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SettleBot: A Negotiation Model for the Agent 
Based Commercial Grid 

Florian Lang 
University of Erlangen-Nuremberg 

Abstract: Market-driven sharing of distributed computational resources requires 
coordination support that can be provided by distributed problem solving (soft-
ware agent technology). Multiple-issue negotiation among autonomous software 
agents allows the efficient alignment of resource consumers’ demand profiles and 
the service capabilities of resource providers. To address the inefficiencies of ne-
gotiations on imperfect markets, the negotiation model suggested by the SettleBot 
research effort includes both self-interested negotiations driven by a heuristic 
strategy and a joint-gains approach to win/win-negotiations. While finding joint 
gains under imperfect information is a well-known problem with approaches re-
lating to simulated annealing as common approximate solutions, self-interested 
negotiations in a dynamically evolving environment require intelligent agents that 
retrieve, process and leverage knowledge about the world state. Superior strategy 
solutions in given market scenarios are identified using a genetic learning algo-
rithm. 

Keywords: Grid Computing, Negotiation, Multi-Agent Systems 

1 Commercial Grids 

Successful grid implementations in high performance scientific applications have 
led to grid technology as a promising approach to cost cutting in professional 
business environments. Business cases around the world show that grid computing 
has already found its way to the companies’ data centers. The goal of grid enabled 
business applications is to reduce the cost and boost the efficiency of heavy duty 
application services that rely on highly available network infrastructure, data 
processing and storage. The principle of sharing computational resources dynami-
cally among applications is enabled by a grid infrastructure (grid fabric) and a grid 
management appliance that allocates idle resources to service consuming applica-
tions. 

While cooperative sharing of resources can be readily assumed in scientific areas 
of application, it cannot provide for an allocation approach in competitive envi-
ronments. Self-interested players will only share their resources across profit-
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centers or companies, if they are compensated for the exchanged services. The 
SettleBot project aims at providing a market based allocation mechanism for the 
exchange of grid services in competitive environments (referred to as “grid mar-
ket” in the remainder of this article). A commercial grid allows the virtualization 
of resources across separate budget entities (profit centers, companies). Idle re-
sources become chargeable grid service offers. On the client side, excess demand 
for service resources may be satisfied by finding and using idle resources via the 
commercial grid. Thus, a subsystem of the grid may efficiently size its resource 
pool well below peak load requirements. 

A grid market must support flexible pricing to ensure an efficient match of supply 
and demand. Beginning with the Harvard PDP-1 auction in 1968 (see [Suth68]) 
many research efforts have evaluated auctioning as an economic mechanism for 
the valuation and exchange of computational resources (see for example 
[Chen+02; Gagl+95; ReNi98; Wols+01]). However, auction mechanisms require 
fixed goods. An auctioneer will offer a fixed service level agreement (service type, 
execution time, resource usage) that is valued by a bidder’s decision function. The 
SettleBot project extends this approach by providing a mechanism that allows 
agreeing upon any attribute of the SLA, including price. A grid market that sup-
ports such multi-issue negotiation allows efficient resource usage by matching 
suppliers’ and demanders’ preference structures with respect to all aspects of a 
service level agreement. The project’s goal is to design negotiating software 
agents that autonomously negotiate for multiple-attribute grid service contracts. 

A computational grid is an IT-infrastructure that integrates a pool of heterogene-
ous resources and presents them to users as a single machine (virtualization). Be-
sides joining resources that are heterogeneous in terms of platform and perform-
ance, grid computing extends cluster computing by considering resource failure a 
standard operating condition. The grid is a highly dynamic computing infrastruc-
ture, where resources are merged and unmerged depending on whether they are 
available (up and idle) or unavailable (down or busy). While first generation com-
putational grids involved proprietary solutions, second generation grids introduced 
middleware as a framework to cope with scalability, heterogeneity and efficient 
resource allocation. Third generation computational grids follow a service-
oriented approach, are metadata-enabled like web services and may exhibit auto-
nomic features [Dero+03].  

State of the Art-Grid Middleware applies centralized job scheduling algorithms for 
resource allocation. Job scheduling is a suitable approach for managing resources 
in control by a central grid manager. Separate budget scenarios where grid re-
sources are distributed among independent resource owners require mutual con-
sent on which resources may be scheduled to run a job and when. In a commercial 
grid, this mutual consent is reached by a market mechanism implemented in the 
middleware layer that allows resource valuation and exchange. We consider the 
commercial grid a third generation computational grid that applies market based 
resource allocation (see Figure 1). 
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Figure 1: Grid Evolution 

Commercial grids allow service consumers to noticeably reduce their application 
total cost of ownership by outsourcing peak loads to the most cost-efficient 
source. Given that otherwise idle resources are available for grid service insourc-
ing, cost cutting effects can be dramatic. A resource owner who has got non-
storable, idle resources to spare will accept any compensation exceeding transac-
tion cost. 

