
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2008 Proceedings Americas Conference on Information Systems
(AMCIS)

2008

Updating Data Warehouses with Temporal Data
Nayem Rahman
Intel Corporation, nayem.rahman@intel.com

Follow this and additional works at: http://aisel.aisnet.org/amcis2008

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Rahman, Nayem, "Updating Data Warehouses with Temporal Data" (2008). AMCIS 2008 Proceedings. 323.
http://aisel.aisnet.org/amcis2008/323

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301346946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2008%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2008?utm_source=aisel.aisnet.org%2Famcis2008%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2008%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2008%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2008?utm_source=aisel.aisnet.org%2Famcis2008%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2008/323?utm_source=aisel.aisnet.org%2Famcis2008%2F323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Rahman Updating Data Warehouses with Temporal Data

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 1

Updating Data Warehouses with Temporal Data
Nayem Rahman

Enterprise Data Warehouse Engineering – ETL, Intel Corporation
nayem.rahman@intel.com

ABSTRACT

There has been a growing trend to use temporal data in a data warehouse for making strategic and tactical decisions. The key
idea of temporal data management is to make data available at the right time with different time intervals. The temporal data
storing enables this by making all the different time slices of data available to whoever needs it. Users with different data
latency needs can all be accommodated. Data can be “frozen” via a view on the proper time slice. Data as of a point in time
can be obtained across multiple tables or multiple subject areas, resolving consistency and synchronization issues. This paper
will discuss implementations such as temporal data updates, coexistence of load and query against the same table,
performance of load and report queries, and maintenance of views against the tables with temporal data.

Keywords

Temporal Data, Temporal Data Warehouse, Row-Effective Timestamp, Row-Expired Timestamp.

INTRODUCTION

In today’s competitive business environment, successful businesses are data driven. The business executives would want to
make strategic as well as tactical business decisions [3] with accurate information at the right time. The accuracy of
information is dependent on detailed data as well as time-varying data. The data warehousing with time-varying data is
instrumental in strategic decision making. The business requirements for temporal data go beyond what is typical of
conventional database implementation.

Temporal data is concerned with time-varying data. Time-varying data states that each version of a record is relevant to some
moment in time [11, 15]. The temporal aspects normally consist of valid-time and transaction-time. Valid time defines the
time period when a particular tuple is true in modeled reality, while the transaction time defines the time period when that
particular tuple is captured in the database [15, 25].

A temporal data warehouse is significantly different from an operational database in many respects [20]. Operational source
systems are usually non-temporal and maintain only current state of data as opposed to complete history of data [4] with
transaction lineage. Data warehouses are always maintained to hold large volumes of historical data.

During the last decade data warehousing has achieved prominence. Scattered databases and data-marts are being consolidated
into more useful data warehouses. Temporal data warehousing has gained prominence among different stakeholders
including suppliers, business users, and researchers because of user popularity and management patronage [12].

“A temporal data warehouse is a repository of historical information, originating from multiple, autonomous, (sometimes)
heterogeneous and non-temporal sources. It is available for queries and analysis (such as data mining) not only to users
interested in current information but also to those interested in researching past information to identify relevant trends [2].”

W.H. Inmon defines temporal data warehouse as “a collection of integrated, subject-oriented databases designed to support
the DSS function, where each unit of data is relevant to some moment in time. The data warehouse contains atomic data and
lightly summarized data [10].” In this definition time-varying means the possibility to keep different values of the same
record according to its changes over time [14].

Temporal data warehouses provide a history of serialized changes to data identified by times when changes occurred. This
allows for querying the current state as well as past states of a record [6]. Conventional databases provide users only current
state of data which is true as of a single point in time [16]. Users of a data warehouse are not only interested in the current
state of data, but also in the transaction lineage as to how a particular record has evolved over time [4]. A record inserted in a
database is never physically deleted [5]. A new record or a new version of an existing record is always added to reflect a
transaction on that data. Thus an evolving history of data is maintained in the temporal data warehouse.

