View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by AIS Electronic Library (AlSeL)

Association for Information Systems

AIS Electronic Library (AISeL)

Americas Conference on Information Systems

AMCIS 2000 Proceedings (AMCIS)

2000

[nvestigating Computer Self-Efficacy with Students
in COBOL Programming

Michael A. Chilton

Southwest Missouri State University, mac927f@mail.smsu.edu

Cynthia K. Riemenschneider

University of Arkansas, criemen@comp.uark.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

Recommended Citation

Chilton, Michael A. and Riemenschneider, Cynthia K., "Investigating Computer Self-Efficacy with Students in COBOL
Programming” (2000). AMCIS 2000 Proceedings. 232.
http://aisel.aisnet.org/amcis2000/232

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

https://core.ac.uk/display/301347001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/232?utm_source=aisel.aisnet.org%2Famcis2000%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

I nvestigating Computer Self-Efficacy with Studentsin COBOL Programming

Michael A. Chilton, CIS Department, SW Missouri State University, mac927f @mail.smsu.edu
CynthiaK. Riemenschneider, CISQA Department, University of Arkansas, criemen@comp.uark.edu

Abstract

The theory of self-efficacy (Bandura, 1982) has been
used in the field of Information Systems to test its
predictive nature of computing outcomes (Compeau &
Higgins, 1995, Gist, Schwoerer & Rosen, 1989; Murphy,
Coover & Owen, 1989). It has been shown to be a
successful measure of performance and indeed, is now
perceived as a “practical indicator of student computer
competency” (Karsten & Roth, 1998). This study
attempts to further quantify and qualify such a measure
and investigates the degree to which self-efficacy can be
manipulated. Additionally, it has been traditionally
thought that programming maintenance is more difficult
when a programmer must modify someone else's program
rather than his or her own. This study also investigates
this phenomenon within the context of self-efficacy.
Findings show that self-efficacy is an important indicator
of outcome performance and that it can be artificialy
manipulated. Some surprising results occurred when
students were asked to modify someone else’s code.

Introduction

Self-efficacy has been used in studies in information
technology (e.g., Igbaria & livari, 1995, Compeau &
Higgins, 1995) to investigate the effects of perceived self-
efficacy on computer usage. Compeau & Higgins (1995)
developed a measure for computer self-efficacy.

Programming maintenance is a large part of the IS
budget, comprising anywhere from 40 to 75% of it
(Vessey & Weber, 1983). It is largely assumed that a
programmer who must modify someone else’s code faces
a more daunting task than one who writes the code from
scratch simply because the programmer must now first
decipher the original programmer’s code and then modify
it. Had the code been hig'hers in the first place, the time
to modify it should be much less.

Given these two concepts—the effects of self-
efficacy on task completion and the difficulty of
programming maintenance—the current study attempts to
gain some insight into these two areas. The resulting
experimental design was a 2 x 2 factorial Analysis of
Variance in which two experimental groups received a
single manipulation (either for self-efficacy or having to
modify another person’s code) and one group received
both. The model is shown in figure 1. The purpose of
this study is to measure the effects of such manipulations
on outcome performance.

1065

No Control
Manipulation Group Treatment 1
Self-efficacy
Manipulation | Treatment 2 Treatment 3
No Switch Switch
Program Modification
Figure 1
Hypotheses
The research model depicts four basic groups
consisting of those students who received no

manipulation for self-efficacy or program complexity (the
control group), those who received either a manipulation
for self-efficacy or were required to modify someone
else’s program (treatment groups 2 and 3) and those who
received both treatments (treatment group 4). Additional
tests were run to investigate the effects of gender, age,
programming experience and instructional technique.
The last comparison was necessary because there were
two instructors among the four classes participating in the
study.

Hypotheses are based on social cognitive theory. This
theory would suggest that those who had higher self-
efficacy would perform better than those with lower
amounts. Whether self-efficacy can be manipulated and
whether the subsequent change has an effect is the
research question posed here. Additionally, for those
students required to modify someone else’s code,
experience would suggest that these students would have
more difficulty and produce code whose quality is not as
high had they produced it themselves from scratch. The
hypotheses are shown below.

H1: COBOL students with greater self-efficacy will write
programs of higher quality than COBOL students with
significantly lower self-efficacy.

H2a: Self-efficacy of student COBOL programmers can
be artificialy inflated using a written accolade.

H2b: Students whose self-efficacy has been artificialy
inflated will write higher quality programs.

H3: COBOL students who must modify someone else's
program in a fixed amount of time will write lower
quality programs.

