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ABSTRACT  

In The extensive growth of computing networks and tools and tricks for intruding into and attacking networks has 

underscored the importance of intrusion detection in network security. Yet, contemporary intrusion detection systems (IDS) 

are limiting in that they typically employ a misuse detection strategy, with searches for patterns of program or user behavior 

that match known intrusion scenarios, or signatures.   Accordingly, there is a need for more robust and adaptive methods for 

designing and updating intrusion detection systems. One promising approach is the use of data mining methods for 

discovering intrusion patterns. Discovered patterns and profiles can be translated into classifiers for detecting deviations from 

normal usage patterns. Among promising mining methods are association rules, link analysis, and rule-induction algorithms. 

Our particular contribution is a unique approach to combining association rules with link analysis and a rule-induction 

algorithm to augment intrusion detection systems.  

Keywords  

Data mining, intrusion detection, pattern discovery, rule-induction algorithms, link analysis 

INTRODUCTION 

An intrusion can be defined as any collection of actions that threaten the integrity, confidentiality, or availability of a network 

resource. Internet-based global computer systems are increasingly vulnerable to malicious intrusion and related cyber threats 

because of the high interconnectivity among systems worldwide (Banzhaf, Nordin, Keller, & Francone, 1998; Kumar, 

Srivastava, & Lazarevic, 2005). Increased globalization and lack of virtual borders make it difficult to assign responsibility 

and accountability for intrusion prevention (de Borchgrave, Cilluffo, Cardash, & Ledgerwood, 2001; Kumar, et al., 2005). 

Such attacks can lead to a loss of physical or digital assets, money, consumer confidence, national security, and even life 
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(Hansen, Lowry, Meservy, & McDonald, 2006). The unprecedented growth in malicious intrusions worldwide is 

underscoring the importance of developing effective methods for forensic detection of intrusions (Han & Kamber, 2006).  

According to Han and Kamber (2006), contemporary intrusion detection systems (IDS) are limiting in that they typically 

employ a misuse detection strategy, with searches for patterns of program or user behavior that match known intrusion 

scenarios, or signatures. Generally, these hand-coded signatures are provided by the laborious work of human experts and 

require a human security analyst to investigate the alarms and to determine what action should be taken. The development of 

automated or semi-automated methods to support these tasks is fundamental and is the motivation for the study reported here.  

The discovery of clusters via association rules as the basis for link analysis, and subsequent rule-induction in intrusion 

forensics, has not been studied before. We provide proof of concept by examining a set of disguised intrusion data secured 

from a large financial institution.  

BACKGROUND 

Several studies have explored the use of association rules as a standalone method for intrusion forensics. Abraham and de Vel 

(2002) consider the use of association rules in investigative profiling. They use an association-mining algorithm, M2IS-c, to 

generate rules from Linux wtmp log files.  

Lee, Stolfo, & Mok (1999) propose a data mining framework for intrusion-detection forensics, which considers three 

approaches to intrusion-detection rules: classification, association rules, and time-related episodes. These authors also suggest 

combining rules developed from multiple data sets and present some motivating examples of how the rules can work 

together.  

Nanopoulos, Katsaros, & Manolopoulous (2001) devise a system (MADAM ID) to mine audit data as input to automated 

models for intrusion detection. This method uses data mining techniques to process system audit records in order to detect 

patterns for defining rule sets. 

Link analysis by itself has been used as an analytical tool across a broad range of applications, including detecting terrorist 

threats, retrieving and classifying Web pages, detecting nuclear proliferation, analyzing transportation routes, detecting 

money laundering, and finding previously undiscovered medical knowledge (Jensen & Goldberg, 1998). While we were 

unable to find documented applications of link analysis to intrusion forensics, the Financial Crimes Enforcement Network 

(FinCEN) (Goldberg & Senator, 1995) is a well known system that uses standalone link analysis in detecting money 

laundering. The complexity of this domain in disentangling multiple stages of money transfer, exposing the structure and 

operation of organizations, and characterizing the roles of certain entities in the network, are similar to the complexities 

found in intrusion forensics.  