Rahman Updating Data Warehouses with Temporal Data

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 2

Many applications can benefit from a temporal data warehouse [22, 28] such as retail sales, financial services, medical
records, inventory control, telecommunications, and reservation systems. In the case of a bank account, an account holder’s
balance will change after each transaction. The amount or descriptions of a financial document will change for business
purposes. Such data are often valuable to different stakeholders. They should be stored in both current state and all previously
current states.

Although there are clear benefits of and demand for temporal database management systems (DBMS) they are not
commercially available [24]. The current commercial databases are non-temporal and hence, they do not provide a special
temporal query language, a temporal data definition language, and a temporal manipulation language [23].

In the absence of a temporal DBMS I argue that an effort should be made to take advantage of current commercial databases
and allow for handling multiple versions of data including past, current, and future states of data. This can be done with
application coding for handling multiple versions of data. The current commercial relational databases with a high-level
language such as SQL are matured enough to express complex data transformations [21] and also have performance
improvement measures, such as different kinds of efficient algorithms for indexing. The improvements in the area of disk
storage technology have also made it possible to efficiently store and manage temporal data with all transaction lineages [1,
24].

The temporal database implementations could be done by extending a non-temporal data model into a temporal data model
and building temporal support into applications. Two timestamp fields need to be added to each table of the conventional data
model. The new columns consist of ‘row effective timestamp’ and ‘row expired timestamp’ which hold date and time values
to identify each individual row in terms of their present status such as past or current, or future.

The data warehouses are refreshed at a certain time intervals with data from different operational databases. In order to keep
data warehouses run efficient and to maintain consistent data in the warehouse it is important that data arrive in the
warehouse in a timely fashion and be loaded via batch cycle runs. Since data warehouse consists of thousands of tables in
multiple different subject areas the table refreshes must be done in order of dependencies via batch cycles. Batch refreshes
have proved to be an efficient method of loading from the standpoint of performance [3] and data consistency. Another
aspect of storing data in data warehouses is that initially data are captured in staging subject areas [9, 17] with one to one
relation between operational source and data warehouse staging area tables. Analytical subject areas are refreshed from the
staging area tables. The analytical subject area refresh requires collecting data from more than one subject area or more than
one table from a particular staging subject area.

The purpose of this paper is to discuss implementations such as temporal data update methodologies, viewing of data
consistently, coexistence of load and query against the same table, performance improvement of load and report queries, and
maintenance of views. The intended result is a temporal data warehouse that can be used concurrently to load new data and
allow various reporting applications to return results consistent with their selected time slice.

RELATED WORKS

Data updates are important issues for temporal data warehousing. The data warehouse refreshes have been a research topic
for more than a decade. The research is mostly related to storing and maintaining the current state of data. Discarding updates
between two refresh points of time when performing periodic complete reloads leads to a loss of transaction lineage [26].
Most previous work on data warehousing focused on design issues, data maintenance strategies in connection with relational
view materialization and implementation issues [13, 19, 27]. There has been little research work done to date on the temporal
view maintenance problem [28] and most of the previous research ignores the temporal aspects of data warehousing [4].

Temporal data warehouses raise many issues including consistent aggregation in presence of time-varying data, temporal
queries of multidimensional data, storage method, and temporal view materialization [14]. The temporal aggregation problem
was studied in [29, 30, 31] to address the challenges of temporal data. Much research is now being done to improve the
efficiency of range aggregate queries in a temporal data warehouse [7].

In this paper, I present methodologies for refreshing data warehouses with time-varying data via batch cycles. This is suitable
for large data warehouses with hundreds of subject areas and thousands of tables where refreshes occur in a span of one to
four hours window. I propose the use of conventional extract-transform-load (ETL) tools to extract data from source systems
and load the staging subject areas in the data warehouse without performing any kind of transformation tasks. As soon as
staging tables are refreshed, the data warehouse software performs transformations to inert new rows in the actual data
warehouse (analytical subject areas) tables and also update the tables by applying row expired timestamps to the preexisting
rows that correspond to the newly arrived rows. I also examine the possibility of using metadata tables to recompile views
based on subject area refresh timestamps. I show that there are opportunities to use different performance improvement

Rahman Updating Data Warehouses with Temporal Data

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 3

features, such as indexing, of existing commercial databases to load and query temporal data in the commercial non-temporal
databases.