Resear ch Design

Sixty-nine students from four programming courses
were selected and randomly assigned to one of four
groups. There were two classes of introductory COBOL
programmers and two classes of advanced. There were
also two classes instructed by one person and two classes
instructed by another. Due to logistic and communication
problems, one class was eliminated. The first step in the
research was to administer the computer self-efficacy
instrument to provide a baseline score for each subject.
The experiment was conducted late in the semester (the
13" and 15™ weeks of a 16 week semester) so that
students had a chance to acquire some skills in
programming and therefore have a better basis to judge
themselves. Students were then assigned a computer
program as part of the normal learning process and given
two weeks to complete it. They were not allowed to seek
outside help nor collaborate with each other in the writing
of the program. On the due date, the programs were
collected and graded. Two researchers performed
additional checks to more precisely measure the quality of
coding. The programs were then returned to the students
along with a note from the grader. The note for the
control groups was a simple explanation of how the grade
was computed. The note for the treatment groups
included a complimentary statement regarding the quality
of their program (regardless of the actual quality). After
receiving their programs, a second measurement of self-
efficacy was obtained. Another programming assignment
was then made that was a modification to the one just
returned. Although not a difficult program modification,
it was also non-trivial. The control groups were allowed
to retain and modify their own programs (no switch), but
the treatment groups were randomly assigned someone
else's program to modify (switch). Students were not told
whose program they were to modify, and so only those
who received their own programs back actually knew.

M ethodology

First, the demographic information regarding the
participants is reported. The average age of the
participants was 23.7 years with a standard deviation of
6.4. The youngest respondent was 19 and the oldest was
55 years. Forty of the participants were male and 29 were
female. The sample was split fairly evenly between the
two instructors; one instructor taught 35 students and the
other taught 34 students. Twenty-three of the students
were taking advanced COBOL and 46 were taking
introductory COBOL.

Second, a comparison of the groups was made to see
if there was a difference between the groups based on the
instructional style. A series of t-tests were conducted to
determine if there was a difference in the groups assigned
to each instructor. The results of the t-tests are shown in
Table 2. There were no significant differences between
the two groups based upon the instructor. An additional

1066

comparison was made between the groups to see if there
was a difference based on the level of the course the
student was taking-either introductory or advanced
COBOL. Table 3 shows the results of these comparisons.
The significant differences between the two groups were
the number of months of COBOL programming
experience and the self-efficacy scores at both time 1 and
time 2. The difference in the number of months of
COBOL programming experience was expected to be
significant since students in the advanced classes had a
full semester more of experience than those in the
introductory classes. This supports the theory that
personal experience is an important source of self-
efficacy evaluation.

Analysis

To test the hypotheses, several techniques were used.
Two multivariate regressions for time 1 and time 2 were
performed in order to test hypothesis 1. Should this
hypothesis be true, we would expect to see significance in
each coefficient of determination (r?) and a significant
coefficient for the self-efficacy independent variable. We
included instructional technique and class level as
additional independent variables, but did not expect these
variables to significantly contribute to the model. The
regression at time 1 was significant with a p-value < 0.05
as shown in Table 4, and as expected, the only
independent variable coefficient that was significant was
the efficacy score at time 1. Thus, at time 1 the student’s
self-efficacy score was a predictor of hisher
programming assignment score. At time 2, however, the
regression model was not significant and none of the
independent variables contributed to the variance of the
students' programming assignment score.

In order to test hypothesis 2a, a t-test was conducted
to see if there was a significant difference in the self-
efficacy score at time 2 between those students who had
received the manipulation and those who had not. The
results are reported in Table 5. The students who received
the manipulation had a significantly higher self-efficacy
score at time 2, thus lending support for hypothesis 2a,
that the self-efficacy of student COBOL programmers can
be artificialy inflated using a written accolade.
Hypothesis 2b was tested by a multi-phase approach.
First, a t-test was performed to determine if there was a
difference in the programming assignment 2 score for
those subjects who had received the manipulation and
those who had not. These results are shown in Table 6.
There was not a significant difference between the
programming assignment 2 scores for those that had been
manipulated and those that had not. Further analysis was
done to see if there was a difference between the first and
second self-efficacy scores of the students who had
received the manipulation. A paired difference t-test was
performed; overall, the mean efficacy score at time 2 was
higher than time 1 for those who were manipulated, but it
was not significantly higher. A paired difference t-test

was performed to compare the self-efficacy scores for
those students who did not receive the manipulation.
Again, there was no significant difference.

