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Abstract 
 
Recommender systems are used by E-commerce sites to suggest products to their customers 
and to provide consumers with information to help them determine which products to 
purchase. Collaborative filtering algorithm is the most extensive personalized 
recommendation used in recommender systems. Since not being considering the dependence 
between predicted item and historical item, typical collaborative filtering algorithm is not fit 
for multiple interests recommendation. The authors analyzed the reason and presented a new 
algorithm, collaborative filtering based on mutual information. By removing the historical 
items on which predicted item has not high dependence, the algorithms can deal with 
personalized recommendation for user’s multiple interests. The experiment shows new 
algorithms is more accurate than other algorithms, especially fitting for the environment 
where users have many completely different interests. 
 
Keywords: Collaborative filtering, Recommender system, Mutual information, Personalized 
recommendation, 
 
 

1. Introduction 
The amount of information in the world is increasing far more quickly than our ability to 
process it. All of us have known the feeling of being overwhelmed by the number of new 
books, journal articles, and conference proceedings coming out each year. Technology has 
dramatically reduced the barriers to publishing and distributing information. Now it is time to 
create the technologies that can help us sift through all the available information to find what 
is most valuable to us. 
 
One solution to this information overload problem is the use of recommender systems. 
Recommender systems are used by E-commerce sites to suggest products to their customers 
and to provide consumers with information to help them determine which products to 
purchase. The products can be recommended based on the top overall sellers on a site, on the 
demographics of the consumer, or on an analysis of the past buying behavior of the consumer 
as a prediction for future buying behavior. The forms of recommendation include suggesting 
products to the consumer, providing personalized product information, summarizing 
community opinion, and providing community critiques. Recommender systems enhance 
E-commerce sales in three ways: helping customers find products they wish to purchase, 
converting browsers into buyers; improving cross-sell by suggesting additional products for 
the customer to purchase; improving loyalty by creating a value-added relationship between 
the site and the customer (Schafer et al 2001). 
 
The underlying techniques used in today's recommendation systems fall into two distinct 
categories: content-based and collaborative methods. Content-based methods require textual 
descriptions of the items to be recommended and draw on results from both information 
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retrieval and machine learning research (Pazzani et al 1997). In general, a content-based 
system analyzes a set of documents rated by an individual user and uses the content of these 
documents, as well as the provided ratings, to infer a profile that can be used to recommend 
additional items of interest. In contrast, collaborative methods recommend items based on 
aggregated user ratings of those items, i.e. these techniques do not depend on the availability 
of textual descriptions. Both approaches share the common goal of assisting in the user’s 
search for items of interest, and thus attempt to address one of the key research problems of 
the information age: locating needles in a haystack that is growing exponentially (Breese et al 
1998). 
 
In this paper we focus on collaborative filtering techniques. A variety of algorithms have 
previously been reported in the literature and their promising performance has been evaluated 
empirically (Shardanand et al 1995, Breese et al 1998; Sarwar et al 2000, HSR95, Resnick et 
al 1994). These results, and the continuous increase of people connected to the Internet, led to 
the development and employment of numerous collaborative filtering systems. Virtually all 
topics that could be of potential interest to users are covered by special-purpose 
recommendation systems: web pages, news stories, movies, music videos, books, CDs, 
restaurants, and many more. Some of the best-known representatives of these systems, such 
as FireFly (www.firefly.com) or WiseWire (www.wisewire.com) have turned into 
commercial enterprises. Furthermore, collaborative filtering techniques are becoming 
increasingly popular as part of online shopping sites. These sites incorporate recommendation 
systems that suggest products to users based on products that like-minded users have ordered 
before, or indicated as interesting. For example, users can find out which CD they should 
order from an online CD store if they provide information about their favorite artists, and 
several online bookstores (e.g. www.amazon.com) can associate their available titles with 
other titles that were ordered by like-minded people.However, there remain important 
research questions in overcoming fundamental challenges for collaborative filtering 
recommender systems. 
 