2 Automated Negotiation and Knowledge Processing 

The operative interdependencies that arise from interweaving businesses pose ma-
jor coordination challenges. In competitive environments, coordination as an in-
strument of managing interdependencies is restricted by contradictory goals of the 
interdependent parties. Negotiation is an instrument of resolving these conflicts. 

Machine negotiation is applied to allow short-termed, flexible contracting among 
autonomous systems at very low cost per transaction. The SettleBot research effort 
aims at developing a heuristic negotiation model that deals with the inefficiencies 
prevailing in real-world settings. SettleBot’s agents try to maximize their payoff 
by applying a heuristic strategy that processes the agents’ knowledge about their 
environment, their opponents and their own goals. Since information about other 
agents’ preferences is limited in competitive settings, automated negotiations 
driven by heuristic strategies usually result in Pareto-dominated contracts. This 
downside to heuristic negotiations is met by SettleBot’s two-phased negotiation 
protocol. 

In the first phase, the agents apply self-interested negotiation strategies to reach a 
preliminary agreement. This agreement reflects the agents’ individual success in 
gaining maximum utility with respect to their individual preference models. The 
first phase may be characterized as a win/lose-negotiation where an agent maxi-
mizes its payoff on another agent’s expense (“dividing the pie”). The second 
phase aims at correcting inefficiencies of the preliminary agreement by searching 
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for joint gains (“enlarging the pie”) while preserving the payoff distribution the 
agents gained from the first phase. Thus, the agent that has a stronger negotiation 
stance (e.g. little competition by identical or substitutional service offerings), uses 
a better strategy or leverages other competitive edges like additional or more accu-
rate knowledge, better knowledge processing skills and so forth still “wins” the 
negotiation while both sides yield additional payoff. 

Centralized auctioning mechanisms assume goods or services of equivalent qual-
ity that are distinguishable only by price. On commodity markets, the quality of 
variable goods and services (i.e. agricultural products, bandwidth) is standardized 
by a common quality statement (commoditization), thereby avoiding the transac-
tion cost of consumers and providers coming to individual terms on variable qual-
ity features. Contract variables other than price are non-negotiable on commodity 
markets, thus obscuring additional profit opportunities (“leaving money on the ta-
ble”). Multiple-issue negotiation allows preference-driven bilateral contract cus-
tomization at the attribute level, so contractors are awarded a better fit of con-
sumer needs and provider productivity. 

Concerning a resource management system’s user interface, user attention must be 
considered the scarcest resource to be managed. Therefore, hiding the complexi-
ties of real-time multi-attribute resource allocation from users is a major design 
goal. Enabling agents with autonomous knowledge retrieval and processing abili-
ties is a design principle. 
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Figure 2: Knowledge Processing Architecture 

Transaction support in the SettleBot system aims at reducing user involvement in 
real-time grid service allocation settings to a budget decision and a non-recurring 
elicitation of the user’s trade-off weight concerning time vs. money. Goals and 
preferences other than budget and the trade-off weight are extracted by an applica-
tion interface (see Figure 2). A sensors stack allows an agent to observe dynami-
cally changing environmental conditions that must be considered by the agent’s 
negotiation strategy (competing offers, time, price history, …). Sensor drivers 
process, aggregate and store these observations. 



SettleBot: A Negotiation Model for the Agent Based Commercial Grid 153 

The world state is the agent’s perception of its fluctuating environment. Both pref-
erences and knowledge about the world state form input for the agents negotiation 
strategy and are forwarded to knowledge management functions that map an 
agent’s strategically relevant knowledge on knowledge bits (“relevant facts”, see 
Figure 2) directly exploitable by the agent’s heuristic strategy. The agent’s knowl-
edge based decision making includes provider selection, budget constraint modifi-
cation, fixing reservation values, determining aggressiveness (reluctance to make 
concessions) and other decisions that may help to increase an agent’s payoff when 
properly made. Effectors turn decisions into actions. The effectors stack deter-
mines the agent’s behavioral degrees of freedom. An agent uses its effectors to 
place offers, conclude deals or terminate negotiations. 