DATA UPDATE METHODOLOGY

During the past two decades, several dozen temporal data model have appeared, all with timestamps being integral
components [25]. However, there is no commercial database on the market yet due to complex nature of temporal data. This
paper presents a technical outline of how to use the existing commercial databases to update with temporal data. The goal is
to make sure data consistency is maintained, and load and query performance is not compromised. Updating data warehouses
with temporal data is a mechanism for storing the lineage of data in the tables. It captures all changes made to a data row over
time (transaction lineage). Deleted rows are not physically deleted; they are labeled to exhibit expiration instead. Updated
rows are handled by expiring the existing row and inserting the new version of the row. Both current and historical time
slices are available to any user by manipulating view filter criteria with less-than-equal-to (<=) predicates, because each
version of a row share the same key [1].

A temporal data warehouse provides a consistent view of data for customer queries while data is being loaded into the same
table being queried. It provides transaction lineage of data. It provides mechanism to harmonize (aggregate and synchronize)
data based on time slicing. The business needs for several different time-varying data can be met using a temporal data
warehouse.

In order to implement temporal data update methodology the existing data model will have four additional columns, such as
‘row effective date’, ‘row effective time’, ‘row expired date’ and ‘row expired time’, in order to mark row effective date/time
and row expired date/time against each row in the table. In order to make each row unique the row effective date and time
columns need to be part of primary key. The data from the operational databases will arrive in a timely fashion via flat files.
The cycle refresh time intervals can be 30 minutes, one, two, three, or four hours, etc based on the needs of the business
organization. The data manipulation (DML) code (I/U/D) and data row change timestamp are provided by the source system
[14] in the data files. The data row change timestamp will be used as row effective date and time. ‘9999-12-31 12:00:00’ will
be used as row expired timestamp however the presence of this high value indicates an ‘active’ or current row. Time
stamping is used to tag each record with some moment in time, when a record is created or passed from one environment to
another [11].

Immediately after staging tables are loaded from source system the data warehouse SQL will be used to process and expire
the rows if multiple versions have arrived in a file. It is likely that during a cycle refresh a data file will contain multiple
versions of rows for a particular record, with the same primary key. In that case, each previous version will be expired with
the row effective timestamp of the immediate next version of that row. Only the current version will have the expired
timestamp value ‘9999-12-31 12:00:00’. For example, if the same key has a DML code ‘I’ (insert) followed by ‘U’ (update)
in that case only the row with ‘U’ will be treated as the active row. This will insure rows are expired in the staging table in
case there are multiple versions of rows arriving via a source data file in a given cycle. Next the rows with both ‘U’ and ‘I’
will be inserted in the final target table. Following insert into the target table all rows with ‘D’ (delete) in the staging table
will be used to expire the corresponding row in the target table. For ‘D’ rows are not deleted physically in the target table. All
the existing rows with DML code ‘U’ will be expired in the target table and new rows inserted. All these steps are used to
perform incremental refreshes with temporal data. In case of full refresh as initial load, the current version of rows will be
used to perform load. The change date of current row will be used as row effective timestamp and ‘9999-12-31 12:00:00’ as
expired timestamp.

The following table shows how data look in the final target table in the data warehouse:

Table 1. Current and historical time slices of data for the same record.

Among the highlighted rows (with the same key) in Table 1, the last row is the current row which is active with row expired
date and time as ‘9999-12-31 12:00:00’.

Rahman Updating Data Warehouses with Temporal Data

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 4

Loading Derived Tables

In data warehouses quite often derived tables are created for analytical purposes. These tables are loaded by pulling data from
multiple tables and doing various aggregations, summations, and other computations. The response time of standard
repetitive queries can be improved significantly if the answers of complex reporting query are stored in a simple table with
keyed access [8]. These table structures are created in such a way that they fulfill the reporting needs of different business
applications. The report tools will point to these tables via simple (SELECT *) views. In order to load such derived tables by
pulling data from primary source tables and dimension or header tables, row effective timestamp ranges need to be generated
for dimension/ header/ secondary source table to make a relation with row effective date and time of primary/ fact table rows.