Research by Li et al. (2005) report on the use of a machine learning algorithm (C4.5) to induce rules from data generated by 

the Abnormal Border Gateway Protocol (BGP). Abnormal BGP events such as attacks, misconfigurations, or electricity 

failures can cause anomalous or pathological routing behavior and must be detected in their early stages. The rules of 

abnormal behavior that were learned were successfully applied to two case studies. A literature search suggests that there is 

ongoing interest by the research community in the use of data mining to aid in computer intrusion forensics (Qiu, Bao, & 

Zhu, 2009, Goel, 2009, Masud, Khan, Thuraisingham, Wang, Liu and Zhu 2009, and Weerasinghe, 2009). 

While these methods used alone have value, in the case of intrusion forensics, where we must deal with entity properties as 

well as behavioral data, we propose that a tandem of association rules, link analysis, and machine learning adds robustness to 

the process. In support of this conjecture, we first introduce the fundamentals of these methods. We then show how they can 

provide a robust analytical platform for intrusion forensics. 

Association Rule Fundamentals 

Let },...{ 1 kvvV =  be a collection of k  attribute values (e.g., Attribute = timeOfDay, Attribute value= 12:00). Denote the 

task-relevant data as a set of database transactions where each event E is a set of events such that VE ⊆ . We can associate 

each event with an identifier TID. If J is a set of values, V contains J if and only if VJ ⊆ . An association rule is an 

implication of the form:  

φ=⊂⊂⇒ KJandVKVJwherecsKJ I,,),,(:      

The intuitive meaning of such a rule is that events in the database that contain the items in J tend to also contain the items in 

K. The letters s and c denote support and confidence percentages for the rule, where support s specifies how frequently the 
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items in J and K occur together; and confidence c is the conditional probability P(K|J), where the probability P(x) is 

estimated using the support percentage of the set x. For example, the rule  

R lanAd between am and pm

and Scan valid

:( min) ( ) { }

( log ) ( ) ( %, %)

employeeType and timeOfDay

application access  

=

= ⇒ =

8 5

15 70
 

asserts that when the employee type is lanAdmin, the time of day is between 8 a.m. and 5 p.m. and the application is logScan. 

Then the likelihood that access is valid is 70 percent, with 15 percent of the total records supporting this claim.  

This capability allows the building of rule sets that describe behavioral data. These rules typically describe the behavior of 

people or the operation of specified systems. Often in computer forensic investigations, the necessary information can be 

found in log files on computer systems. The rule sets derived from this data can be considered to describe profiles inherent in 

the data set.  

RESEARCH METHODOLOGY  

Our research methodology is outlined in Figure 1, which commences with an initial set of association rules derived from 

forensic data. This is followed by a link analysis (Jensen & Goldberg, 1998) to determine the strongest relationships. This, in 

turn, facilitates refinement of the association rules to strengthen analysis.  

 
Figure 1. Use of Association Rules in Forensic Analysis 

Data  

Referring to Figure 1, we commenced with a disguised data set provided by a large financial institution. The dataset was 

comprised of 50,000 instances from extracted from audit logs of entities within their organization. The set included intrusion 

profiles that had actually occurred, augmented by those that were captured by honey pot strategies. The attributes of each 

instance included user (factual) variables (U
i
) and behavioral variables (B

j
).  

While the data was disguised, we can offer some insight into to the type of data by describing several example attack vectors, 

which are associated with authentication credential theft. These vectors include 

  Horizontal Credential Guessing 

Vertical Credential Guessing 

Malware: Keystroke Logging 

Social Engineering: Phishing 
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Social Engineering: Phishing: Man in the Middle 

Ethernet Communications Intercept: CAM Table Flooding 

Ethernet Communications Intercept: ARP Spoofing 

Horizontal Credential Guessing is a technique for obtaining credentials to a system by attempting to authenticate to every 

user account using a predetermined password list, typically limited to a few commonly used passwords. Where account 

lockout mechanisms are implemented, the number of guesses per account will typically be set to one below the lockout 

threshold. Where user ids are not public, valid ids may be harvested through error messages presented during the logon or 

enrollment process. If user ids cannot be enumerated, a common user id list may be used in the attack. The attack may be 

executed manually or by using automated tools such as Hydra and Brutus.malware.  