3 Agent Based Grid Service Transactions 

A service level agreement (SLA) allows the definition of mutual guarantees 
among service consumers and service providers. It covers job variables detailing 
type and composition of the service to be delivered (service level objectives, ex-
clusions), and deal variables that specify the contracting parties, price, time con-
straints, penalties and other administrative minutiae. 

The structure of an SLA for grid resource allocation depends on the application 
scenario it is designed for. There is no “one fits all”-solution to SLA design for the 
commercial grid. However, there are some basic features that are common or at 
least widely reusable (see Table 1). Besides identifying the contracting parties and 
the service class, an SLA must enable mutual agreement on the service bundle to 
be delivered, the time frame in which delivery is due and monetary compensation. 

 
Non-Negotiables Negotiables 
provider_id packets 
consumer_id deadline 
service_id price 

Table 1: SLA Structure 

A typical resource bundle needed to provide application services includes compu-
tation, storage, traffic and memory. These resources form what is called a “linked 
value group” [Keny02]. For example, computation without bandwidth is useless, 
and so is bandwidth without computation. In a scenario where a huge workload of 
similar jobs (capacity computing), or a single large, finitely divisible job (capabil-
ity computing) is assigned to distributed resources, each subjob (“packet”) con-
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sumes a certain resource bundle, type and composition of which depends on the 
respective application or a specific job. 

A central application of commercial resource allocation in competitive environ-
ments will be the instant delivery of grid services on-demand, relieving applica-
tion servers of peak loads in real-time. Therefore, grid service contracts are execu-
table on the spot on a real-time market. A deadline indicates when the subjob must 
be completed. The SLA structure depicted in Table 1 serves as a contracting 
framework for resource allocation driven by agent-based “over the counter” nego-
tiations. “Non-negotiables” identify the contractors committed to the SLA and the 
service class to be delivered. Besides deadline and price the negotiables section 
includes the number of packets to be delivered. A packet is the smallest, non-
divisible fraction of a finitely divisible grid job. 

A business transaction consists of an information, an agreement and a settlement 
phase [Zbor96] (see Figure 3). An electronic market may support one or all of 
these phases, depending on user requirements, characteristics of the transaction 
object, transaction cost and availability respectively profitability of support tools. 
A rough analysis of the market scenario given by a commercial grid implies that 
decision support by autonomous systems is required in all phases: 

Resource failure as well as spontaneous entry and unpredictable exit of service 
providers lead to a highly dynamic topology of the grid and thus to low market 
transparency in the information phase. This restricted transparency contradicts the 
need for “co-allocation”, i.e. the simultaneous sourcing of complex application 
services from multiple providers as required in a commercial grid (see [Chen+02; 
Czaj+99]). The complexity must be hidden from users in all transaction phases. 
 

RankingMatching IntegrativeDistributive PaymentExecution

Agreement SettlementInformation

 
Figure 3: Transaction Phases and Support Functions 

Matching consumers and providers in the information phase as well as negotiation 
driven by preference models involves detailed technical descriptions of supply and 
demand profiles. Generating these profiles requires expensive expert knowledge, 
unless they are generated automatically. Moreover, spontaneously evolving needs, 
e.g. in application server load balancing scenarios, call for near real-time demand 
communication. 

We suggest an agent based approach to transaction support for the commercial 
grid. A grid market as designed in the SettleBot project consists of three node 
types representing consumers, providers and intermediaries. Each node type (see 
Figure 4) hosts an agent that implements the decision support functionality re-
quired by the node type. A grid carrier agent (GCA) implements the intermediary 
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functions that allow the registration of grid services offered by provider agents. A 
grid service resource includes a grid service factory that instantiates services upon 
request (see [Fost+02]) and actual physical resources like storage, bandwidth, 
computation and memory. 
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Figure 4: Principals, Agents and Resources of the Commercial Grid 

To find offers matching their preference profile, consumer agents retrieve entries 
from the registry by querying the GCA. A preference driven ranking of matching 
offers completes the information phase (see Figure 3). In the agreement phase, 
consumer and provider agents self-interestedly negotiate for distributive agree-
ments that are additionally improved by an integrative search for joint gains. Due 
to the limited capacity of a single provider, the ability to assign excess demand for 
finitely divisible application services to multiple external providers improves allo-
cation efficiency. Therefore, a single job may require many transactions and the 
foregoing negotiations for a set of interdependent contracts. Since grid jobs are 
considered divisible, they can be decomposed to single packets, setting the maxi-
mum number of providers simultaneously involved to the number of packets. The 
settlement phase of a transaction includes service execution and payment (execu-
tion of the SLA). 