The SQL in the form of stored procedures can be used to load data into derived tables. To do a full or incremental refresh,
when joining between source primary and secondary or dimension tables or joining between line and header tables, the table
join has to be based on primary key + row_eff_ts columns. As both primary and secondary/ dimension tables will hold
transaction lineage it is important to make one to one relation for transactions lineage data by row_eff_ts columns. In this
case the secondary/dimension table row_eff_ts must be less than or equal to the row_eff_ts column of primary source table.
Note that the secondary/ dimension table data must come from the source at the same time or during a previous refresh in
order to have the primary source table row effective timestamp match else data will be filtered out in loading the target table.
This might happen when the primary source table and the secondary/ dimension tables will be joined with an ‘inner join’
(instead of left outer) conditions. The SQL below shows how the join relating to row_eff_ts should appear:

Figure 1. Temporal Relation between primary source and dimension tables.

The ‘and’ clause highlighted in black in Figure 1 is a less-than-equal-to predicate to make one to one relation for transaction
lineage data of two tables. The join allows perform one to one relation in case lower and upper bounds of the timestamp
intervals are not the same in the joining tables. The dimension table may have different lower and upper bounds of
timestamps for current record, compared to primary source or fact table, as dimension data changes slowly.

VIEWING CONSISTENT DATA BY REPORTING TOOLS

The biggest challenge for creating an integrated data model in a data warehouse is to provide a consistent view of the data
across subject areas. Aggregation and synchronization of data across subject areas provide unique challenges. View
maintenance in a temporal data warehouse is complicated [2] because they have to deal with multiple versions of data in a
table. I propose separate application specific views to allow applications to have consistent view of data with separate time
filters as need by the users.

There are several different business application needs which can be filled by providing a separate set of views with different
timestamp filters as required. Business users do not want to see data showing up in their reports as it is being appended or
changed in a given table. Also, users would like to have all the updates to related tables in a subject area completed before a
report shows any of that new cycle’s data. The report users want to see data based on the most cycle refresh that occurred
across all tables in the subject area(s).

The application specific views with timestamp filters are defined and dynamically recompiled right after each individual
application’s upstream subject area refreshes are completed per service level agreement (SLA). The view filters are based on
‘row effective date’, ‘row effective time’, and ‘row expired date’ and ‘row expired time’. The row effective and expired

Rahman Updating Data Warehouses with Temporal Data

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 5

timestamps associated with each subject area refresh begin and end timestamps are captured in the data warehouse metadata
model [18] during the cycle refresh and later used for view recompilation.

Base Views: The base views that point to the target table, will have the ‘lock for access’ locking mechanism defined in the
view. This will allow row level access to the table no matter if the table is being updated. The views will be defined with
timestamp filter row_eff_ts <= last_refresh_ts. These views will be recompiled in the end of each cycle refresh.

Source Application Views: Source application business views will be defined on top of base views (for dirty reads). These
views will provide data with filter based on application needs. For example, row_eff_ts <= application_reqd_asof_ts and row
exp_ts > application_reqd_asof_ts. These views will be recompiled at end of last cycle refresh of an application. In these
views the row uniqueness is maintained via business views.

