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Discrete event systems: A framework for man-made systems

Ryo Sato
University of Tsukuba, Japan

In this short paper the jollowings are demonstrated
briefly. 1) The discrete event systems specification,
DEVS for short, provides a universal representation for
DES if it is reduced and reachable. (2)A business
frarsaction system that is a multicomponent DEVS is
a framework to describe operating systems of
organizations that consist of human work and
compuler-communication systems.

1 Introeduction

In recent societtes, computers are so popular that
they are not only tools in workplaces but
indispensable compenents in human organizations.
Databases and decision support systems are
incorporated in the process of R&D, production lines,
management control systems, and so on. Operating
systems in business organizations are thought to be
*soft," because their logically possible design can be
realized in many ways. In reality, many concrete
forms, for example, for the way of inventory control
or report documents and slips are used by different
organizations even in the same business area We will
see some important areas and mechanisms of man-
made systems in presentation of the paper.

A concrete description of man-made systerns will
not be easy to reuse in its pure form, because the same
situation will never arise in human society. So
theoretical abstracion in model building for
methodologies is inevitable. If we could make suitable
abstractions of concrete systems, then they would
serve as a basis of future application of the essence of
the systems mechanism. Therefore, we believe that a
meta-theory for soft science and technology is
important. Discrete event systems are widely observed
in the control models of production lines, computer
simulation programs, Petri nets, information system
methodologies, and the soft systems methodology.
Some model are format while others informal. No one
seems to know how one discrete event model different
from others or in what extent the model is standard.
This is the reason why we need a unified realization
theory for discrete event systems, which we
demonstrate in this short paper.

2 DEVS state space representation
In this section the state space representation for a
legiimate DEVS is defined. It is shown that the

resultant state system Spy of the state space
representation is really a discrete event system in the

sense of Section 2.1. We will follow the same sel-

theoretic notation as Masarovic et al.{(1975, 1989).
A discrete event system specification DEVS is
- _defined below.

Definition 1: Discrete event system specification
:DEVS (Zeigler, 1976)

o amily.
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A discrete event system specification (DEVS) is a
sextuple

M= <A)M, SM. BM, 60, A t2 >,
where A)( 1s a set called the external event set, S\ is
a set called the sequential states set, Bpf is a set called
the ontput valve set, dpg is a function called the
quasitransition function, A)f is a set called the cutput
function, and ta is a function called the ttme advance
function with the following properties:
(a) ta:Spg — T
(b) MEQMX* (AMULAT) — S

(s, e, A)=da(s) for all (s, e) EQM,
where Q)= {(s,¢) IsESpjandV=<e < ta(s)}, A is
a special symbol not in Apfand &A:Sn — SM.
(©) AN O —BM-

Some simple examples of DEVS are shown in the
presentation for this paper.

A stale space representation is a wide-spread
framework to recognize dynamics of a time system in
a causal way. Mesarovic and Takahara (1975, 1989)
shows that a time system is causat if and only if it has
a state space representation and that if a ime system is
past-determined then it is causal.

Definition 2: Swate space representation (Mesarovic
and Takahara, 1989)

Let 8 & XxY be a time system with the input
alphabet A and the output alphabet B. Let C an
arbitrary set. C is a state space for S if and only if
there exist a family of funcions ¢ = {dy | dyy -
CxXyp — C andt, ' T, t =t} and a function p :
Cx A — B such that

(1) S = {(x, y) | there exists some ¢ € C such that

¥(O = plegile. xgp). x(t) forany tET}.

(i) forany t, t, t"€ T, t=t' < t",

(@) dyle, Xetm) = pen(@e(Ss X Xpem)

B oyl xyp =c

@) dyp(c. Xy = dorle. 0 ~Hxy))
where Xyr = XypXppr andT =t - t
The pair <¢, w> is called a (time invariant) state space
representation of §, and ¢ a time invariant transition

3 Realization of general discrete event
system

Below, a way how (o construct state space
representations for the class of general discrete event
systems is presented.