1.1 Related Work 

In this section we briefly present some of the research literature related to collaborative 
filtering, recommender systems.Tapestry (Goldberg et al 1992) is one of the earliest 
implementations of collaborative filtering-based recommender systems. This system relied on 
the explicit opinions of people from a close-knit community, such as an office workgroup. 
However, recommender system for large communities cannot depend on each person 
knowing the others. Later, several ratings-based automated recommender systems were 
developed. The GroupLens research system (Konstan 1997, Resnick et al 1994) provides a 
pseudonymous collaborative filtering solution for Usenet news and movies. Ringo and Video 
Recommender (Hill 1995) are email and web-based systems that generate recommendations 
on music and movies respectively. A special issue of Communications of the ACM (Resnick 
et al 1997) presents a number of different recommender systems. Other technologies have 
also been applied to recommender systems, including Bayesian networks, clustering, and 
Horting (Aggwrwal et al 1999，Breese et al 1998). 
 
Various approaches for recommender systems have been developed that utilize either 
demographic, content, or historical information (Balabanovic et al 1998, Basu et al 1998, 
Shardanand et al 1995, Terveen et al 1997, Konstan 1997). User-based collaborative filtering 
is probably the most successful and widely used techniques for building recommender 
systems (Resnick et al 1994, Konstan 1997). For each user, user based collaborative filtering 
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recommender systems use historical information to identify a neighborhood of people that in 
the past have exhibited similar behavior (e.g., accessed the same type of information, 
purchased a similar set of products, liked/disliked a similar set of movies) and then analyze 
this neighborhood to identify new pieces of information that will be liked by the user. So this 
method also be called neighbor-based collaborative filtering or nearest neighbor algorithms. 
 
Although these systems have been successful in the past, their widespread use has exposed 
some of their limitations such as the problems of sparsity in the data set, problems associated 
with high dimensionality and so on. Sparsity problem in recommender system has been 
addressed in (Good et al 1999). The problems associated with high dimensionality in 
recommender systems have been discussed in (Billsus et al 1998), and application of 
dimensionality reduction techniques to address these issues has been investigated in (Sarwar 
et al 2000). 
 
But very few work show that classical collaborative filtering is not adaptive to multiple 
interests recommendation. In fact, the quality of its recommendation is very poor when users 
in recommender systems have completely different interests. Unfortunately, this situation 
exists commonly. In this paper, we focus on solving this problem. Once (Hofmann 2001) 
tried to solve the problem using a probabilistic model from the model-based perspective, 
present the probabilistic model based collaborative filtering. But the method has the 
shortcoming of all model-based collaborative filtering. Firstly, the method presented by 
(Hofmann 2001) cannot explain why classic collaborative filtering cannot adapt to multiple 
interests recommedation. Secondly, although the computing speed is far than user-based 
collaborative filtering, recommendation cannot vary with the rating database of 
recommendation system, which results that users can get on-line recommendation.  
 
Our previous work attacks the problem from user-based perspective (Yu et al 2003a). In 
order to address this issue we have explored item and user based collaborative filtering 
techniques by combining item-based and user-based collaborative filtering techniques 
together (short for CF-IU). Item and user based collaborative filtering techniques analyze the 
user-item matrix to identify similarity between target items and other items, get similar item 
to the target item, and determine neighbor users of active user according to the rating of other 
user for the similar item, then compute recommendations for users. In fact, the algorithm is a 
kind of collaborative filtering based on clustering of items. But Pearson correlation 
measuring the similarity of item used in this algorithm, which is very key for determine the 
neighbors, has many limitations when dealing with multi-interests problem. So in this paper, 
we present the collaborative filtering based on mutual information (CF-MI) for multi-interest 
recommendation. 
 

