
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2006 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

2006

Automatic Extraction of Complex Web Data
Ming Zhang
The University of Sydney Australia, mingz@it.usyd.edu.au

Ying Zhou
The University of Sydney Australia, zhouy@it.usyd.edu.au

Jon Patrick
The University of Sydney Australia, jonpat@it.usyd.edu.au

Follow this and additional works at: http://aisel.aisnet.org/pacis2006

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2006 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Zhang, Ming; Zhou, Ying; and Patrick, Jon, "Automatic Extraction of Complex Web Data" (2006). PACIS 2006 Proceedings. 66.
http://aisel.aisnet.org/pacis2006/66

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301346886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2006%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2006?utm_source=aisel.aisnet.org%2Fpacis2006%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2006%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2006%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2006?utm_source=aisel.aisnet.org%2Fpacis2006%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2006/66?utm_source=aisel.aisnet.org%2Fpacis2006%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1436

Automatic Extraction of Complex Web Data

Ming Zhang

mingz@it.usyd.edu.au

School of Information
Technologies

The University of Sydney

Australia

Ying Zhou

zhouy @it.usyd.edu.au

School of Information
Technologies

The University of Sydney

Australia

Jon Patrick

jonpat @it.usyd.edu.au

School of Information
Technologies

The University of Sydney

Australia

Abstract

A new wrapper induction algorithm WTM for generating rules that describe the general

web page layout template is presented. WTM is mainly designed for use in weblog

crawling and indexing system. Most weblogs are maintained by content management

systems and have similar layout structures in all pages. In addition, they provide RSS

feeds to describe the latest entries. These entries appear in the weblog homepage in

HTML format as well. WTM is built upon these two observations. It uses RSS feed data to

automatically label the corresponding HTML file (weblog homepage) and induces

general template rules from the labeled page. The rules can then be used to extract data

from other pages of similar layout template. WTM is tested on some selected weblogs and

the results are satisfactory.

Keywords: Weblog, RSS Feed, Wrapper Induction, Web Data Extraction

1. INTRODUCTION
Nowadays, a majority of web pages are published using Content Management

Systems (CMS). CMS is a broad category which includes software that supports general
purpose websites and software that supports special websites such as e-Commerce sites,
Wiki and Blogs. Each CMS defines a rich set of layout templates to be used consistently
throughout the website. This tremendously liberates the web authors from layout
concerns and enables them to concentrate on the content. The wide adoption of CMS
makes web pages more organized and structured than previously. However, the use of
CMS also brings more noise to web pages. The common noise includes the template
scripts, repetitive menus or navigation cues and so on. This noise affects the query
accuracy of a search engine depending largely on the web data obtained through crawling.
Extracting structured data from web pages with similar layout has been a growing interest
in web mining research.

Another technology that helps to bring structures to web pages is web feeds. It is
currently the most popular way of describing the web content and is used widely in news
sites and weblogs. Feeds have been used in special search engine such as Google’s
BlogSearch service as a new way of collecting web data. However, we can only obtain
the most recent data from feeds. Feeds of news sites usually contain current news articles
and feeds of weblogs usually contain the current month’s weblog entries. It is impossible
to obtain historical data from feeds.

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1437

In this paper, we propose an algorithm WTM (Weblog Template Mining) to discover
an underlying template for extracting structured web data. This algorithm uses feed data
and its corresponding web page as the training set to generate rules for extracting
structured information from all similar structured pages of the same sites. To the best of
our knowledge, non previous work has tackled the exact problem so far. The main
application of WTM is weblog crawling and searching.

The rest of the paper is organized as follows. Section 2 gives brief introduction to
weblogs and RSS feed as well as related works. In section 3, we give a detailed
introduction to WTM algorithm and the system implementing it. Some experimental
results are presented in section 4. We conclude the paper in section 5.