Vertical Credential Guessing is a technique for obtaining the password for a known account by repeatedly authenticating to 

the account using a large dictionary of passwords (dictionary guessing attack). One may also attempt to discover the 

password by attempting to authenticate with all possible password values (brute-force guessing attack). 

Malware is malicious software designed to cause harm to or compromise a computer system. It is typically installed 

surreptitiously on a system through exploitation of a security hole (via worm or virus) or by deceiving the user into installing 

the software using social engineering techniques (Trojan software). Malware is also often installed through a dropper 

program, also originally installed through exploitation of a security hole or through social engineering techniques. 

Phishing is a low-cost attack vector that provides a high return. The risk to the adversary in staging the attack is minimal 

because the attack is staged from the Internet and can be easily hosted on a compromised system, making successful pursuit 

of the adversary difficult. Phishing attacks are most commonly identified by vigilant users who notify the owner of the 

compromised brand about the malicious site. Because of the delayed identification and take-down of phishing sites, many 

users have likely been compromised prior to take-down. 

Man in the Middle Phishing employs social engineering techniques to lure users to a proxy controlled by the adversary. The 

adversary lures users to his site by email or instant message. Established in between user and trusted site communications, the 

adversary can intercept communications and execute unauthorized transactions within the session. 

Content Addressable Memory (CAM) tables reside in memory on network switches and store the MAC address, VLAN 

assignment, and the associated physical switch port of each system connected to the switch. In normal operation, the switch 

sends traffic to the physical port associated with the MAC address specified in the Ethernet frame. An adversary can attempt 

to intercept traffic on the switched network by filling the CAM table with unique MAC addresses using faked gratuitous ARP 

messages, causing the switch to broadcast all traffic to all switch ports. 

ARP Spoofing is a technique that can be used to intercept communications on a switched Ethernet subnet. The adversary 

conducts the attack by sending spoofed gratuitous address resolution protocol messages to the target systems that advertise 

his own MAC address as being associated with the IP address of the system or systems for which the adversary intends to 

intercept communications. By doing so, all systems that received the spoofed ARP information will send information to the 

adversary’s system rather than to the actual systems that were spoofed. Tools for facilitating this attack include Arpoison, 

ettercap, and parasite. 

A file stealer, a type of malware, is malicious software that may be used by an adversary to steal files from a compromised 

system.  

Example rules derived from this data might include these: 

• If vertical credential guessing and horizontal credential guessing are evidenced with medium to high detection 

risk, then the likelihood of attack is high and the expected loss is medium. 

• If a file stealer is detected, or if CAM Table Flooding and ARP Spoofing are evidenced, with low detection risk, 

then likelihood of successful attack is low to medium and the expected loss is low. 

• If keystroke logging is detected with medium to high detection risk, then the likelihood of successful attack is 

high and the expected loss is high. 
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Association Rule Algorithm 

The generalized rule induction (GRI) algorithm we use is novel in that it not only learns rules for a given concept 

(classification), but it concurrently learns rules relating to multiple concepts (Sarawagi, Thomas, & Agrawal, 2000). This 

type of learning is considerably more general than other existing algorithms. A key feature is the use of an information 

theoretic measure that quantifies the information content of a rule.  

Importantly, the GRI algorithm can help assess the level of interest of derived rules. Some generated rules differentiate 

relationships in the data better than other rules. Simple rules that are easily understood may be better than complex rules that 

over-fit the data. Using an information-theoretic view, the confirming information is more important if an event is rare. 