1.2 Contributions 
This paper has three primary research contributions: (1) Identification limitation of similarity 
measurement used in CF-IU algorithms (Yu et al 2003a) for multi-interest; (2). Presentation 
of the new algorithms, collaborative filtering based on multi Information (CF-MI), to 
improve the recommendation accuracy for the user with the multi-interest; (3). An 
experimental comparison of the quality of CF-MI algorithms with the typical collaborative 
filtering algorithms and CF-IU algorithms. 
 

1.3 Organization 
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The rest of the paper is organized as follows. The next section provides a brief background in 
user-based collaborative filtering algorithms. We first formally describe classic collaborative 
filtering algorithm, then analyze questions of user-based collaborative filtering for multiple 
interest recommendation. In section 3, we present collaborative filtering based on mutual 
information (CF-MI), which gives recommendation based on the subset of all items. Section 
4 describes our experimental work. It provides the details of data sets, evaluation metrics, 
procedure and results of different experiments, as well as the discussion of the results. The 
final section provides some concluding remarks and directions for future research. 
 

2. Typical Collaborative Filtering and Problem Analysis 
Recommender systems apply data analysis techniques to the problem of helping users find 
the items they would like to purchase at E-Commerce sites by producing a predicted 
likeliness score or a list of top–N recommended items for a given user. Item 
recommendations can be made using different methods. Recommendations can be based on 
demographics of the users, overall top selling items, or past buying habit of users as a 
predictor of future items. Currently, there are two kind of collaborative filtering algorithm, 
including user based collaborative filtering and item based collaborative filtering.. In this 
paper, we will mainly discuss the user based collaborative filtering, which is the most typical 
personalized recommendation techniques researched and used today. In this part, the 
algorithm is firstly introduced, and we will analyze its limitation for dealing with user’s 
multiple interests. 
 

2.1 Typical Collaborative Filtering (short as CF-TY) 
Collaborative filtering (CF) (Resnick et al 1994, Shardanand et al 1995, Sarwar et al 2000) is 
the most successful recommendation technique to date, and is extensively used in many 
commercial recommender systems. These schemes rely on the fact that each person belongs 
to a larger group of similar behaving individuals. Consequently, items (i.e., products) 
frequently purchased by the various members of the group can be used to form the basis of 
the recommended items. Collaborative filtering includes the user-based collaborative filtering 
and item-based collaborative filtering. And user-based collaborative filtering is the most 
typical schemes, which widely used in personalized recommendation systems. So we note it 
as CF-TY in this paper. 
 
Let R be an n×m user-item matrix containing historical purchasing information of n 
customers on m items. In this matrix, Ri,j is one if the i th customer has purchased the j th 
item, and zero otherwise. Let U be the set of items that have already been purchased by the 
customer for which we want to compute the top-N recommendations. We will refer to this 
customer as the active customer and in order to simplify the presentation we will assume that 
the active customer does not belong to the n customers stored in matrix R. User-based CF 
recommender systems compute the top-N recommended items for that customer as follows. 
First they identify the k most similar customers in the database. This is often done by 
modeling the customers and items with the vector-space model, which is widely used for 
information retrieval (Breese et al 1998, Sal89, Sarwar et al 2000). In this model, each of the 
n customers as well as the active customer is treated as a vector in the m-dimensional item 
space, and the similarity between the active and the existing customers is measured by 
computing the cosine between these vectors or correlation.  
 
Once this set of the k most similar customers have been discovered, their corresponding rows 
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in R are aggregated to identify the set C of items purchased by the group as well as their 
frequency. Using this set, user-based CF techniques then recommend the N most frequent 
items in C that are not already in U (i.e., the active user has not already purchased). Note that 
the frequency of the items in the set C can be computed either by just counting the actual 
occurrence frequency or by first normalizing each row of R to be of the same length. This 
latter normalization gives less emphasis to items purchased by customers that are frequent 
buyers and leads to somewhat better results. 
 
Despite the popularity of user-based CF recommender systems, they have a number of 
limitations related to scalability and real-time performance. The computational complexity of 
these methods grows linearly with the number of customers that in typical commercial 
applications can grow to be several millions. Furthermore, user-based CF recommender 
system is hard to provide the explanation for the recommendation. 
 