2. BACKGROUND AND RELATED WORKS

2.1. Weblog basics
For a simple definition, weblogs are web pages with several dated entries usually

arranged in reverse chronological order (Kumar et al. 2003). Each entry of a blog has its
own “permalink” (permanent URL address). In most cases, all entriess of a particular
weblog are written by a single author. Sometimes, a weblog can have a few co-authors.
The authors of blog entries are called bloggers. This particular type of websites emerged
in late 1997 and the term was coined by Jorn Barger accordingly (Blood 2000). The new
practice was largely ignored by most until 2000, when a few easy-to-use software, such
as Blogger, Pitas and Manila (all special purpose CMS), emerged to support the editing
of blogs. Since then, the number of weblogs on the Internet seems to be growing
extremely fast. Livejournal.com, one of the world’s most popular blogging sites, has
9,011,782 total users as of December, 13, 2005

 Different weblog sites use very different layouts; yet the basic structure is similar. On
the top level, a weblog consists of three types of pages: homepage, archive pages and
entry pages. The homepage lists the latest entries in the main body section. It also lists

title

date

author

body

archive

comments

Figure 6 Standard Weblog Layout

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1438

links to historical entries and to other weblogs (blog roll) in the side bar. Historical
entries are automatically archived by publishing date, normally into monthly folders. An
individual page is created with a permalink when the blogger publishes an entry. It
becomes the entry page. The side bar section may repeat on archive and entry pages. One
entry page represents an article written by the blogger. It is the basic element of a weblog.
Each entry, regardless of whether it appears as an individual page or as a section in
homepage or archive pages, have a few basic information related with the entry. Basic
information of the entry such as title, body, date, permanent link and author are useful for
a search engine. Figure 1 illustrates the structure of an entry page.

2.2. RSS and other web content description format

RSS is a family of XML file formats designed for web content syndication. An RSS
file contains short descriptions of web content together with a link pointing to the full
version of the content. Most RSS feeds contain author, title, and date information as well
(Winer 2005). Figure 2 is an example of an RSS feed extracted from the BBC news site.

Each RSS feed contains one and only one <channel> tag. It gives overall information
of the collection of contents described in theRSS feed. Besides the general information,a
channel also contains one or more items. For news websites, each item represents one
recent news article. For weblogs, each item represents one recent weblog entry. An
<item> element usually incorporates a few elements to describe the content as illustrated
in figure 2.

The <title> element contains the title of the news article or weblog entry. The <link>
gives the unique and permanent link pointing to the content page (news article or weblog
entry) URL. The <description> tag contains a short summary, or sometimes, full body of
the content. Depending on the underlying software and site policy, the short summary
can be an abstract of the content, or the first part of the content. <pubDate> element gives
the publishing date and time of that particular <item>.

In addition to the widely used RSS version 2.0 illustrated in figure 2, some sites may
use early versions of RSS or other content syndication formats such as ATOM and RDF.
They are all XML based and have similar major sections such as <channel>, <item>,
<title>, <link> and <description>. Most available news aggregating software can handle
various syndication formats.

Channel

Elements

Item

Elements

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1439

Figure 7 RSS feed example

2.3. Related works
Discovering knowledge from hypertext data is nearly as old as the web itself.

Nonetheless the search and representation technology keeps evolving with the growing
size of the web. E-commerce websites, which usually contain many pages displaying
catalogue data extracted from a backend database in tabular format, motivated the early
research on extracting meaningful data from semi-structured web pages. Zhai & Liu
(2005) provides a comprehensive survey on the current web content mining algorithms.
Two streams of research contributed to this field: Wrapper induction and automatic data
extraction.

Most wrapper induction algorithm requests manual labeling of the document. A
machine learning method is then applied to learn extraction rules or patterns. General
wrapper induction algorithms do not have any particular requirements on the document
type. They are supposed to work on any documents. Stalker (Muslea 1999) is a typical
approach in wrapper induction approach. Stalker learns two rules for each target data
item based on manually labeled training data set. A start rule is used to detect the
beginning of a target item and an end rule is used to detect the ending of a target item. To
facilitate the machine learning process, the content of any page is expressed as a token
tree in Stalker. Each node of the tree represents an extractable data item. The training set
should contain enough instances of the target data item and Stalker starts by generating a
set of candidate rules for individual instance. It then remove and refine those rules until a
perfect rule is discovered.