A discrete event system is a special time system
defined as follows:

Definition 3: Discrete event system (Salo, Prachofer,
and Pichler, 1995) '
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If a time system § & XxY satisfies the following
four conditions then it is called a diserete event
system:

(i) S is strongly stationary.
(ii) S is past-détermined from k & T
@ii) The input space X is a discrete event input

* space. That is,

(ii-1) The tnput alphabet A for X is P(A"), where A’
is a finite set, and P(A") the power set of A"
G{i-2) 'I_'_he constant vaiued function A is in X, where
Al =AforanytET.
(vi) 3 has the d:screte event-determinacy: that is, for
any (R*, §%) € sk, xK, vk e 5K, ¢ € sea),
x EXancly EY, if (FAy, oK) €5,
ke, vheoKe) € § and R0k,

Feoky)) € S hold then (xKeok(x),

yhecK(y) E 8.

Taking the set A' as the tasks to be executed or
processed by the system, the condition (iii) shows
paraliel execution of tasks. A is simply denoted by A.
The discrete eveni-determinacy in (vi) shows that S(A)
virtually represents the "internal state” of 3 which is
determined by the past-determinacy.,

In the following of this short paper, § & XxY is
an arbitrarily fixed discrete event system that is past-
determined from k.

Let SR) = {y 1 3xK, 35%, (xkey, 7ok(y)) € 53
We can prove the fact that SX) = S(A) holds. Based

on this fact and the discrete event-determinacy, the’

following fumction can be defined for a discrete event
systemn. Define the function pg:S(A)<X — Y by the
correspondence: po{e, x) = v if and only if there exists
Ak o k - ] k o
&, 7 € s¥ such that (R%Ag, $oK(c)) € S and

(& ok(x), 7oky) € S hoid.

FProposition 1.

The function pg defined above is a initial response
function of 8. Thatis, (x, ¥) € 8 if and only if there
exists some ¢ & S(A) such that pp(e, X) = y.

Propos:txan 2
The function pg is causa! and reduced.

Now we can define the state space representation
for a discrete event system.

Let t €T be arhitrary. Define gy - S(A)xXgy —
S(A) by ¢qic, %g ¢ ) = Apofc, xAD). Let - = {oy
| Py - S(AX;p — S{A} and ¢, tET, t < '}, where
Py (€, Xpp) Is defiped as

dog (€ oWy and T = 't Define a function b
S{A)xA — B as u{e, a) = pple. x)0), where X is an

arbitrary but x(0) = a. Since pp is cauvsal p is well-
defined. . S . }

Proposztzan:?
The pair <¢, w>, defined above, is a (ttme
invariant) state space representation of 8.

4 The uniqueness problem of
representation for discrete event
systems

The definition of the uniquemess problem of
representation for a system S and its importance are
stated in Mesarovic and Takahara{1989) as follows,

The vniqueness problem of representation:

Given a time system S, find conditions on S under
which § has a unique stale space representation up io
isomorphism.

They point out that "the state space approach is
meaningless for the analysis of a system unless the
uniqueness problem is solved in a positive way;
otherwise the whole family of representations of S
which may be differ in various degree must be used
simuftaneously whenever the system is being
investigated.” In order to provide the answer to the
problem of representation for discrete event systems,
the uniqueness of S(A)-realization up to isomorphism
is shown in this section.

We need a way to compare a dynarmcal systern
representation with others. :

Definition 4: Morphxsm {Mesarovic and Takahara,
19809)

Let <p, ¢> and <@, ¢> be time invarant
dynamical system representations of S. Then a
mapping h: C — C' is called a moiphism from <p,
4> to <@, §*, if the diagrams in Fg. 1 are commute.

‘That is, forany tET,cE€Cand x € X, it holds that

e, x0) = p't((0). xv) and hgr(c. x) = d'gy(h(0),
xb. If h is bijective then <g, ¢> is called isomorphic
10 <p, ¢'>.

A morphism h from <p, ¢ 10 <@, @' > is denoted
by h: <p, ¢> — <p'. ¢' >
If there is a morphism from <g, §=> to <p, 4;' > that
is not surjective, then <p, ¢> can be "embedded” into
<g', ¢' > Thus we can intrinsically think of that <g',
@' > is possibly bigger and then redundant than <p,
&> If a morphism is surjective, then <, §' > is
smaller than <p, ¢=>.

