts provide adequate information to draw

conclusions concerning the similarity of functions in different models. The events of the models

play a subordinate role within these examples since they primarily describe intrinsic states of

the process progress which can also be derived from the functions and the sequence in which

they occur.

Table 1 shows the domain ontology for the model of Rohloff in tabular form explaining the

functions and relates them to their predecessor and successor functions.

Action Predecessor Successor Description

Calculate

requirements

 Check inventory or

Calculate net

requirements

Determine the need

Check inventory Calculate

requirements

Calculate net

requirements

Check current stock

amount

Calculate net

requirements

Check inventory Release order and

Make procurement

Calculate procure-

ment amount

Generate order Calculate net

requirements

 Formulate request

Release orders Generate order Distribute order

Make

procurement

Generate order Control procurement

Tab. 1: Domain ontology for the functions in the model of Rohloff

Tabular 2 shows the domain ontology of Becker and Schütte in a similar format. Both represen-

tations are used to compare the domain ontologies and to find similarities.

The first function in the model of Rohloff is the calculation of requirements while in the model

of Becker and Schütte the process starts with stocktaking followed by determining the purchase

order quantity. This indicates that the required amount of goods must have been calculated be-

fore a process described by Becker and Schütte starts. And indeed, processes of Becker and

Schütte start with an event Disposition request of employee which indicates that the demand has

already been calculated. It is therefore not possible to identify an analogue function for Calcu-

late requirements in the second model.

685

Action Predecessor Successor Description

Stocktaking Determine purchase

order quantity

Determine current

inventory

Determine pur-

chase order

quantity

Stocktaking Conduct

procurement

Determine required

quantities

Conduct

procurement

Determine purchase

order quantity

Release third-party

order or

Release warehouse

order

Generate order

Release third-

party order

Conduct procurement Order for external

warehouse

Release ware-

house order

Conduct procurement Order for internal

warehouse

Tab. 2: Domain ontology for the functions in the model of Becker and Schütte

The next function in the model of Rohloff is Check inventory which can be seen as similar to

Stocktaking due to their descriptions. A difference between these two functions can only be ob-

served, if the following events are considered. Becker and Schütte explicitly distinguish be-

tween internal and external warehouses while such a differentiation cannot be identified in the

description of Rohloff. Despite of this distinction, both functions in principle describe the same

kind of activity.

The next following function in the model of Rohloff is Calculate net requirements and in the

model of Becker and Schütte Determine purchase order quantities. Both functions can be seen

as similar due to their description. For the same reasons, also Generate order and Conduct pro-

curement are diagnosed as similar.

At the end of the procurement process of Rohloff, two functions occur (Release order and Make

procurement) while the process of Becker and Schütte ends with an alternative (between Re-

lease third-party order and Release warehouse order). This differentiation results from the two

different warehouses (internal and external) and does not occur in the model of Rohloff. It can

therefore be concluded that these two functions are specialisations of Release order.

686

5 Integration of the EPC Models

In this section, a heuristic is developed for the join of EPC models such that the resulting model

represents the intersection of the processes of the input models. Due to the absence of a formal

state semantics, it cannot be proved that this is formally true like in the Semantic Process Lan-

guage. Nonetheless, we provide evidence for the usefulness of the chosen definition by explain-

ing the outcome of each integration step. We then apply the heuristic to our example.

Since it is the goal of a merger to integrate the former individual views into a single one, the

following join operator is conceptualised as a conjunction of models. The resulting EPC in prin-

ciple describes the intersection of the input schemas.

Definition 2 (Joined EPC) Let EPC1 = (E1, F1, C1, l1, A1) and EPC2 = (E2, F2, C2, l2, A2) be two

EPCs. The Joined Event-driven Process Chain EPCJ = (EJ, FJ, CJ, lJ, AJ) – the conjunction of

EPC1 and EPC2 – is defined in three consecutive steps as follows:

1. Basically, the elements of EPC1 and EPC2 are combined in a single diagram:

 EJ’’ := E1 ∪ E2 and FJ’’ := F1 ∪ F2,

 CJ’’ := C1 ∪ C2 and lJ’’ := l1 ∪ l2,

 AJ’’ := A1 ∪ A2

2. Each pair (e1, e2) of similar event elements e1 ∈ E1 and e2 ∈ E2 describing the same real-

world events is fused into a single one. Former incoming and outgoing control flow arcs

are synchronised with the aid of two new connectors csplit and cjoin:

 EJ’ := EJ’’ – {e2} and FJ’ := FJ’’

 CJ’ := CJ’’ ∪ {csplit, cjoin}

 lJ’ := lJ’’ ∪ {(csplit, and), (cjoin, and)} and

 ∀x1 ∈ •e1, ∀x2 ∈ •e2,� ∀y1 ∈ •e1,� ∀y2 ∈ e2•:

 AJ’ := AJ’’ – {(x1, e1), (x2, e2), (e1, y1), (e2, y2)} ∪

 {(x1, cjoin), (x2, cjoin), (cjoin, e1), (e1, csplit), (csplit, y1), (csplit, y2)}

 Incomplete tuples due to missing predecessor or successor nodes are omitted.

 The result of this operation is that each merged event occurs after all its successor func-

 tions and that it triggers all subsequent functions.

687

3. Each pair (f1, f2) of similar function elements f1 ∈ F1 and f2 ∈ F2 describing the same

real-world events is fused into a single one. Former incoming and outgoing control flow

arcs are synchronised with the aid of two new connectors csplit and cjoin:

 EJ := EJ’ and FJ := FJ’ – {f2}

 CJ := CJ’ ∪ {csplit, cjoin}

 lJ := lJ’ ∪ {(csplit, and), (cjoin, and)} and

 ∀x1 ∈ •f1, ∀x2 ∈ •f2,� ∀y1 ∈ •f1,� ∀y2 ∈ f2•:

 AJ := AJ’ – {(x1, f1), (x2, f2), (f1, y1), (f2, y2)} ∪

 {(x1, cjoin), (x2, cjoin), (cjoin, f1), (f1, csplit), (csplit, y1), (csplit, y2)}

 Incomplete tuples due to missing predecessor or successor nodes are omitted.

 The result of this operation is that each merged function is only executed if all its suc-

 cessor events have occurred and that it activates all possible follower events.

The first step results in a single EPC model which contains both input EPCs without any con-

nections between them. The second step joins events. Most of the functions have similar events

according to the fact that they only describe internal states of the processes. Similarity can be

assumed between those events for which a similarity has be identified concerning their adjacent

functions (Requirements calculated and Disposition request of employee as well as for Net re-

quirements calculated and Purchase order quantity determined). The joined events are labelled

using the terminology of Rohloff. Figure 4 exemplarily depicts the join of Net requirements

calculated and Purchase order quantity determined.

xor

Generate order

Determine purchase

order quantity

Conduct procurement

and

Net requirements

calculated

...

and

... ...

... ...

Fig. 4: Result of joining two events

688

Moreover, Inventory checked of Rohloff can be seen as a generalisation of Third-party ware-

house checked and Inventory checked of Becker/Schütte. These events may be joined as well

and the resulting events are labelled using the more specific terminology of Becker/Schütte.

Definition 2, however, only provides means to join one event of the first EPC with one event of

the other. If more than one join makes sense (due to a generalisation/specialisation relationship)

each of the specialised joined functions must be enabled with respect to the preceding functions

in the more general model i.e., further OR-connectors have to be added. The corresponding

formal graph transformation operation can be specified similar to the previously defined opera-

tions.

The join of functions uses the ontologies defined in the previous section. Although Check inven-

tory and Stocktaking are in principle identical, the latter one takes into account the existence of

different warehouses which means that this term is a specialisation of Check inventory. The

joined function is therefore labelled Stocktaking. Concerning the in each model following two

functions, the join result is labelled using the terminology of Rohloff.

Also concerning the functions a generalisation/specialisation relationship can be observed. The

corresponding functions can be merged with the same operation described for events already,

i.e. by adding additional OR-connectors.

In the joined model, we observe an inflation of connector symbols. Many of them can be omit-

ted since they are redundant or because they only have one incoming and outgoing arc. Figure 5

shows the resulting Joined EPC of the input schemas.