Peak load management as a grid application leads to instantaneous, dynamic needs 
for grid services that must be served on short notice. Therefore, thorough decision 
support by autonomous systems is not a feature but a must in a commercial grid. 
The following sections explain some of the technical details on grid service trans-
actions supported by the suggested agent based framework. 
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4 Preferences 

Providers and consumers in a commercial grid are assumed to have preferences of 
one contract alternative over another. Considering the variable attributes of the 
SLA, a rational provider prefers low resource spending, high revenue and long 
deadlines, while a rational consumer prefers high resource usage, low cost and 
short-term service delivery. These preferences are modeled by an ordinal utility 
function that guides an agent’s decisions in the information and the agreement 
phase. 

For n  attributes, let 1 2( , ,..., )na a a a=  and 1 2( , ,..., )nb b b b=  be alternative outcomes 
with a  preferred to b  by the principal ( a bf ), the agent’s utility function u  
must be designed such that ( ) ( )u a u b> . The type of the utility function (multi-
linear, multiplicative, additive) depends on the degree of dependence among the 
attributes. An attribute 1X  is considered preferentially independent of an attribute 

2X , if the preference 1 2 1 2( , ) ( , )x x x x′f  is independent of the specific value of 2x . 
Krantz et al. show that for mutually, preferentially independent attributes, a utility 
function takes the form 1 2( , ,..., )nu f u u u=  [Kran+71]. For ease of valuation and 
utility function design, it is desirable to model the utility function in its well un-
derstood additive form  

( )i i i
i

u w u x= ⋅∑
 

(1)  

An additive utility function requires all attributes to be mutually, preferentially 
independent [KeRa93]. Mutual preferential independence (MPI) is given if any 
subset of attributes is preferentially independent of its complement. Among the 
attributes packets, deadline and price, there is no subset that must be considered 
preferentially dependent of its complement. The MPI assumption reduces utility 
function design to determining the subutility functions ( )i iu x  and the weights iw  
for each attribute (1,2,..., )i n= . Since money yields diminishing marginal utility 
the utility of price can be modeled using a Bernoulli-concave (logarithmic) subu-
tility function. A rational individual’s claim for risk compensation (risk aversion) 
also implies concave subutility functions for the attributes packets and deadline. 

For generating its subutility functions, an agent needs to derive aspiration values 
( ia ) and reservation values ( ir ) for each of the negotiable attributes from user 
constraints while also considering the total job size. Since a divisible job must be 
simultaneously assigned to several grid service providers for efficiency purposes, 

pricer  and packetsr  must be dynamically set during negotiations by breaking down the 
total values of budget and job size. Since the execution of fractions of the total job 
(joblets) by more than one provider is not sequential, deadliner  in a negotiation 
equals the total user deadline. 
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While the reservation values are derived from the user constraints, an agent 
autonomously sets its aspiration values (goals). The goals of a consumer agent 
concerning the number of packets it assigns to a provider agent ( packetsa ) and the 
deadline it tries to arrange ( deadlinea ) is to maximize the provider agent’s load, con-
sidering its performance indicator p [packets/sec] while trying to minimize price 
( 0pricea = ). 

To value the offers it receives from a provider agent, a consumer agent needs to 
weight the three attributes’ subutilities. A user’s internal utility measurement in a 
grid scenario considers a time versus money trade-off that can be elicited by 
common methods such as the simple multi-attribute rating technique (SMART, 
see [WiEd86]) and analytical hierarchical processing (AHP, see [Saat92]). 

A grid service provider is a resource owner that frees idle resources, which then 
become grid service resources. “Freeing” resources means defining preferences 
that govern the assignment of these resources to the provider agent. The provider 
agent registers service offers with the grid carrier agent whenever the resources 
become available. Resource availability is determined by preference rules that al-
locate resources either automatically, e.g. when the resource utilization drops be-
low a pre-defined threshold, or by asking the grid service provider for feedback on 
what resources may be freed for what time. In typical peak load outsourcing sce-
narios, server load changes due to events out of control of the resource owner. To 
maintain usability and efficiency, unpredictable peak loads and idle times require 
a set of preference rules that enable provider agents to autonomously decide their 
actions (e.g. “IF CPU usage has been below 30% for 30 minutes, THEN assign 
50% of CPU for the next 10 minutes.”). Based on the resource availability pros-
pect given by such rules and the resource consumption of a single service packet, 
an agent calculates its performance indicator p [packets/sec] and its maximum 
contract duration deadliner  that limits the timeframe of service provision commit-
ments made by a provider agent.  