Automatic data extraction, on the other hand, relies on repetitive structures within a
single document or among a range of documents. The patterns and rules are generated
through identification of similar structures. It usually requests a few pages generated by
the same template or a page with several identical structured data records as the training
set. Automatic data extraction algorithms are normally applied to e-commerce websites
which contains lots of table structures with data extracted from a database. They can
identify various data regions but can not tell the real meaning of each data region without
human intervention. They are also unable to tell the importance of regions with respect to
users' interests. EXALG (Arasu & Garcia-Molina 2003), IEPAD0 (Chang & Liu 2001),
MD05 (Liu et al. 2003, Zhai & Liu 2005) are examples of automatic data extraction
algorithms. Most automatic data extraction algorithms convert the document into tree
structure and try to identify recurrent similar or identical sub-trees from it. MD5 and its
subsequent algorithm uses a HTML tag tree combined with visual cues to identify data
region with similar structure. IEPAD use the special PAT feature to identify identical
sub-trees.

A recent paper by Hu et. al (2005) took a more heuristic approach to learn rules of
extracting titles from HTML pages. It tries to define a specification of HTML titles and
features for the extraction. The specification are derived from large collection of HTML
pages and covers both layout and semantic features of the title. The set of features were
translated into a set of rules that may extract titles. Various combinations of the rules
were applied to various TREC collection to evaluate the effectiveness.

The approach adopted by WTM is a combination of the wrapper induction an
automatic data extraction algorithm. It takes a similar machine learning algorithm to

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1440

obtain data extraction rules. However, it can label the training document automatically
based on the knowledge gained from feed data. In a sense, “feed” takes the role of a
human supervisor who has labeled the training document. Similar to automatic data
extraction algorithms, it works on repetitive structures. Yet it is not restricted to tabular
formatted data. In addition, WTM does not rely totally on the structural layout of the
document to locate data region. The heuristics provided by the feed data makes it very
easy to rule out noisy data and focused on the data of users' interests.

3. SYSTEM OVERVIEW

3.1. WTM algorithm
WTM algorithm tries to match two different presentations of the same set of data and

induce the underlying rules to extract meaningful data. The two sources are feed data in
an XML format and a weblog home page in HTML format. They both represent the latest
entries of a particular weblog. The feed focuses on describing the data while the weblog
home page focuses on displaying the data. It is easy to get data from feed. However, it is
difficult to get the same data from weblog homepage and to get additional historical data
from web pages expressed by the same layout template with that of the homepage. WTM
tries to use the feed data to automatically label the HTML page then learn rules to extract
data from other web pages generated (or expressed) by the same template. Both feed and
weblog home page usually contains a few recent entries so we should have a sufficient
training set to get accurate rules.

Figure 3 put the corresponding HTML page and feed data side by side to illustrate the
idea. The WTM algorithm will generate four rules with respect to one entry based on feed
data and HTML page matching. The WTM algorithm will generate four rules with
respect to one entry based on feed data and HTML page matching. It will generate rules
to extract: entry title; entry link, entry body; and entry publishing date. This information
is stored in four major elements of the feed: <title>, <link>, <pubDate>,and
<description>. However, there are no special tags in the HTML page to mark this
information and various CMSs will use totally different tags to delimit the data. Some
may use block-level HTML tags such as <H1> or <p>, while others may use comment
tags “< -- … -- >” to differentiate different sections. WTM will automatically learn those
delimiting tags and store them as starting and ending rules.

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1441

The data of interest may be delimited by more than one tag or the combination of
HTML tags and texts. For instance the entry's permalink in Figure 3 example is enclosed
in a common hyperlink tag “” in the
HTML file. Obviously, the “<a …>” tag itself is not enough to tell whether the value is
an entry permalink or just some link embedded in the text. We will need to add extra
information such as <h3 class= “storytitle”> in the start rule for entry link. Another
feature that worth mentioning is that some data that need to be extracted does not appear
in the value filed of a HTML tag. They may appear in the attribute filed of a HTML tag
like the entry link data which is recorded as attribute href of <a> tag.