The resulting EPC model can be interpreted as follows: in the joined model, we still find valid

processes. Consequently, a merge is possible. Nonetheless, also deadlocks can be observed at

the end of the process. These deadlocks result from the differentiation of warehouse types made

in one model but not in the other. A deadlock, however, does not represent a weakness of the

presented approach. In contrary, such contradictions are typical for mergers. They help to find

those parts of businesses which need to be restructured and where operations have to be aligned.

689

Ready for

calculation

xor

Calculate

requirements

Requirements

calculated

Calculate net

requirements

xor
Net requirements

calculated

Generate order

and

Items open

Procurement

finished

Make procurement

Procurement

determined

Order generated

Order terminated

Stocktaking

xor

Third-party ware-

house checked

Inventory

checked

xor

xor

Conduct third- party

order

Conduct warehouse

order

Release third-

party order

Third-party

order released

Release warehouse

order

Warehouse order

released

and

or

and and

andand or

Fig. 5: Joined EPC of Rohloff and Becker/Schütte

690

6 Conclusion

Support for the conceptual integration of business process models is a key requirement for

combining business processes in a merger scenario. Within this paper, we introduce a novel

integration operator for conceptual process models (in particular EPCs). We follow an integra-

tion process which is adapted from database integration. Within this integration process, a

merge operator specific for conceptual business process models is used to combine the models.

In order to demonstrate the feasibility of our integration approach, we integrate two reference

procurement processes taken from literature. Moreover, the actual merge ontologies are formu-

lated building on the structure of the input EPCs.

The resulting EPC demonstrates that – although the input EPCs have some similarities – in this

merger scenario a partial restructuring of the processes would be necessary. The method guides

to these critical subsequences and detects those parts of the process models that differ. Since the

method is applied immediately to the EPC input models, in opposite to former work [SM06]

which required an intermediary transformation into Petri nets, the presented approach takes both

into account, functions and events.

The integration operator that we use results in a conjunction of the input schemas. From data-

base integration, also scenarios are known where the result equals a disjunction. The usefulness

of a transfer of this integration type to process models will be considered in future research.

Furthermore, we aim to provide tool support for the integration process. Beyond that, the proc-

ess view is only one of many perspectives on information systems of a company. Future work

will have to combine the data and the process integration into a multi-perspective integration

approach.

References

[Aal05] Aalst, van der, W. M. P.: Pi calculus versus Petri nets: Let us eat “humble pie”

rather than further inflate the “Pi hype”. BPTrends, 3(5), 2005, pp. 1-11

[AKR05] Axenath, B.; Kindler, E.; Rubin, V.: The Aspects of Business Processes: An

Open and Formalism Independent Ontology. Fachberichte Informatik tr-ri-05-

256, Universität Paderborn.

691

 [BDK01] Best, E.; Devillers, R.; Koutny, M.: Petri net Algebra. In: Brauer, W.;

Rozenberg, G.; Salomaa, A. (Edt.): EATCS, Monographs in Theoretical

Computer Science, Springer, Berlin, 2001

[BLN86] Batini, C.; Lenzerine, M.; Navathe, S. B.: A Comparative Analysis of

Methodologies for Database Schema Integration. ACM Computing Surveys,

18(4), 1986, pp. 323-364

[BPS01] Bergstra, J. A.; Ponse, A.; Smolka, A. (Edt.): Handbook of Process Algebra,

Elsevier, Amsterdam, 2001

[BS96] Becker, J.; Schütte, R.: Handelsinformationssysteme, Verlag Moderne Industrie,

Landsberg/Lech, 1996

[EGHS05] Elzenheimer, M.; Grollius, T.; Heinemann, E.; Sternhuber, J.: Vergleichende

Buchbesprechung: Ontologien. Wirtschaftsinformatik, 47(4), 2005, pp. 298-309

[Fok00] Fokkink, W.: Introduction to Process Algebra. Springer, Berlin, 2000

[Fra94] Frank, U.: Multiperspektivische Unternehmensmodellierung. Theoretischer Hin-

tergrund und Entwurf einer objektorientierten Entwicklungsumgebung. Olden-

bourg Verlag, München, 1994

[GFC04] Gómez-Pérez, A.; Fernández-López, M.; Corcho, O.: Ontological Engineering.

Springer, Berlin, 2004

[GRSS05a] Georg Grossmann, Yikai Ren, Michael Schrefl, and Markus Stumptner.