A provider agent dynamically recalculates its packetsr  during a negotiation, depend-
ing on its p [packets/sec] and the deadline set by the currently exchanged offer. 

pricer  represents a user’s minimum compensation claim for providing grid services. 
Since a rational provider agent wants to sell minimum packets at maximum prices 
and long deadlines, its aspiration values are set according to these goals. 
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5 Transaction Support 

5.1 Information Phase 

In the information phase, provider agents exchange advertisements with consumer 
agents via the grid carrier agent’s registry that closely relates to a UDDI registry 
when dealing with web services. Referring to the Globus Toolkit, any grid service 
publishes service data that allows both to become a stateful service (as opposed to 
web services) and to publish attributes describing the provider’s capabilities 
[Czaj+03]. When a provider registers with the grid carrier agent’s registry, it posts 
the service data that is relevant for provider selection by consumer agents. Besides 
data such as a unique identifier by which the provider’s grid service factory is ad-
dressed (factory handle) and the factory’s service deadline deadliner , an ad contains 
the service ID of the service the factory is able to instantiate. Each service ID is 
bound to a Grid Service Reference (GSR) describing the grid service’s interface. 
Based on the resource availability prospect given by the preference rules and the 
resource consumption of a service packet, a provider agent additionally calculates 
its performance indicator p [packets/sec]. The performance indicator is the key 
selection criterion for consumer agents. 
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Figure 5: Object Calls in the Information Phase 

A consumer agent in search of a specific service queries the GCA’s registry for 
the corresponding service ID and obtains a list of factory handles matching the 
query along with the performance indicators and service deadlines (see Figure 5). 
After ranking the provider list by performance indicators, a consumer agent selects 
the providers to negotiate with from the list. In the example given by Table 2, a 
consumer agent plans to distribute a divisible grid job of 10000 packets among the 
best performing providers. When first entering the agreement phase, the consumer 
agent selects the ranks 1 to 4 for simultaneous negotiation, totaling a maximum 
contracting volume of 10,243 packets. In case of unsuccessful negotiations, the 
consumer agent repeatedly selects provider agents to negotiate with by the above 
scheme until the total number of packets required by the grid job is contracted. 
Thus, we divide a multi-source allocation problem (“co-allocation”) into a se-
quence of bilateral negotiations. 
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Rank Factory 
Handle 

p [packets/sec] r [sec] Factory Max 
Packets 

Total Max 
Packets 

1 b 12.5 450 5,625 5,625 

2 g 6.5 360 2,340 7,965 

3 a 3.5 500 1,750 9,715 

4 d 3.3 420 528 10,243 

5 h 0.8 350 280 10,523 

6 c 0.3 250 75 10,598 

Table 2: Example Provider Ranking in the Information Phase 

5.2 Distributive Negotiation Phase 

In distributive negotiations, the agents are claiming value at the expense of their 
opponent (“win/lose-negotiations”). The agents use a competitive negotiation 
strategy to decide how to divide a fixed resource, i.e. how to get the most out of a 
grid service contract for themselves. The result of this distributive phase is a pre-
liminary contract that at least yields both agents’ minimum utility threshold (res-
ervation utility). Asymmetric utility distribution among two contractors indicates 
to what extent an agent has “won” or “lost” a negotiation. By using a more sophis-
ticated strategy or by exploiting a weak bargaining position of their opponent, an 
agent may gain a bigger share of the pie. 

A negotiation protocol is a transaction processing framework that contains the ba-
sic rules of the agents’ interaction. SettleBot proposes a two-phase negotiation 
protocol. The first phase (distributive phase) supports sequential alternating offer 
exchange among two agents that apply heuristic strategies to gain advantage over 
their competitors under incomplete information, i.e. private valuation functions. 
The second phase (integrative phase) aims at finding joint gains while maintaining 
the utility distribution outcome of the first phase. 
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Figure 6: Negotiation Protocol (Distributive Phase) 
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Figure 6 depicts the sequence of decisions made by the negotiating agents in the 
distributive phase. A consumer agent A that has selected a matching provider B 
initializes a distributive negotiation by generating an initial offer 

0 0 0 0A B,t t t t
1 2( , ,..., )nx x x x→ = . In subsequent rounds, the initial attribute values 0t

ix  are 
modified by an offer modification function ( )∆ π  that represents an agent’s con-
cession strategy. An agent’s strategy takes into account the agent’s knowledge 
about the user’s goals (e.g. attribute weights), knowledge about the market envi-
ronment (e.g. supply/demand ratio) and knowledge about the opponent (e.g. its 
Quality of Service-rating). All the knowledge an agent acquires by reading its sen-
sors, by preference elicitation and by communicating with the application inter-
face is summed up as its belief about the world state π . If the world state changes 
during an ongoing negotiation, the agent adapts its strategy accordingly, e.g. in-
creases or reduces its concession rate. The modification function ( )i∆ π  has the 
range [0;1] and thus ( )i i∆ ⋅ϕπ  gives the proportion of the maximum concession 

i i ia rϕ = −  currently considered strategically appropriate by the agent. Hereinafter, 
all functions referring to π  are subject to knowledge processing optimization by 
genetic optimization (see below). 