3.2. System Architecture

The system contains four components, a collector, a matcher, a rule composer and a
storage manager. Information flow between these four components is show in Figure 4.
It takes two arguments, a weblog URL and a RSS feed URL The collector will download
the homepage of the weblog as well as the feed data and perform necessary preprocessing.
The weblog homepage is a HTML file with lots of information regarding rendering the
page in a web browser. The RSS feed is an XML file of pure data.

The matcher will take the homepage and
translate it into a token list and use feed data
to find matches. The rule composer is
responsible for generating start and end
rules. The storage manager is responsible
for translating rules to XML format for later
use.

The main task of collector is to
download the homepage of a weblog and
feed. The homepage is stored as a large
string. Feed data is treated differently since
we need to identify each element for
matching purpose. An open source feed
parser Informa

(http://informa.sourceforge.net/) is plugged

November 1, 2005

<div class="post">

<h3 class="storytitle" id="post-1507">

<a href="http://blogs.zdnet.com/carroll/?p=1507"

rel="bookmark" title="Permalink: Ditching the home phone">

Ditching the home phone </h3>

<p>I had a two-hour conversation on my mobile phone last

night, and it cost me absolutely nothing. That's the wonderful

thing about modern cell phone usage, at least in the United

States. As I have a nation plan through Verizon Wireless, I can

call anyone, anywhere in the United States on weekends or after

9PM, and I don't pay a cent. </p>

</div><!-- /storycontent -->

</div><!--/post-->

Html String RSS Item

 <item>

 <title>Ditching the home phone</title>

 <link>http://blogs.zdnet.com/carroll/?p=1507</link>

 <pubDate>Tue, 01 Nov 2005 09:36:52 +0000</pubDate>

 <dc:creator>John Carroll</dc:creator>

 <category>General</category>

 <guid>http://blogs.zdnet.com/carroll/?p=1507&part=rss&tag=feed&subj=zdblog</guid>

 <description>

 <![CDATA[I had a two-hour conversation on my mobile phone last night, and it cost me

absolutely nothing. That's the wonderful thing about modern cell phone usage, at least in the

United States. As I have a nation plan through Verizon Wireless, I can call anyone, anywhere

in the United States on weekends or after 9PM, and I don't pay a cent]]>

 </description>

 </item>

Figure 8 HTML page and Feed Data Matching

Figure 9 System Components

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1442

in to download and parse feed information. The collector is also responsible for the data
cleaning process. Major cleaning steps include removing carriage returns and excessive
blanks, and replacing special representations with regular characters. For instance,
“&nsap” is replaced with one blank, “<” is replaced with “<” and so on. This
preprocessing is necessary to make sure we get an accurate match between feed and
HTML document. In summary, we consider the use of the following rules to preprocess
the HTML and feed document.

In HTML Document

a. For substrings inside a tag: no action

b. For substrings outside a tag from HTML:

remove Carriage char
Trim long white space
replace “<” by “<”
replace “> by “,”>”

In RSS feed

c. For <description> value

Same with b.
d. For <title> value

Trim long white space
e. For <link> and <data> value

 no action
There are two features of the sources we need to consider in designing WTM

algorithm. First, the data of interest may be delimited by more than one tag or the
combination of HTML tags and texts. Second, the data need to be extracted may be
recorded as an attribute of a tag. Hence, we need a data structure that can preserve
majority of the original HTML document. This structure should also treat HTML tag and
text equally as possible delimiters. The token list is used for this purpose. A token in the
list could be an HTML tag (with attaching attributes) or plain text enclosed by a pair of
tags. Figure 5 gives an example of a partial HTML document and corresponding token
list.