The data warehouse is a shared environment. Some subject areas are application specific while some others are shared by
more than one subject area. Each application has its own SLA for data freshness. Also there are dependencies between
subject area refreshes. All these factors make applications use different time slices of data. For example, finance related
subject areas may run six times a day such as 2:00am 6:00am, 10:00am, 2:00pm, 6:00pm, and 10:00pm. On the other hand,
capital related subject areas may run three times a day such as 3:00am, 11:00am and 7:00pm. Both these applications share
some common subject areas. They use some application specific subject areas, too. This requires data be “frozen” via a
different set of views on the proper time slice to make data consistent and available per each applications specific business
needs and SLA. If finance application wants to see finance data right after the finance subject areas load (e.g., 10:00am) but,
the capital analysis does not want to see just refreshed data right at that moment because it (capital analysis) was doing
analysis based on previous load. Or it might be waiting since other related subject areas are not finished yet. In that case, a
capital analyst will use data based on a separate set of views with previous refresh timestamp filter specified in the view
definition. The finance analysis will see finance data up to the latest refresh via a different set of views. This way, data as of a
point in time can be obtained across multiple tables or multiple subject areas, resolving consistency and synchronization
issues. In this case two applications will be provided data freshness based on their individual SLA.

The report users normally want to see data based on the most recent cycle refresh that occurred across all tables in the subject
area(s). For that particular time slice they like data demographics to remain as-is for analysis purposes. So, they may be
provided with business views for each table that will show any data up to a point in time as needed. The reports will not see
any new data that is being loaded as part of current cycle refresh until the cycle is finished. The report users will run queries
in a business view with below timestamp filters in Figure 2 and 3:

Figure 2. Filters to pull rows up to a particular cycle refresh.

Figure 3. Filters to pull rows based on a particular time slice.

The row effective date columns may have partitioned primary index (PPI) defined on them. That will make queries faster as
the partition primary index pulls rows based on partition number instead of a full table scan. When a query is run with filters
on PPI columns the DBMS will directly pull data based on particular bucket(s) instead of scanning the whole table. Current
commercial databases have come up with several other efficient indexes to improve query performance.

Rahman Updating Data Warehouses with Temporal Data

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 6

Based on a SQL score-card on both PPI and non-PPI tables it was found that the SQL uses only 33% of the resources to pull
rows from a PPI table in relation to a non-PPI table. The run time is also less in the same proportion. The potential gain
derived from partitioning a table is the ability to read a small subset of the table instead of the entire table. Queries which
specify a restrictive condition on the partitioning column avoid full table scans. By defining a PPI on ‘row effective date’ the
report query performance was found to be four times faster and CPU savings about 33%.

Figure 4. Resource Usage: PPI vs. No PPI tables.

Figure 4 shows a comparison of query response time and computational resource savings between PPI and No-PPI queries.
The first query was run to pull 53K rows, with no PPI defined. The response time was eight seconds and CPU consumption
was 29 seconds in row one. The same query was run against the same table with PPI defined on row effective date. For the
second run the response time was one second and resource consumption was two seconds per row two. The first two rows
show the resource usage statistics. A second query was run to pull 424K rows, with no PPI defined. The response time was
25 seconds and resource consumption was 101 CPU seconds in row three. The same query was run against the same table
with PPI defined on row effective date. This second run response time was four seconds and resource consumption was 33
seconds in row four.

There are many techniques to improve performance of data warehouse queries, ranging from commercial database indexes
and query optimization. A number of indexing strategies have been proposed for data warehouses in literature and are heavily
used in practice.

SIMULTANEOUS LOAD AND QUERY RUN

During the load process by the stored procedures the DBMS will use ‘write lock’, by default, to perform DML during the
new cycle refresh. The report SQL can be defined by ‘locking for access’ lock to retrieve the rows for a specific time slice.
Both read and write locks are compatible. The author of this paper conducted a test by running a stored procedure which
performed update and insert operations on the active table via one database session. The stored procedure updated 19 million
rows to expire them and inserted another 19 million rows with new row effective timestamp. At the same time a report query
was run repeatedly via another session. The DBA monitored the activities of these two sessions to see if there was any
blocking or waiting since both write and read access were occurring on the same active table at the same time. There was no
blocking or waiting found as the DBMS ‘write lock’ and ‘lock for access’ locks were compatible.

In order to make sure that report users see consistent data they will be provided business views with last data refresh. Every
time all related subject area refresh for a particular application is completed, the views will be re-compiled with new
timestamps or the views will be pointed to a metadata table, via a join condition, to get the most recent refresh timestamp and
use it as filters in report queries.