A modified attribute value offered at time t is given by 

( ) ( )0tt
i i i ix x= + ∆ ⋅ϕπ π . (2)  

The set of modification functions 

( )
0

crit

- t
( )

t ( )

i

i
t β⎛ ⎞

∆ = ⎜ ⎟
⎝ ⎠

π
π

π  
(3)  

represents aggressive (or “Boulware”), neutral and defensive (or “Conceder”) 
concession strategies. We agree with Faratin, Sierra and Jennings on the suitability 
of such strategy types in terms of individual utility maximization and allocation 
efficiency [Fara+98]. The factor ( )iβ π  determines the curvature of the modifica-
tion function and thus the strategy type. Figure 7 shows the outcome of a negotia-
tion for a grid service where the agents apply different modification strategies. In 
the example given by Figure 7, the nearly linear (neutral) modification strategy of 
the consumer agent yields higher utility than the aggressive strategy applied by the 
opposing provider agent. 

critt ( )π  is an agent’s time limit for a negotiation. If a negotiation of two agents A 
and B starts at time A B

0t
↔ , an agent A reaches its maximum concession at time 

A B A
0 critt t ( )↔ + π . If time A B A

0 critt t ( )↔ + π  has elapsed and agent A gains no more utility 
increase from new offers submitted by agent B, it terminates the negotiation. Like 

( )iβ π , the world state dependent strategy control variable critt ( )π  determines an 
agent’s negotiation stance (aggressive, neutral, defensive). An agent with a rela-
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tively short critt ( )π  shows defensive behavior by quickly spending its concession 
contingent to avoid termination by the other party. 
 

 
Figure 7: Negotiating Agents’ Modification Strategies 

The agent’s utility function is designed such that A A A A
1 2 3( , ,..., ) 1u a a a =  and 

A A A A
1 2 3( , ,..., ) 0u r r r = . An important element of a negotiating agent’s strategy is at 

what utility level a counteroffer is acceptable. Therefore, an agent determines its 
reservation utility targetu  against the current world state, using rules found by test 
runs with a genetic algorithm. Preferably, this threshold states a value such that an 
offer is not accepted if in succeeding negotiations a better result can be attained. A 
high targetu  increases the risk of termination without reaching agreement, while a 
low threshold value may waste utility which could have been attained. Along with 
other strategy control functions, the mapping function target ( )u π  is subject to ge-
netic optimization using the GeneLab simulation environment. 

The GeneLab platform simulates an agent based commercial grid and allows find-
ing heuristic negotiation strategies by a genetic algorithm (GA). There are two 
major fields of explorative simulations conducted with GeneLab, the search for 
static and for dynamic strategies. The success of a static strategy does not depend 
on the dynamically changing world state but only on its fit with the negotiation 
mechanism. The SettleBot project focuses the search for dynamic strategies that 
change the agent’s behavior depending on its perception of the world state. The 
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agent’s view of the world state is derived by processing sensor readings at run-
time. An agent’s decision core links its strategy control variables to its sensor 
readings by mapping rules that are genetically optimized using GeneLab. To get 
more representative fitness values, the GeneLab GA uses a fitness function that 
calculates agent fitness as the average utility an agent gains from several negotia-
tions. The floating point numbers representing an agent’s strategy control vari-
ables are encoded as Gray code [Pres+92] to improve numerical optimization. 
Compared to regular binary coding, Gray-encoded numerical parameters behave 
smoothly under bit mutation, thereby allowing a local stochastic search for fitness 
maxima. The agents entering the mating pool are picked from the population by 
tournament selection [GoDe91]. 
 