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1443

One important goal of the WTM algorithm is to generate rules to automatically extract
entry body from entry pages. We can view other data we are interested to extract such as
title, link or date as of primitive types, since each piece of this type of data consists of a
simple line of text. Entry body, on the other hand, is always of complex type. It often
consists of a collection of different tags and texts. Converting the whole entry body into
one token for the training of the HTML document would make it easier for the algorithm
to discover the enclosing tokens of entry body. This requests special handling of the
complex type.We first mark the start and end of the entry body in the HTML document
based on RSS <description> value. Our current algorithm can only handle the case where
<description> in RSS feed contains the full entry body. Putting the whole body in
<description> is a popular practice in weblog community. The <description> value
usually contains the full entry body or the first few paragraphs. Two special tags
<body_start> and <body_end> were used to enclose entry body in HTML document.
They are temporary helper tags and are not included in the final token list. Table 1 gives
the general token generating algorithm. Another task for the matcher is to find the feed
items in the token list and label the position of each item. Table 2 gives the rules for
locating feed items in the token list.

Figure 10 Token List Structure

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1444

Table 1 token generating algorithm

1 method tokenGenerator

2 while (not end)

3 get next character char

4 if (char == '<')

5 make a new tag token

6 get next char until end or reach a '>' character

7 if token.euqals("<body_start>")

8 get everything between <body_start> and <body_end> and make it a new text token

9 remove <body_start> and <body_end> tags

10 end if

11 else

12 make a new text token

13 get next char until end or reach a '<' character

14 end if

15 end while

16 end method

The output of the matcher is a labeled token list generated from the original HTML

document. The positions of four types of data described by feed are labeled. The token
list usually contains a number of recent entries. The labeled list makes it easy to locate
the start and end of any piece of data of interest. However, as discussed early, it is
possible to include more than one token in the final rules. We need a learning process to
determine the minimal number of tokens required in each rule. This is done in the rule

composer.
The rule composer randomly divides the labeled token list into two sets: training data

and test data. The training data are used to generate candidate rules while the test data are
used to make the final selection of rules. Both training set and testing set are grouped by
the entries they represent. Each rule generated is a combination of tokens that can mark
the start or the end of a piece of data. The algorithm given in table 3 is supposed to
generate the rule to mark the start of title. There are similar algorithms to generate the
start or end rule of other data. The candidate rules generated have maximum possible
prefix and postfix tokens. The candidate rules will then be applied on testing data to
prune out unnecessary tokens.

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1445

Table 2 Rule induction: label the data position

Rule 1: find entry title

 1.1: If the title string fully match the token in the tokens list. label the position.

 1.2: If more than one matches are found, label the position nearest to the description.

Rule 2: find entry date

get the date value from RSS parser, which usually has a format like

“Fri, 22 Jul 2005 16:24:55 –0400”

Try to find same string in HTML file tokens list.

 2.1: find the same string, label the position.

 2.2: if no match,, try different formats:

 2.2.1: try to find string which have year part and month parts like “MON 2005”

 2.2.2: try to find string which have year part and month parts like “MONTH 2005”

 2.2.3: try to find string which have year part and month parts like “1 05”

 2.2.4: try to find string which have year part and month parts like “01 05”

Rule 3: find entry body: Pure string matching

Rule 4: find entry link:

Get the link url string from RSS parser, searching for html document tokens list, search in tag-

token only:

 4.1: if only one match is found, label the position

 4.2: if more than one matches are found

 4.2.1: ignore the link position that is ahead of the title position

 4.2.2: label the closest position after title position.

Table 3 Candidate Rule Generation

1 method RuleGenerator (training data)

2 pos = 1; skipToRule = “” // indicating the distance of token

3 while (true)

4 get all tokens pos position ahead of all titles

5 if all tokens are equal from string matching

6 skipToRule = token + skipToRule

7 else if all tokens are from same tag but with different attributes

8 skipToRule = token.tagName + skipToRule

9 else

10 break

11 end if

12 end if

13 end while

14 end method

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1446

The pruning process starts from the inner most token of the candidate rule and
compare with testing data to check if the current combination is enough for locating the
required data. If not, more tokens will be added and the same process repeated. Figure 6
illustrate the pruning process of a start rule. Each column of boxes in the figure represents
a data item (shaded box) and the tokens in front of and after it (white box). The pruning
of the start rule only involves validating the tokens in front of a data item, that is, the
tokens represented by boxes on top of the data item. The upper panel represents training
data while the bottom panel represents the testing data.