Behavior Based Integration of Composite Business Processes.

In 3rd International Conference on Business Process Management, BPM 2005,

September 5-8 2005. LNCS(3649/2005), pages 186-204, Springer-Verlag.

[GRSS05b] Georg Grossmann, Yikai Ren, Michael Schrefl, and Markus Stumptner.

Definition of Business Process Integration Operators for Generalization.

In 7th International Conference on Enterprise Information Systems, ICEIS 2005,

May 24-28 2005.

692

[Ki06] Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. Data &

Knowledge Engineering, Volume 56, Number 1, January 2006, pages 23-40

[KNS92] G. Keller, M. Nüttgens, and A. W. Scheer. Semantische Prozessmodellierung auf

der Grundlage Ereignisgesteuerter Prozessketten (EPK)". Heft 89, Institut für

Wirtschaftsinformatik, Saarbrücken, Germany, 1992

[Krc05] Krcmar, H.: Informationsmanagement (4. edt). Springer, Berlin, 2005

[MPZ05] J. Mendling, C. Pérez de Laborda, U. Zdun: Towards an Integrated BPM

Schema: Control Flow Heterogeneity of PNML and BPEL4WS. In: K.-D. Alt-

hoff, A. Dengel, R. Bergmann, M. Nick, T. Roth-Berghofer, eds.: Post-

Proceedings of (WM 2005), Lecture Notes in Artificial Intelligence 3782,

Kaiserslautern, Germany, pages 570–579, 2005.

[MS06] Mendling, J.; Simon, C.: Business Process Design by View Integration. In:

Dustdar, S.; Eder, J.: BPM 2006 Workshops Proceedings. Lecture Notes in

Computer Science (LNCS), Springer 2006

[PCS01] Preuner, G.; Conrad, S.; Schrefl, M.: View integration of behavior in object-

oriented databases. Data Knowl. Eng. 36(2), 2001, pp. 153-183

[ÖBH91] Österle, H.; Brenner, W.; Hilbers, K.: Unternehmensführung und Informations-

systeme: Der Ansatz des St. Galler Informationssystem-Managements. Teubner,

Stuttgart, 2001

[RB01] Rahm, E.; Bernstein, P. A.: A Survey of Approaches to Automatic Schema

Matching. VLDB Journal, 10(4), 2001, pp. 334-350

[RM05] Rizopoulos, N.; McBrien, P.: A General Approach to the Generation of Concep-

tual Model Transformations. In: Pastor, O.; e Cunha, J. F. (Edt.): Proceedings:

Advanced Information Systems Engineering. 17th International Conference

CAiSE 2005, Lecture Notes in Computer Science (LNCS), 3520, Porto, Portu-

gal, Springer 2005, pp. 326-341

693

[Roh9605] Rohloff, M.: Reference Model and Object Oriented Approach for Business Proc-

ess Design and Workflow Management. In: Proceedings: Information Systems

Conference of New Zealand, 1996, pp. 43-52

[Sch00] Scheer, A.-W.: ARIS – Business Process Modeling (3rd. edt). Springer, Berlin,

2000

[Sim06] Simon, C.: Integration of Planning and Production Processes. In: Mathmod

2006, Special Session Petrinets: Current Research Topics and their Application

in Traffic Safety and Automation Engineering, Wien, Austria, 2006

[SL90] Sheth, A.P.; Larson, J.A.: Federated Database Systems for Managing Distrib-

uted, Heterogeneous, and Autonomous Databases. ACM Comput. Surv. 22(3),

1990, pp. 183-236

[SM06] Simon, C., Mendling, J.: Verification of Forbidden Behavior in EPCs. In: Mayr,

H. C.; Breu, R.: Modellierung 2006. Lecture Notes in Informatics (LNI P-82),

Innsbruck, Austria, 2006, pp. 233-242

[SS05] Schmitt, I.; Saake, G.: A Comprehensive Database Schema Integration Method

Based on the Theory of Formal Concepts. Acta Informatica, 41(7-8), 2005, pp.

475-524

694

	Association for Information Systems
	AIS Electronic Library (AISeL)
	February 2007

	Integration of Conceptual Process Models by the Example of Event-driven Process Chains
	Carlo Simon
	Jan Mendling
	Recommended Citation

	WI2007