1

2

3

 
Figure 8: SettleBot GeneLab: Exploring Negotiation Strategies for the Commercial Grid 

Figure 8 shows a simple example of a test run with a population of 250 agents that 
aims at the optimization of the function critt ( )π  that determines an agent’s critical 
time limit depending on its world state perception π , specifically other.tcritπ , which 
is the average time limit of the other negotiating party as observed by the agent.  
The test run served to prove the suspected interdependence between an agent’s 
market power in terms of current supply and demand ratio and its defensiveness in 
terms of critt  as a strategy control variable. Chart 1 of Figure 8 shows an approxi-
mate evolutionary trend to crit other.tcritt ( ) 0.5= ⋅π π  for consumer agents when the 
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market power ratio is 7:3 in favor of the supply side (see Chart 2). The frequency 
distribution depicted by Chart 3 indicates a strong fitness dominance of consumer 
agents adjusting their critt  to half of that of their opponent. Chart 3 shows that al-
most the entire population has set their corresponding strategy factor to 0.5≈  after 
562 Generations. 

Other than critt ( )π  and target ( )u π , optimizations done with GeneLab’s GA engine 
include finding dominant mapping functions ( )ir π  and ( )iβ π . The idea behind 
dynamic reservation values ( )ir π  and dynamic concession stance ( )iβ π  is that 
rational agents are expected to concede more on less important attributes and vice 
versa. Several test runs aimed at analyzing advantageous processing rules that op-
timize ( )ir π  (strategy example given below) and ( )iβ π  depending on the attrib-
ute weights iw . Several simulations and scripted test runs in dynamically changing 
negotiation settings proved that successful agents improve their average utility by 
proportionally adjusting their ( )ir π  to the attribute weights. Our simulation results 
can be generalized by the strategy 

( )( ) i i ii ir rr a w nε= + − ⋅ ⋅ ⋅π  with ε +∈  such that (4)  

( )( ) target
1

( )
n

i i i i i i
i

u r w n uw r a ε
=

⋅ + − ⋅ ⋅ ⋅ =∑ π
 

(5)  

Thereby, the reservation value ir  of each attribute i  is shifted towards the aspira-
tion value ia , depending on target ( )u π  and the weights iw . As a result, an agent that 
generates offers according to these ir  will not fall short of its currently claimed 
utility target ( )u π  and will have more restrictive reservation values for important at-

tributes i  with 1iw n⋅ > , given that 
1

1
n

i
i

w
=

=∑ . Test runs show that the above strat-

egy performs best if the negotiating agents’ attribute weight profiles differ largely 
from each other. Tested with random attribute weights, an agent applying the 
strategy gains an average utility surplus of 16% over agents that do not modify 
reservation values according to their attribute weights. 

The result of the distributive phase is a preliminary contract that represents both 
agents’ individual bargaining success. An agent’s success varies widely depending 
on what sensor data is available and how this sensor data is processed to control 
the strategy control variables. As expected, the distributive phase performs below 
Pareto efficiency since utility functions are private knowledge and both agents act 
strictly on behalf of their own self-interest. For further improvement of the pre-
liminary contract, the agents subsequently enter an integrative phase of their nego-
tiations when preliminary agreement was reached. 
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5.3 Integrative Negotiation Phase 

The integrative phase aims at enlarging the pie, i.e. finding contract modifications 
that result in joint utility gains for both of the agents (“win/win-negotiations”). 
The goal of SettleBot’s two phased negotiation mechanism is to find Pareto-
undominated contracts by integrative negotiation while preserving asymmetric 
utility gains obtained by superior strategy in the distributive phase. We argue that 
a rational agent with a strategy to exploit its strong bargaining position does not 
opt into a negotiation protocol that aims at Pareto-efficient contracts if there is an 
alternative protocol that allows to profit on its advantageous situation at the ex-
pense of its opponent. 

In the integrative phase, the agents search for mutual improvements by exchang-
ing offers that are modifications of the preliminary contract. Therefore, an agent 
randomly modifies the preliminary contract by a Gaussian distribution, such that 
there is a high probability of minor modification and a low probability of major 
modification for each of the attributes. If an agent A finds a modification that im-
proves its utility, i.e. finds a favorable trade-off of attribute values, it sends the 
modification to its opponent B as a new contract proposal. If the offer is accepted 
by B, there’s a new preliminary contract. In any case, following an alternating of-
fer protocol, B generates the next modified contract based on the current prelimi-
nary contract until no further improvements are found. Since utility functions are 
private and none of the agents (except the “Auditor” agent used in our simulation, 
see Figure 9) knows whether the Pareto frontier has been reached, A and B need a 
suitable alternative termination rule. 1000 offer exchanges and no improvement 
has proved a feasible restriction in our simulations with the MISTRESS simula-
tion environment for the integrative phase. Pareto-undominated contracts are usu-
ally found in well below 1000 rounds (see Figure 9). 