Except for above limitation, CF-TY has another limitation, which provides much poor 
recommendation if users have many different interests. It means that CF-TY cannot deal with 
multiple interest recommendation. Unfortunately, this situation exists commonly. The 
limitation will results into non-confidence of user for recommender system. The fact has 
shown that users usually do not seek for help by recommender system when they want to find 
and purchase a costly item. In this paper, we will focus on the limitation of CF-TY and try to 
resolve it by presenting a novelty recommendation method.  
 

2.2. Problem Analysis 
According to CF-TY, prediction for target item is determined by preference for rated item. 
But it is common that one user have many different interests. For example, a user may be 
interested in both ‘Football’ and ‘English’. If we predict the ‘English’ item using interest 
preference for ‘Football’, the prediction result is doubtful. 
Let’s see an example as following. 

User/Item I1(English) I2(Football) I3(English) I4(Football) I5(Football) I6(English) 

U1 3 1 2 3 5 5 

U2 3 1 2 3 5 5 

U3 3 1 2 3 5 5 

U4 1 5 3 3 1 1 

U5 2 5 2 3 2 1 

U6 3 5 1 3 2 1 

U7 3 5 2 4 2 ? 

Table 1: An example of user/item data matrix 

As table 1 shown above, in the user/item data matrix, there are seven users and six items. For 
analyzing, among the six items, I1(English),I3(English) and I6(English) means their content 
are on ‘English’, that is to say the three item is similar, but are different items; 
I2(Football),I4(Football) and I5(Football) means their content are on ‘Football’, they are 
similar, but are different items. Let’s see an example, now we are ready to predict rating of 
user U7 for item I6, R76=？ 
 
Here we suppose each user has three neighbor users for analyzing.If prediction is done with 
classical user-based CF algorithm, then U4, U5, and U6 will be neighbors of U7, It is easy to 
get the prediction value, R76=1. But we find that the reason why U4, U5, and U6 will be 
neighbors of U7 is that all of them are interested in Football, Football is their common 
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interest. That is to say that we use the interest preference on ‘football’ to predict the interest 
preference on ‘English’, but ‘Football’ and ‘English’ are not related, so prediction is not 
accuracy and is doubtful. 
 
In order to further expatiate our view, suppose an extremity, in the table 2. If there were no 
rating of U4, U5 and U6 for I1 and I3, we would get the table. According to user-based CF, 
U4, U5, U6 will be neighbors to U7 and prediction of rating of U7 for I6 is completely 
determined by their preference information on Football. Because they are completely 
different and not related on content, error of prediction will be very high. 

User/Item I1(English) I2(Football) I3(English) I4(Football) I5(Football) I6(English) 

U1 3 1 2 3 5 5 

U2 3 1 2 3 5 5 

U3 3 1 2 3 5 5 

U4 -- 5 -- 3 1 1 

U5 -- 5 -- 3 2 1 

U6 -- 5 -- 3 2 1 

U7 3 5 2 4 2 ? 

Table 2: Another example of user/item data matrix 

For the above example, if neighbors of U7 is determined according to interest preference for 
‘English’ of U1-U6, that is to say, similarity between U7 and other user is compute according 
to the rating of user for I1 and I3, not from I1 to I5, then we will find that the users U1, U2. 
U3 will be neighbors to user U7. So prediction value of item I6 for user U7, p76=5 will more 
be trustful because the interest preference of U7 and its neighbors U1, U2. U3 for ‘English’ is 
similar. 
 
According to the above analysis, we may get a conclusion that for a certain user, its neighbors 
is also related to predicted item. It means that neighbor of different items for identical user be 
not identical, which requires that, in collaborative rcommendation, predicted item and items 
which is used to predict for predicted item is similar on content of items. It led to the 
improvement for user-based collaborative filtering, so we present following a new algorithms, 
collaborative filtering based on mutual Information (CF-MI). 