To test hypothesis 3, a t-test was conducted to
determine if there was a significant difference in the
programming assignment 2 score for those students who
had to modify someone else’s program (switch equals
yes) versus modifying their own program. The results are
reported in Table 7 and they indicate there was a
significant difference between the scores. Surprisingly,
however, the significance is not in the direction we
hypothesized. The students who modified someone else’s
program had a higher mean score than those who
modified their own programs.

Some additional analyses were performed to see if
there were any gender differences in the efficacy scores or
in the programming assignment scores. Table 8 gives a
summary of the t-tests that were performed. No
significant differences between the males and females
were found in any comparison.

Discussion

This study provided some very interesting findings.
First, an individua’s self-efficacy can initialy be a
predictor of hig’her ability to write COBOL programs as
indicated by our findings regarding time 1 in the test of
hypothesis 1. It is difficult to conclude here that
hypothesis 1 is sustained, however, because of the non-
significant outcome at time 2. Because one class was
eliminated from the study, the sample size became
reduced to the point that this may have affected these
findings. Additional effort is planned for this study to
further investigate this result.

Second, it was found that it is possible to manipulate
an individua’s self-efficacy based upon positive written
feedback. Those students who received manipulation had
a higher mean self-efficacy score than those who did not
receive manipulation. This is an essential finding
regarding the importance of giving positive feedback to
students to help them increase their confidence in their
abilities to perform programming assignments. This is
particularly applicable to academicians facing the
challenges of teaching larger numbers of students in
courses that may have traditionally been smaller in size
due to the subject matter or nature of the course.
Instructors can influence a student’s computer self-
efficacy by providing positive comments regarding
programming assignments. Admittedly, this may not
ultimately affect the programming assignment score based
on the results of this study. However, since the findings
regarding hypotheses 2a and 2b were conflicting, we are
in the process of collecting additional data to increase our
sample size and rerun the statistical analyses.

The surprising result regarding hypothesis 3 was the
direction of the statistical significance. Those students
who were required to modify someone else’s program
ended up with a higher mean score than those who

1067

modified their own programs. One possible explanation
for this finding is that the student who modified someone
else’s program expected to expend more time and effort
since the program was not hisher initial creation.
Therefore, these students over-compensated for the
experimental treatment of the researchers and out-
performed those who were modifying their own
programs. Again, additional data is being collected to
further investigate this phenomenon.

The lack of significant difference between the males
and females was consistent with prior research. Karsten
and Roth (1998) aso used predominantly traditional
students and did not find any significant difference in
computer self-efficacy based on gender.

References

Bandura, A. “Self-efficacy Mechanism in Human
Agency,” American Psychologist, (37:2), 1982, pp. 122-
147.

Bandura, A. Self-efficacy: The exercise of control. New
York: W.H. Freeman & Co., 1997.

Compeau, D. R. and Higgins, C. A. “Computer Self-
Efficacy: Development of a Measure and Initial Test,”
MIS Quarterly, (19:2), June 1995, pp. 189-211.

Cronbach, L. J. “Coefficient Alpha and the Internal
Structure of Tests,” Psychometrica, (16), 1951, pp. 297-
334.

Gist, M.E., Schwoerer, C., and Rosen, B. “Effects of
Alternative Training Methods on Self-efficacy and
Performance in Computer Software Training,” Journal of
Applied Psychology, (74:6), 1989, pp. 884-891.

Igbaria, M. and livari, J. “The Effects of Self-efficacy on
Computer Usage,” Omega International Journal of
Management Science, (23:6), 1995, pp. 587-605.

Karsten, Rex and Roth, R. “Computer Self-Efficacy: A
Practical Indicator of Student Computer Competency in
Introductory IS Courses,” Informing Science, (1:3), 1998,
pp. 61-68.

Lientz, B. P., Swanson, E.B. and Tompkins, G.E.
“Characteristics of Application Software Maintenance,”
Communications of the ACM, (21:6), 1978, pp. 466-471.

Murphy, C. A., Coover, D. and Owen, S.V.
“Development and Validation of the Computer Self-

efficacy Scale” Educational and Psychological
Measurement, (49), 1989, pp. 893-899.

Nunnally, J. Psychometric Theory. New York:
McGraw-Hill, 1978.

Vessey, |. and Weber, R. “Some Factors Affecting

Program Repair Maintenance: An Empirical Study,”
Communications of the ACM, (26:2), 1983, pp. 129-134.

Tables may be obtained from the first author.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Investigating Computer Self-Efficacy with Students in COBOL Programming
	Michael A. Chilton
	Cynthia K. Riemenschneider
	Recommended Citation