 

 
Figure 9: Approximating the Pareto Frontier in the Integrative Phase 
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Since modifications are random and both agents’ apply neutral decision functions 
that accept a modification if there is a utility gain (see below), the expected total 
utility gain in the integrative phase is approximately equal for both agents. How-
ever, the non-deterministic nature of the integrative phase results in certain devia-
tions from each agent’s “fair utility share”. In 18 percent of the cases, the devia-
tion from the agents’ fair share exceeds 10 percent. In general however, the result-
ing contracts maintain the utility surplus the agents achieved in the first phase, 
while approximating undominated contracts (points on the Pareto frontier, see 
Figure 9). 
 

 Agent 2 
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Defensive 

∆u

p

Neutral 
∆u
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Aggressive 

Defensive 76% / 76% 26% / 95% 25% / 94% 

Neutral 95% / 26% 81% / 81% 83% / 78% 

A
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nt
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 Aggressive   94% / 25% 78% / 83% 76% / 76% 

Table 3: Utility Gains in the Integrative Phase 

Table 3 shows the average utility gains of agents applying different strategies in 
percent of the maximum possible gain. The defensive strategy accepts a new con-
tract with a non-zero probability even if there is a utility loss. Aggressive strate-
gies claim a higher utility gain than neutral strategies. We found that the neutral 
strategy outperforms the aggressive strategy at a small margin of 83/78 due to the 
aggressive strategy’s reluctance to accept small utility increases, thus there is no 
incentive to unilaterally deviate from a neutral to an aggressive strategy. Defen-
sive strategies are inferior to all non-defensive strategies. Therefore, the neutral vs. 
neutral strategy pair is a mutual best response (Nash equilibrium). 

6 Conclusion and Further Work 

The SettleBot project extends a growing body of research that applies genetic al-
gorithms to decision and negotiation support. While many research efforts focus 
decision strategies that are purely mechanism dependent, the SettleBot project 
aims at developing dynamic decision strategies. Dynamic strategies consider live 
sensor data measuring the dynamically evolving world state to reduce the down-
sides of incomplete information and to leverage unilateral knowledge gains for 
higher utility. Beginning with Axelrod’s work on strategy evolution in repeated 
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games [Axel87], related research efforts have analyzed superior decision strategies 
by evolutionary computing for both game theoretic and heuristic mechanisms 
[Dwor+96; Gerd+03; Oliv94]. 

Grid and Agent technology are increasingly regarded complementary [Fost+04]. 
Currently, both technologies emerge as a combined field of research. Besides find-
ing solutions for the technological requirements of grid markets [Czaj+02; 
Czaj+03; Fost+02], many publications focus the economic engineering of resource 
allocation mechanisms [Chel+04; Chen+02; Gagl+95; Keny02; ReNi98; Wols+01]. 

Finding applicable mechanisms for the negotiation of service level agreements 
among grid partners is just one of many problems to be solved when implement-
ing even the first stage of a commercial grid (see section 1). Besides security and 
platform compatibility issues, successful deployment of a commercial grid re-
quires monitoring and penalization of deviations from service level agreements. In 
scientific grid applications, quality of service often follows a “best effort”-
approach (soft QoS-constraints). Since “best effort-service” has near-zero eco-
nomic value [Chel+04], there must be hard guarantees on quality of service in a 
commercial grid. Therefore, several research efforts aim at developing grid archi-
tectures that allow monitoring of hard QoS-constraints agreed upon by the con-
tracting parties. We propose a reputation mechanism to enforce the contractors’ 
compliance with the service level agreement. In the SettleBot system, compliance 
data may be logged and published by the grid carrier agent. Negotiating agents 
may query the grid carrier agent for another agent’s QoS-ratio q , i.e. the percent-
age of past transactions properly settled. In the information phase, another agent’s 
QoS-ratio may serve as an additional ranking/selection-criterion. For example, a 
consumer agent A ranks a provider agent B by its expected performance 

B B B( )E p q p= ⋅  [packets/sec]. In the agreement phase, we expect Bq  to have a 
distinct impact on a rational agent’s behavior when presented to the agent as an-
other knowledge bit forming input to its negotiation strategy. 

As yet, we do not apply dynamic strategies in the integrative phase. However, we 
are working on a model based on a probabilistic Bayes tree that allows an agent to 
estimate its opponent’s goals by analyzing another agent’s behavior in the dis-
tributive phase. The resulting estimated goal model allows improved offer genera-
tion in both the distributive and the integrative phase. 

Our future overall research goal is to propose a generic knowledge driven strategy 
for the commercial grid. To achieve this, we will analyze the strategic implications 
of information availability (reputation data, forecasts, trade history, opponent log) 
and its impact on welfare and individual success in the grid economy. 
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