During any iteration, if we find that the combination of the tokens can give us an exact
location of the required data in the test set, the process terminates. Otherwise the
candidate rule is kept as the final rule. The storage manager then translates the rules to
XML format so that any weblog crawlers can use them to extract data regarding historical
entries. Table 4 gives the rule schema. There is a start rule and an end rule for each
particular piece of data. The type of the data that can be extracted is indicated as the value
of the DType element. Each rule is a represented as a regular expression in string format.

4. EXPERIMENTS AND RESULTS
A sample of twenty weblogs was used to evaluate the WTM algorithm. Three criteria

were used in the sample selection procedure. First, the weblog should be updated
frequently to guarantee enough data is available for use. Second, the weblog should
provide a feed using popular syndication formats. Third, the contents in the weblog page
and feed have to be consistent. We also make sure that the feeds of our sample weblogs
are of different formats. Most weblogs in the sample have more than 10 entries in their
home pages. This would provide enough labeled data for mining rules. The feed format
includes RSS 0.93,RSS 1.0, RSS 2.0, RDF, and Atom. Many weblog CMS software can
automatically generate the feed and publish it. But it is not the only way to produce feed.
Some bloggers use the service provided by third party to “burn” feed.

The experiment results are given in table 5 which lists detailed information of each
weblogs and results for title, date, body and link. For cases that extraction fails we also

Training

data

Testing

data

data Other token

Layer 1:

Current

Rule pattren

Layer 2:

Current

Rule pattren

Continue

-Terminate

1

2

3

4

5

6

Figure 11 Rule Pruning Process

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1447

analyze the reason for the failure and give out error code in table 5. A score of “0”
indicates that the algorithm successfully extract the start and end rule for a particular
piece of information. All other numbers are error codes. Error codes and short
explanations are given in table 6. Figure 7 gives the accuracy and error distributions.

Table 4 Rule Schema

<xs:element name ="StalkerRules">

 <xs:complexType>

 <xs:element name="Data" type="rules"/>

 </xs:complexType>

</xs:element>

<xs:complexType name="rules">

 <xs:sequence>

 <xs:element name="start" type=”xs:string/>

 <xs:element name = "end" type = "xs:string"/>

 </xs:sequence>

 <xs:attribute name= "DType" type = "rssType"/>

</xs:complexType>

<xs:simpleType name="rssType"

 <xs:restriction base = "xs:string"/>

 <xs:enumeration value="Title"/>

 <xs:enumeration value="Date"/>

 <xs:enumeration value="Link"/>

 <xs:enumeration value="Body"

 </xs:restriction>

</xs:simpleType>

</xs:schema>

Table 5 Experiment Results

 Weblog URL Title Body Link Date

1 www.andrewsullivan.com/ 6 0 8 2
2 trailerpark.blog.ca/main/ 0 6 7 7

3 sjagiello.blogspot.com/ 0 0 5 2
4 truckandbarter.com/ 5 4 0 2

5 geekpress.com/ 1 0 0 2
6 econlog.econlib.org/ 3 0 0 0
7 blog.ccsindia.org/ 3 0 0 0

8 jujitsui-generis.typepad.com/ 0 4 0 2
9 blog.mises.org/blog/ 0 0 5 0

10 www.knowledgeproblem.com/ 0 4 0 2
11 www.makezine.com/blog/ 0 0 6 2
12 www.scienceblog.com/cms/ 0 0 7 7

13 www.kevinsites.net/ 0 4 0 7
14 arstechnica.com/index.ars 0 7 5 0

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1448

15 www.kk.org/cooltools/ 0 0 0 0

16 www.quotationspage.com/weblog/ 0 4 5 0
17 www.techdirt.com/ 0 0 0 0
18 www.kuro5hin.org/ 0 4 0 2