 

3、Collaborative Filtering based on Multi Information (CF-MI) 

3.1、Measuring the dependence of two items by mutual information 

Three reasons let us select mutual information to measure the dependence of the two items: 
Firstly, Pearson correlation only can be used to reflect the liner relation of the two items, but 
it is not accurate when using the linear relation to reflect the dependence or similarity of the 
two items, especially if the relation of two items is not linear. But mutual information can 
reflect the no-linear relation.Let us consider an example. As shown in Figure 1, 50 consumers 
give votes for movie 1 and movie 2 for case 1 and case 2. Linear relation, such as Pearson 
correlation coefficient, cosine etc, is hard to distinguish the relation of the movie1 and movie 
2 in case1 and case 2 because the rating for the two movies distributed randomly, that is to 
say, if we compute the correlation of two movies by Pearson correlation coefficient, 
correlation coefficient for both case1 and case 2 are almost equal, all close to zero. But in fact, 
case 1 and case 2 are distinguishing. In case 1, we find consumers are nearly uniformly 
distributed in the movie-movie vote space. If A and B are two arbitrary consumers who have 
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similar ratings for movie 2, it does not necessarily indicate that they also have similar ratings 
for movie 1. In case 2, however, we find that those consumers who dislike movie 2 always 
like movie 1. While those consumers who like movie 2 always rate the other one just above 
the average. This indicates that movie j in case 2 should play an important role in inferring 
consumer preference for movie 1, while in case 1 it is not so useful. 
 

 
CASE1 

 
CASE2 

The points distribute random in case 1.The points form some clusterings in case 2. 

Figure 1:Two cases of rating 

 
Secondly, since computing Pearson correlation coefficient, cosine etc need more data, items 
similarity measured by Pearson correlation coefficient, cosine etc is not accurate when data 
used is little. But mutual information be suit to the situation, that is to say, item similarity or 
dependency measured by mutual information is more accurate than measured by Pearson 
correlation coefficient, cosine etc when data which could be used is little. The fact is very 
important in recommendation application because the user-rating matrix is generally very 
sparse. The latter experiment had approved it. Finally, mutual information is a fast 
computation method used to reflect the dependence of items. 
 
The dependence of product i on product j can be formally defined by the following 
conditional probability: 

)|( ,,,, evvevvp
BABA uiuiujuj <−<−                    (1) 

where A and B represent two arbitrary consumers and e is a threshold. If the difference 
between two votes is less than e, then the two votes are considered close. The above 
conditional probability indicates the probability of two arbitrary consumers having close 
preference for product i given the condition that the two consumers have close preference for 
product j. 
 
But the above computing for mutual information is complicate. If there are n users and m 
items in recommender system, them complication of computing is O(n2m2). So we develop 
an information-theoretic measure that is equivalent to the above probabilistic dependence 
definition in the case of discrete voting. The conclusion be supported the following theorem. 
 
Theorem . Let P(Vi), P(Vj ), and P(Vi, Vj) be the margin and joint distributions of votes for 
two products i, j, and e = 1 the interval of discrete vote value, 0, 1, ..., N, assume that P(Vi) 
and P(Vj) are fixed, if A and B are two arbitrary consumers who have voted for both products, 
then MI(Vi; Vj) increases as dependence increases, which means the differential of 
dependence defined by (1) with respect to the mutual information MI(Vi; Vj) is always 
positive. 
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Proof: 
Since P(Vi ) and P (Vj ) are given, we have: 

[ ] [ ] [ ])|()|()();( ijijjij VVHdVVHVHdVVMId −=−=  
Inequation (2) can be written as:  

[ ]
[ ] 0

)|(
)|||(| ,,,, <

<−<−

ij

uiuiujuj

VVHd
evvevvpd

BABA             （3） 

Next, we have 
∑
ℵ∈

≡≡=
v

ijiij vVVHvVpVVH )|()()|(                （4） 

and 
[ ]

∑
∑

ℵ∈

ℵ∈

≡

==<−≡
=

<−<−

v
i

uiuiujuj
v

i

uiuiujuj

vVp

vvvevvpvVp

evvevvpd

BABA

BABA

2

,,,,
2

,,,,

)(

)|(|)(

)|||(|

           （5） 

where 　is the set of all discrete votes. From eq. (4) and eq. (5) we can easily derive in eq. (3). 
Therefore, in eq.(2) holds. 
 