CONCLUSION

The data acquisition methodology presented in this paper should sufficiently meet the needs of application owners and
customers as it takes into consideration several factors such as providing common data source with different time-varying
data. Application specific business views have been defined with timestamps as needed by individual applications. Temporal
joins have been presented for temporal relations. Also suggestions have been made to take advantage of several indices
offered by current commercial databases.

ACKNOWLEDGEMENTS

The author wishes to thank the anonymous referees for the time they spent on the detailed comments that were helpful in
improving this paper. The author also thanks Peter W Burkhardt for an excellent editing job.

Rahman Updating Data Warehouses with Temporal Data

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 7

REFERENCES

1. Ahn, I. and Snodgrass, R. (1986) Performance Evaluation of a Temporal Database Management System, ACM
SIGMOD Record, 15, 2, 96-107.

2. Amo, S.D. and Alves, M.H.F. (2000) Efficient Maintenance of Temporal Data Warehouses, Proceedings of the 2000
International Symposium on Database Engineering & Applications, 188-96.

3. Brobst, S. and Ballinger, C. (2003) Active Data Warehousing: Why Teradata Warehouse is the Only Proven Platform,
October 2003, Available online at http://www.teradata.com/typdf. aspx?a=83673&b=86860 (retrieved on 05/21/2006),
pp. 1-12.

4. Bruckner, R. and Tjoa, A. (2002), Capturing Delays and Valid Times in Data Warehouses—Towards Timely Consistent
Analyses, Journal of Intelligent Information Systems, 19, 2, 169 – 190.

5. Chountas, P., Petrounias, I., Vasilakis, C.,Tseng, A., El-Darzi, E.,Atanassov, K. and Kodogiannis, V. (2004) On
Uncertainty and Data-Warehouse Design, In proceedings of the Third International Conference on Advances in
Information Systems, ADVIS 2004, Izmir, Turkey, October 20-22, 2004, pp. 4-13.

6. Fegaras, L. and Elmasri, R. (1998) A Temporal Object Query Language, In IEEE Proc. Fifth International Workshop on
Temporal Representation and Reasoning, IEEE Computer Society Press, 51-59.

7. Feng, Y, Li, H. Agrawal, D. and Abbadi, A. (2005) Exploiting Temporal Correlation in Temporal Data Warehouses, In
proceedings of the 10th International Conference on Database Systems for Advanced Applications, DASFAA 2005, 662-
675.

8. Gardner, S.R. (1998) Building the Data Warehouse, Communications of the ACM, 41, 9, 52-60.

9. Hanson, J.H. and Willshire, M.J. (1997) Modeling a faster data warehouse, International Database Engineering and
Applications Symposium (IDEAS '97), 260-265.

10. Inmon, W.H. (2002) Building the Data Warehouse, 3rd Edition, John Wiley.

11. Inmon, W.H., Terdeman, R.H., Norris-Montanari, J., and Meers, D. (2001), Data Warehousing for E-Business, 1st
Edition, John Wiley.

12. Jensen, C.S. Introduction to Temporal Database Research, http://www.cs.aau.dk/~csj/Thesis/pdf/chapter1.pdf

13. Kim, N., Moon, S. and Lee, S. (2004) Conflict Order-Based View Refreshment Scheme for Transaction Management in
Data Warehouse Environment, Journal of Computer Information Systems, Winter 2003-2004, pp. 105-111.

14. Malinowski, E. and Zimányi, E. (2006) A conceptual solution for representing time in data warehouse dimensions, In
Proceedings of the 3rd Asia-Pacific conference on Conceptual Modeling (APCCM 2006), 53, 45-54.

15. Martin, C. and Abello, A. (2003) A Temporal Study of Data Sources to Load a Corporate Data Warehouse, In
proceedings of the 5th International Conference on Data Warehousing and Knowledge Discovery (DaWaK 2003),
Prague, Czech Republic, September 3-5, 2003, pp. 119-118.