Useful rules also tend to be very dissimilar among themselves (Smyth & Goodman, 1992). The GRI literature evaluates those 

differences as the interestingness of the rule (Aggelis & Christodoulakis, 2003; Chen, Han, & P., 1997; Freitas, 1999; 

Hilderman, Hamilton, & Barber, 1999). Formally, GRI measures interestingness using a J-measure (Smyth & Goodman, 

1991), which maximizes the trade-off between simplicity and goodness-of-fit for any rule. Using both the a priori and a 

posteriori probabilities, the J-measure facilitates the comparison and ranking of competing rules, allowing efficient pruning 

of the possible rule set.  

The GRI algorithm has several advantages: (a) it can work with both numeric and symbolic inputs; (b) information theoretic 

bounds help prune the search space; and (c) it has many desirable mathematical properties (including limiting properties).  

ANALYSIS 

Association Rules 

Following the strategy outlined in Figure 1, we initially applied the GRI algorithm to discover associations that exist among 

the behavioral variables. These results are illustrated in Table 1. Inspection shows that the confidence level is highest (97 

percent) for the occurrence of B2, B5, and B6 together as antecedents, with B3 as a consequent. A 97 percent confidence 

level indicates that when the antecedents are true in the data set, B3 occurs in 97 percent of those instances. This outcome is 

supported by 3 percent of the instances in the database. Likewise, rule 14 asserts that when antecedent B6 occurs, it will have 

consequent B5 with a 58 percent confidence. This is supported by 29.3 percent of the instances in the database. The 

remaining association rules are interpreted similarly.  

Instance Support Confidence Consequent Antecedent 1 Antecedent 2 Antecedent 3 

1 3.00 97 B3 B2 B5 B6 

2 3.10 94 B5 B2 B3 B6 

3 4.00 90 B3 B4 B5 B6 

4 4.50 89 B6 B1 B3 B5 

5 3.30 88 B6 B2 B3 B5 

6 16.70 87 B5 B3 B6  

7 4.60 87 B5 B1 B3 B6 

8 17.00 86 B3 B5 B6  

9 4.70 85 B3 B1 B5 B6 

10 17.30 84 B6 B3 B5  

11 6.00 68 B3 B4 B6  

12 4.70 66 B3 B2 B6  

13 7.50 59 B3 B4 B5  

14 29.30 58 B5 B6   

15 8.50 58 B1 B6 B8  

16 30.20 57 B3 B5   

17 30.30 57 B5 B3   

18 30.20 56 B6 B5   
19 30.30 55 B6 B3   
20 8.90 55 B8 B1 B6  

Table 1. Association Rules for Behaviors 

For the purposes of this paper, we set a confidence threshold of 50 percent, meaning that rules generating lower confidence 

levels were excluded from consideration. This raises the question of choosing the appropriate confidence threshold; the 

answer to which may be context dependent. That is to say, if a very large set of association rules is being generated, the level 

of confidence can be increased. If there are very few rules, this measure can be decreased.  
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Continuing with the analysis, notice that rule 16 shows B5 as an antecedent for the consequent B3, and rule 17 shows that B3 

is an antecedent for consequent B5. Intuitively, this suggests a possible strong affinity between these two behaviors. 

However, even though this type of visual inspection can be useful, it can also be fraught with error and misinterpretation, 

particularly when there is a large set of association rules or several antecedents in most rules. A more reliable method of 

analyzing raw association rules, such as shown in Table 1, has been developed and termed link analysis (Jensen & Goldberg, 

1998). 

Refining Results with Link Analysis 

The volume of data in forensic computing, which includes behaviors plus associations, can be daunting to analyze; yet the 

amount of relevant data may be small. Here, we use link analysis to aid this refinement. In simple terms, link analysis 

combines the association rules with visualization. In particular, link analysis explores associations among the behaviors and 

generates a graphical model of those behaviors. Strong two-way, three-way, and n-way relationships can be reliably 

identified.  

For this study, link analysis results are depicted in Figure 2. Here, the bold links (weighted graph) facilitate immediate 

identification of the strongest affinities among user behaviors. It is straightforward to identify B1 and B8 as having a strong 

mutual affinity. It is also evident that there is a strong three-way affinity among B3, B5, and B6. Such information provides 

the foundation for refining our analysis. Having identified those associations that exhibit the strongest affinities, we use GRI 

to discover association rules that connect the strongly linked behavior profiles with user profiles, thereby generating forensic 

evidence on what type of user profile is most closely associated with those behaviors.  