19 www.lessig.org/blog/ 0 4 0 0
20 www.metafilter.com/ 3 0 0 2

 Accuracy 14/20 11/20 12/20 8/20

The results indicate that WTM performs best for mining rules related with entry
title and link data. There are a few missing hits for entry body. Investigation shows that in
most weblogs that WTM failed to mine correct rules for an entry body, the feed
descriptions and the corresponding entry bodies are not consistent with each other. The
missing hits for entry date are mainly caused by different date formats used by feeds and
HTML files. Our current implementation does not include all possible date formats, but it
is extensible in terms of new date formats.

Table 6 Error Code and Description

1 Abbreviation of original content

2 Several Entries share one date

3 Different Titles between HTML and RSS

4 Partial description

5 Informa function limitation

6 Noise data are not fully removed

7 Not supported by current algorithm

8 Missing value

0%

10%

20%

30%

40%

50%

60%

70%

80%

title body link date
024
6810

title body link Date
Err-1 Err-2 Err-3Err-4 Err-5 Err-6Err-7 Err-8

Figure 12 Accuracy and error distribution

5. CONCLUSION
In this paper, we introduced a new wrapper induction algorithm WTM. It aims to

generate rules that describe general weblog data layout templates. WTM requires two
types of documents to execute: the HTML home page and the corresponding XML feed.
Both documents contain similar data. The HTML home page is used as the training

The Tenth Pacific Asia Conference on Information Systems (PACIS 2006)

 1449

document for generating template rules. It is labeled automatically by feed data. Each
HTML homepage should contain a few data entries with repetitive structures but of
different contents. Those entries are used to generate and test the extraction rules. We ran
our algorithm on some randomly selected weblogs and get satisfactory results.

The immediate application of the current implementation of WTM is on weblog
crawling and indexing. WTM can be integrated with a weblog crawler to discover weblog
data templates on the fly and used for extracting useful data. Rules can be stored in an
XML file and retrieved back for repeated crawling. The algorithm can also be easily
adapted to extract templates for other types of websites that use feeds to summarize the
contents.

6. REFERENCES

Arasu, A. and Garcia-Molina, H. “Extracting structured data from web pages”. SIGMOD
2003, 337-348

Blood, R. Weblogs: A History and Perspective, Rebecca's Pocket. 07 September 2000.
WWW document [URL:http://www.rebeccablood.net/essays/weblog_history.html]

Chang C. and Lui S. “IEPAD: Information Extraction Based on Pattern Discovery”,
WWW2001, May, 2001, Hong Kong.

Hu Y., Xin G., Song R. Hu G. Shi S. Cao Y. and Li H., Title Extraction from Bodies of
HTML Documents and its Application to Web Page Retrieval, SIGIR'05, August 15-19,
2005, Salvador, Brazil, 250-257

Kumar R. Novak J., Raghavan P. and Tomkins A. “On the bursty evolution of blogspace”.
WWW2003, May 2003, Budapest, Hungary

Liu B., Grossman R and Zhai Y., “Mining Data Records in Web Pages”, SIGKDD’03,
August, 2003, Washington,DC., USA

Muslea I., Minton S., and Knoblock, C., “A hierarchical approach to wrapper induction”.
In Proceedings of the 3rd International Conference on Autonomous Agents (Agents '99),
1999 Seattle,USA

Winer D. “RSS 2.0 Specification”, RSS Advisory Board announcements and RSS news,
January, 2005. WWW document [URL: http://www.rssboard.org/rss-specification]

Zhai Y. and Liu B. “Web Data Extraction Based on Partial Tree Alignment”,
Proceedings of the 14th international World Wide Web conference (WWW-2005), May
10-14, 2005, in Chiba, Japan

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2006

	Automatic Extraction of Complex Web Data
	Ming Zhang
	Ying Zhou
	Jon Patrick
	Recommended Citation

	Curricula Vitae of Taizan Chan