According to above analysis, we use multi information to measure probabilistic dependence 
definition in the case of discrete voting. Mutual Information is important concept in 
information theory, which was used to show the overlapping of the two variables, as shown 
in figure 2. In information theory, mutual information represents a measure of statistic 
dependence between two random variables X and Y with associated probability distributions 
p(x) and p(y) respectively(Yu et al 2003). Following Shannon, the mutual information 
between (Yu et al 2003) X and Y is defined as:  

∑∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

x y ypxp
yxpyxpYXMI

)()(
),(log),();(                      (6) 

 
Figure 2：Mutual Information 

Furthermore, mutual information can be equivalently transformed into the following 
formulas: 

)|()();( YXHXHYXMI −=                         (7) 
)|()();( XYHYHYXMI −=                          (8) 

),()()();( YXHYHXHYXMI −+=                   (9) 
where H(X) is the entropy of X, H(X|Y) is the conditional entropy of X given Y and H(X,Y) 
is the joint entropy of two random variables, where 

∑
=

−=
k

j
jj xpxpXH

1

)(log)()(                     (10) 
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∑∑−=
i j

jiji xxpxxpYXH )|(log),()|(                   (11) 

∑∑−=
i j

jiji xxpxxpYXH ),(log),(),(                    (12) 

In summary, according to above the definition and theorem, we will use multi information to 
measure the dependence of two items and multi information can be computed by fellow 
equation:.  

),()()();( ijijij VVHVHVHVVMI −+=                   (13) 

where iV and jV  denoting the rating vector respectively for item i and j .  
 

3.2、CF-MI Algorithm  

Definition1: Dependent items ----- Given item i and threshold value of multi 
information, IM (or constant N), for any item j, if IMVVMI ij >);( （or );( ij VVMI  is the 
one of the N biggest );( iVVMI ），then item j is called dependent item of item i. , noted 
as )(iDI . 

Definition2: Dependent item set ----- Dependent item set of item i consist of all dependent 
item of item i., noted as )(iDIS . 

 
Computing Procedure： 
⑴(1) For target item j∈I，Compute );( kj VVMI (k =1, 2, … ); 
⑵(2) According to );( kj VVMI (k =1, 2, … ), determine )( jDIS ; 
⑶(3) Based on the )( jDIS , compute the similarity between user a and other user u ( u≠
a )—wj(a,i)； 
⑷ (4) According the wj(a,i), determine neighbor users of user a for target item j-- 
Neighbora,j；  
⑸(5) By performing a weighted average of deviations from the neighbor’s mean , compute 
prediction value of rating of user a for item j ---Pa,j； 

∑
∈

−+=
jaNeighnori

ijijaja RRiawkRP
,

))(,( ,, ， 

∑
∈

=
jaNeighbori
j iaw

k
,

),(1                             (14) 

⑹(6) Determine the most interesting items of user a as recommendation according to pa,j (j∈
IP,a )。 
 

4. Experimental Evaluation 

4.1 Datasets 

We ran experiments using data from the EachMovie collaborative filtering service. The 
EachMovie service was part of a research project at the Systems Research Center of Digital 
Equipment Corporation. The service was available for a period of 18 months and was shut 
down in September 1997. During that time the database grew to a fairly large size, containing 
ratings from 72916 users on 1628 movies. User ratings were recorded on a numeric six-point 
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scale (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). The data set is publicly available and can be obtained from 
Digital Equipment Corporation (McJ97). 
 