‘We can have the dynamical system representation
defined by S(A)-realization. In the following the
dynamical system represent'ation is also called S(A)-
realization and is denoted by <p®, ¢*>. For discrete

event systems the followmg property of dynamical
system representations is imposed.

Pt

CxX, —’Yt Cqu"—lfb' C

hxid  [id |hxid h

C'xX, — Y,
pt q)n;"

Fig. 1. Commatative diagram
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Definition 5: Discrete event-response junction

Let a function py: CxX — Y be an initial response
function of S. It is calied a discrete event-response
function of S if it satisfies the following condition:
Forany ¢ € C and x € X there exist ¢, ¢* & C and £~
€ XK such that po(c, A) = AXpp(e!, KAy, poc, X) =

Y

Mpo(e, RheoK(x) and pole’, R"AR0, k) = pO(C",
ik-ok(x))l[o' K-

If pp of 2 dynamical system representation <p, $>
of § is a discrete event-response function then <p, ¢=>
1s called a discrete event dynamical system
representation of S.

The following is the main theorem on the
uniqueness problem of representation for discrete event
systems.

Theorem i

Let <p, ¢ be a discrete event dynamical system
representation of § and C its state space. Then there
always exists a surjective morphism h : <p, ¢> —
<p*, $*>, which is defined by h{c) = po(c, A).

5 The uniqueness of DEVS

As an application of the theory it can be shown
that a reduced and reachable DEVS is unique up to
isomorphism in the class of discrete event dynamical
system representations.

‘We can naturally define a ime-invariant state space
representation <p, ¢> from a legitimate DEVS. We
define the system S for a legitimate DEVS M, which
shows the state transition of M (Sato, Prachofer, and
Pichler, 1995).

x. ESHEXx (QM)T iff there exisis (s, ) €

O such that y(t) =pi{dgds. e, xt). x() foranytE T.

Since Sy represents the state transition mechanism
of a legitimate DEVS M, it is called the state system
of M. The pair <¢, p> for Sp defined from a
legitimate DEVS is called the DEVS state space
representation (of M).

The importance of the legitimacy is that the DEVS
state space representation is always possible. This fact
can be stated as follows.

Theorem 2 [Zeigler, 1976]
Let M be a legitimate DEVS. Then M can be

extended to atime invariant state space representation——— - gheory. (Lecture Notes in Control-and Information

Since the DEVS formalism has been used so
widely as a theorefical framework for modeling and
discrete event simulation, it is believed that the
definition of DEVS specilication is natural and
universal in some sense. This is true as we see below.

Theorem 3
If the dynamical system representation that is
defined by the DEVS state space representation for a

“legitimate DEVS is reduced and reachable then it is

isomorphic to Spy{A)-realization, where Sp is the state
systern of the legitimate DEVS.

6 DEVS in man-machine systems

Sato and Prachofer (1995) formulated a dynamic
mechanism of transaction processing as a special
multicomponent DEVS, orginal form of which is
defined by Zeigler(1584). The model proposed is called
a business transaction system. It consists of both
static and dynamic structures. The former depicts the
interconnection of transactions and intermediate
inventories in business tasks. The inventories are not
only real materials but the records in a file system.
The dynamic structure is constucted as a
multicomponent DEVS. The state space consists of a
file system and a schedule of internal transactions.

‘We can see the skeletal structure of a business
transaction systems by drawing its static struchire.
Examples of business transaction systems are:

(a) Materials Requirements Planning (MRP)

The aim of the control by MRP is to attain zero-
inventory operation of a production line. The MRP
controller is a mechanism to synchronize parallel
processes  such as  subcontractors, vendors and
assemblies.

(b) Kanban system

In the control by the kanban system, orders for
production are issued only to the final process in the
production systems.

Kanbans are used between two sequential processes
and one kanban comesponds to the pame and small
“number of parts or products. When prescribed number
of kanbans are accumulated in its holding place for a
kanban then an order for production is issued to the
preceding process. The total munber of kanbaps are
constants. The kanban system is also called as Toyota
system.

(c) Sales and invoicing subsystem

Business documents and ledgers are accurnulated and

then consists of part of the state of the system.

7 Conclusion

The realization theory provides an answer to the
uniqueness problem of representations for discrete
event systems. Business transaction system is a DEVS
framework for man-made systems in organizations.
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