For reference, we will label the strong behavior profiles as BP1 and BP2, respectively. GRI includes capability for creation of 

nodes for behavior modules, which can then be computationally associated with user profiles.  

 

Figure 2. Weighted Graph of Associations 

A question arises concerning which of the two profile types should be used as antecedents and which should be used as 

consequents. From a forensic perspective, the motivating interest is in the formal computation of user profiles and associated 

behavior profiles; thus, the direction may not be critical. Conventionally, however, behaviors are used as consequents, and 

user profiles are used as antecedents.  

 We label the {B1, B8} profile as BP1 and label our {B3, B5, B6} profile as BP2. GRI computation yields association rules 

between BP1, BP2, and user profiles as shown in Table 2. Observe that there are twelve rules that associate BP1 and BP2 

with specific user profiles, along with their support and confidence measures. Consider, for example, rule 1. When its 

antecedents are satisfied, there is a likely (90 percent confidence) consequent of BP1. This result is supported by 2 percent of 

the cases in the forensic data set.  
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Instance Support Confidence Consequence Antecedent 1 Antecedent 2 Antecedent 3 

1 0.50 100.00 BP1 U2 = TTYPE2 U6 > 16.500 U5 >14.850 

2 0.30 100.00 BP2 U2 = TTYPE2 U4 U5 < 10.750 

3 1.40 93.00 BP2 U5 < 10.750 U3  

4 2.00 90.00 BP2 U2 = TTYPE2 U5 < 12.550 U3 

5 3.30 88.00 BP2 U2 = TTYPE1 U3 U5 < 16.850 

6 6.30 86.00 BP2 U2 = TTYPE3 U3 U5 < 16.950 

7 16.50 84.00 BP2 U3 U5 < 16.950  

8 7.50 81.00 BP2 U3 U4 U5 < 16.950 

9 6.90 81.00 BP2 U2 = TTYPE2 U3 U5 < 16.650 

10 0.90 78.00 BP1 U2 = TTYPE3 U3 U6 < 16.500 

11 0.70 71.00 BP2 U4 U5 < 10.750 U6 < 31.500 

12 0.70 71.00 BP2 U2 = TTYPE3 U5 < 10.650  

13 2.00 70.00 BP1 U3 U6 > 16.500  

14 1.00 70.00 BP1 U2 = TTYPE1 U6 < 17.500  

15 3.80 63.00 BP1 U6 > 16.500   

16 2.60 58.00 BP2 U5 < 10.750   

17 1.30 54.00 BP2 U4 U5 < 10.750  

18 4.20 52.00 BP1 U2 = TTYPE2 U3 U6 < 23.500 

19 5.20 50.00 BP1 U2 = TTYPE3 U6 < 19.500  

20 3.60 50.00 BP2 U2 = TTYPE2 U5 < 12.550  

Table 2. Rules Associating BP1 and BP2 with User Profiles 

To give this context, consider BP1. Suppose that in our BP1 profile {B3, B8}, the following behaviors were represented.  

B3: ARM and CRM activity  

B8: vertical or horizontal credential guessing;  

and that the user attributes (Ui) included  

 U2: source host  

 U5: number of root accesses  

 U6: number of service requests  

rule 1 would then specify that when the user facts consist of source host = TTYPE2, number of root accesses > 16.50, and 

number of service requests > 14.85, then there is evidence that the of ARM and CRM activity and vertical or horizontal 

credential guessing.  

Similarly, rule 7 would be interpreted as the following: When the antecedents are satisfied, there is an 84 percent confidence 

of affinity with BP2. This is supported by 16.5 percent of the instances in the data set.  