Although the data from 72916 users is available, we restrict the analysis to the first 450 users 
in the database. These 450 users provided ratings for 250 different movies. We restricted the 
number of users considered, because we are only interested in the performance of the 
algorithm under conditions where the number of users and items is low. This is a situation 
that every collaborative filtering service has to go through in its startup-phase, and in many 
domains we cannot expect to have many users rating for many items. We also believe that the 
deficiencies of CF-IU, CF-MI and CF will be more noticeable under these conditions, 
because it is less likely to find users with considerable overlap of rated items. 

Data Sets Train 
Count 

Test 
Count

All  
Count

Train Data 
Density

Test Data 
Density Users Train 

Movies 
Test 

Movies
U50M250 512 74 586 5.120% 2.960% 50 200 50 

U150M250 1130 173 1303 3.767% 2.307% 150 200 50 

U250M250 1598 270 1868 3.196% 2.160% 250 200 50 

U350M250 2166 389 2555 3.094% 2.223% 350 200 50 

U450M250 2772 585 3357 3.080% 2.600% 450 200 50 

Table 3: Experiment Datasets 

 

4.2 Evaluation Metrics 

Recommender systems research has used several types of measures for evaluating the quality 
of a recommender system. They can be mainly categorized into two classes: Statistical 
accuracy metrics evaluate the accuracy of a system by comparing the numerical 
recommendation scores against the actual user ratings for the user-item pairs in the test 
dataset. Mean Absolute Error (MAE) between ratings and predictions is a widely used metric. 
MAE is a measure of the deviation of recommendations from their true user-specified values. 
For each ratings-prediction pair <pi ,qi> this metric treats the absolute error between them i.e., 
|pi-qi| equally. The MAE is computed by first summing these absolute errors of the N 
corresponding ratings-prediction pairs, then compute the average. Formally,  

N
qp

MAE
N

i ii∑ =
−

= 1                             (15) 

The lower the MAE, the more accurately the recommendation engine predicts user ratings. 
Root Mean Squared Error (RMSE), and Correlation are also used as statistical accuracy 
metric.Decision support accuracy metrics evaluate how effective a prediction engine is at 
helping a user select high quality items from the set of all items. These metrics assume the 
prediction process as a binary operation-either items are predicted (good) or not (bad). With 
this observation, whether a item has a prediction score of 1.5 or 2.5 on a five-point scale is 
irrelevant if the user only chooses to consider predictions of 4 or higher. The most commonly 
used decision support accuracy metrics are reversal rate, weighted errors and ROC sensitivity 
(SKBHMR98). We used MAE as the choice of evaluation metric to report prediction 
experiments because it is most commonly used and easiest to interpret directly. In the paper 
(SKBHMR98), the experiments have shown that MAE and ROC provide the same ordering 
of different experimental schemes in terms of prediction quality. 
 

4.3 Experimental Procedure 
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The whole experiment is used to test CF-TY, CF-IU and CF-MI algorithm. So we make a 
comparing for performance of the three algorithms on the whole.Since accuracy of CF-TY is 
related to user correlation threshold (UCT), it of CF-IU is related to UCT and movie 
correlation threshold (MCT) while accuracy of CF-MI is related to UCT and mutual 
information threshold (MIT). In order to compare the three algorithms, we varied UCT and 
MCT from 0 to 0.9 with step 0.1 and MIT from 1 to 2.8 with step 0.1 (because average of the 
mutual information is close to 1.5, we varied MIT from 1 to 2.8), then compute their MAE 
respectively for different UCT, MCT and MIT, and select their least MAE respectively to 
compare. 
 