16. Ozsoyoglu, G. and Snodgrass, R. (1995) Temporal and Real-Time Databases: A Survey, IEEE Transactions on
Knowledge and Data Engineering, 7, 4, 513-532.

17. Rahman, N. (2007) Refreshing Data Warehouses With Near Real Time Updates, Journal of Computer Information
Systems, spring 2007, 71-80.

18. Rahman, N. (2005) Intelligent Metadata Model in a Teradata Warehousing Environment, Annual Teradata Partners User
Group Conference and Expo, Walt Disney World Swan/Dolphin Resort, Orlando, FL, USA, September 18-22, 2005.

19. Samtani, S., Mohania, M., Kumar, V and Kambayashi, Y. (1998) Recent Advances and Research Problems in Data
Warehousing, In proceedings of Advances in Database Technologies: ER '98 Workshops on Data Warehousing and Data
Mining, Mobile Data Access, and Collaborative Work Support and Spatio-Temporal Data Management, Singapore,
November 19-20, 1998,. pp. 81-92.

20. Shin, B. (2003) An Exploratory Investigation of System Success Factors in Data Warehousing, Journal of the
Association for Information Systems, Vol. 4.

21. Stonebraker, M., Cetintemel, U. and Zdonik, S. (2005) The 8 Requirements of Real-Time Stream Processing, SIGMOD
Record, 34, 4.

22. Thomas, H. and Datta, A. (2001) A Conceptual Model and Algebra for On-Line Analytical Processing in Decision
Support Databases, Information Systems Research, 12, 1, 83 - 102.

http://www.teradata.com/typdf

Rahman Updating Data Warehouses with Temporal Data

Proceedings of the Fourteenth Americas Conference on Information Systems, Toronto, ON, Canada August 14th-17th 2008 8

23. TimeConsult (2008) What is Temporal Data?, http://www.timeconsult.com/TemporalData/TemporalData.html,
Retrieved on April 19, 2008

24. Torp, K. (1998) Implementation Aspects of Temporal Databases, http://www.cs.aau.dk/NDB/phd_projects/torp.html,
Retrieved on April 20, 2008.

25. Torp, K., Jensen, C., and Snodgrass, R. (2000) Effective timestamping in databases, The VLDB Journal, 8, 3-4, 267-288.

26. Vavouras, A., Gatziu, S. and Dittrich, K. (1999) Modeling and Executing the Data Warehouse Refreshment Process,
International Symposium on Database Applications in Non-Traditional Environments (DANTE '99), 66-73.

27. Widom, J. (1995) Research Problems in Data Warehousing, In proceedings of the 4th Int'l Conference on Information
and Knowledge Management, CIKM '95, Baltimore, MD, USA, November 1995, pp. 25-30.

28. Yang, J. and Widom, J. (1998) Maintaining Temporal Views Over Non-temporal Information Sources for Data
Warehousing, In proceedings of the 6th International Conference on Extending Database Technology, Advances in
Database Technology – EDBT '98, 389-404.

29. Yang, J. and Widom, J. (2001) Incremental computation and maintenance of temporal aggregates, In Proc. Int. Conf. on
Data Engineering (ICDE ‘01).

30. Yufei Tao, Y., Papadias, D., and Faloutsos, C. (2004) Approximate temporal aggregation, In Proc. Int. Conf. on Data
Engineering (ICDE ‘04).

31. Zhang, D., Markowetz, A., Tsotras, V., Gunopulos, D., and Seeger, B. (2001) Efficient computation of temporal
aggregates with range predicates, In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, 237 - 245.

THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED "AS IS" WITH NO
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION,
OR SAMPLE. INTEL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS DOCUMENT
AND HAS NO LIABILITIES OR OBLIGATIONS FOR ANY DAMAGES ARISING FROM OR IN CONNECTION
WITH THE USE OF THIS DOCUMENT.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2008

	Updating Data Warehouses with Temporal Data
	Nayem Rahman
	Recommended Citation

	Microsoft Word - $ASQ4327354_File000001_58759912.doc