The analysis can be enriched if these profiles are put into predictive models, which can extend forensic analysis into the 

realm of prediction and prevention. One such option is discussed next. 
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Predictive Model Extension  

The procedures described above have produced information that can be input to a rule-induction algorithm, which yields 

models whose generalization capability can be tested. Association rules do provide some information on likelihood in the 

form of confidence and support measures, yet the rules are typically based on the entire data set and provide little information 

as to how well they may generalize to predicting behavior. In consequence, we selected a rule-induction algorithm, C5.0, 

whose rule-based output is well suited to representing profiles in an intrusion detection system.  

We applied k-fold cross-validation methods as a means of estimating reliable prediction errors for our models. Cross 

validation directly estimates the out-of-sample error: 

   ))](,([
^

XfYLEErr =  

The out-of-sample error is the generalization error when the estimator )(
^

Xf is applied to an independent test sample from 

the joint distribution of X andY . We divided the training sets at random into k distinct segments, or folds. We then trained 

each model using data from k-1 of the folds and tested performance using the remaining fold. This enables use of a high 

proportion (1-1/k) of the available data to train the models, while making use of all data instances in evaluating the cross-

validation error.  

Determining the appropriate value for k is not immediate. Ideally, we would use the smallest number of folds producing a 

stable estimate of error. In the absence of such knowledge, Hastie, et al. (2001) present evidence that five- or ten-fold cross-

validation is a good compromise. Mitchell (1997) suggests using ten-fold cross validation for data sets of over n=100 and 

leaving one-out (k=n) for sample sets from data sets of size less than 100.   Accordingly, we select k = 10 and apply the 

following algorithm: 

Procedure: k-fold cross validation  

i. Randomize the instances in the data set 

ii. Divide the training set into k equal parts of size n 

iii. Do i=1 to k times 

Call the ith set of n instances the validation set and set it aside. Train the system on the 

remaining k-1 sets; test the trained model on the validation set and record the performance. 

Clear memory of the learned model. 

iv. Calculate the average performance over the k validation tests. 

The predictive results for BP1 are shown in Figure 3. The rule is shown in decision-tree form. The accuracy level of 94 

percent suggests that this rule may be a reasonably good candidate for inclusion to an update of an intrusion detection system. 

It can also be useful in assessing the likelihood that an act of malfeasance was committed by a particular suspect. Of course 

this leaves six percent as false positives, which for large-traffic systems can lead to costly investigations of false alarms. 

While outside the scope of our work here, if false alarms are to be avoided, the cutoff for classifying an event as an intrusion 

could be increased in the rule induction model, thereby reducing false alarms, but at the cost of reducing accuracy in 

predicting actual alarms.  
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Figure 3. BP1 Boosted Decision Tree from C5.0—Cross-Validation Accuracy 94% 

DISCUSSION 

The objective of this research was to develop a rigorous methodology for mining association rules in support of the 

investigative pattern requirement of forensic computing. Clearly, reliable patterns can provide valuable support for computer 

and intrusion forensics by facilitating the search for offenders and their behaviors.  

We denoted an offender profile as having two components: a factual profile and a behavioral profile. In our study, BP1 and 

BP2 were found (using link analysis) to be the most important behavioral profiles. Based on these profiles, refined 

association rules were computed, which defined affinities between behavioral profiles and user templates (U1 through U6).  

GRI was used to discover an initial set of raw association rules, which were then refined based on the strength of affinities 

evaluated with link analysis. The resulting behavioral profiles were useful in computing refined association rules that related 

behavioral profiles to user templates. These association rules enabled immediate extension to a C5.0 predictive model, which 

facilitated the measuring of generalization reliability of the resulting rules. In terms of application, it is useful to note that this 

process requires very little user interaction.  

CONCLUSION 

Computer forensics is the field of forensic science that deals with digital crimes, or crimes that involve the use of computers. 

Critical to an effective and well-reasoned trail of evidence is the discovery of patterns or associations that are represented in 

the digitally recorded data. Such associations can find a variety of useful contexts. 

This study investigated forensic data mining using a combination of association rules, link analysis, and rule induction. 

Conceptual foundations of this approach were presented and illustrated on intrusion data supplied by a large financial 

institution.  
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