4.4 Experimental Results 

In this section we present our experimental results of applying the three collaborative filtering 
techniques for generating predictions.As shown in figure 3, on the while, both of CF-IU and 
CF-MI have higher accurate than CF-TY. It shows that the algorithms we presented are 
advantage over the CF-TY algorithm. And we believe that, more different content of items in 
the dataset is, and more advantage the two new algorithms will have than CF-TY. The 
experiment also shows that CF-IU and CF-MI have similar recommendation quality. But 
CF-MI algorithm has higher accuracy than CF-IU when the user number is small which is in 
our expectation. It validated the conclusion that mutual information has more ability to reflect 
the relation of two items than pearson correlation used widely in the collaborative filtering, 
especially when data is sparse. It often occur when the recommendation system start to run. 
The merit can be used to resolve the “cold-start” problem that is a very key issue in 
recommendation system based collaborative filtering. Unexpectedly, the advantage of CF-MI 
over CF-IU is not obvious when data is more.  
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Figure 3:  Performance comparing of CF-TY, CF-IU and CF-MI 

 

4.5 Discussion 
From the above experimental evaluation we have got some important observations.First, 
CF-IU and CF-MI provide better quality of predictions than CF-TY The improvement in 
quality is almost consistent over different threshold user correlation and training/test ratio. 
The second observation is that CF-MI has a greater advantage over CF-IU when data is small 
because mutual information has greater ability to reflect the dependence or relation of two 
items than pearson correlation. The later advantage is very important, especially recommend 
systems run firstly.One important point is need to state, although the above experiments have 
shown the advantage of CF-MI over CF-IU and CF-TY, we believe that the advantage is 
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greater if content of item is completely different in user/item matrix and dataset is small. In 
EachMovie datasets, all of items are movies, which have less interest discrepancy for 
different users. Supposed the items in datasets is different commodity, such as book, CD etc., 
in which users have completely different interests, and their content is very discrepant, then 
CF-MI be more accurate than CF-TY, more accurate than CF-IU when dataset is small. For 
example, a footballer cannot read English book, a novelist cannot buy book through Internet. 
For this case, CF-MI has a greater advantage because the algorithm is able to filter the 
dissimilar item for target item and to engender the neighbor users of active user, which 
guarantee the target item is consist with the common interest of neighbor users, but CF-TY 
cannot. In addition, Because CF-IU is based on similar item and neighbor user, the algorithm 
can not only provide novelty recommendation for user like user-based collaborative filtering, 
also give an explain for recommendation result as like item-based collaborative filtering. 
 
Also we admit that CF-MI increase computing time for recommendation comparing with 
CF-TY. For a fixed user, neighbor users must be computed again for different predicted item, 
so speed of predicting is lower than CF-TY, but accuracy of prediction is improved, 
especially for multiple interest recommendation. In most case, user would like get more 
accuracy recommendation by sacrifice of time. If recommendation is poor, users will not 
believe the recommendation and will not use the recommender systems anymore. So it is 
worthwhile in order to get more accurate recommendation.  
 

5. Conclusions and Directions for Future Research 

Recommender system is a powerful new technology for extracting additional value for a 
business from its user databases. These systems help users find items they want to buy from a 
business. Recommender systems benefit users by enabling them to find items they like. 
Conversely, they help the business by generating more sales. Recommender systems are 
rapidly becoming a crucial tool in E-commerce on the Web. Recommender systems are being 
stressed by multi-interest of user and the huge volume of user data in existing corporate 
databases, and will be stressed even more by the increasing volume of user data available on 
the Web. New technologies are needed that can dramatically improve the quality of 
recommender systems. 
 
In this paper we presented and experimentally evaluated a new algorithms for multiple 
interest recommendation. Our results show that the new algorithm hold the promise of 
allowing CF-based algorithms to be adaptive to data sets in which users have many different 
interests and at the same time produce high-quality recommendations. 
 
Future work will address two directions. One is to apply the new algorithms to the application 
in E-Commerce. In addition, the problem how to give an explanation for recommender 
systems based on CF-MI is imperative for improving the confidence of recommender systems 
based on collaborative filtering. It is also a key issue of decrease the computation time and 
guarantee user getting on-line recommendation. 
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