
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2007 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2007

IT Value of Software Development: A Multi-
theoretic Perspective
Venugopal Balijepally
Prairie View A&M University

Sridhar Nerur
University of Texas at Arlington

Radha Mahapatra

Follow this and additional works at: http://aisel.aisnet.org/amcis2007

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2007 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Balijepally, Venugopal; Nerur, Sridhar; and Mahapatra, Radha, "IT Value of Software Development: A Multi-theoretic Perspective"
(2007). AMCIS 2007 Proceedings. 294.
http://aisel.aisnet.org/amcis2007/294

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301346685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2007%2F294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2007?utm_source=aisel.aisnet.org%2Famcis2007%2F294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2007%2F294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2007%2F294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2007?utm_source=aisel.aisnet.org%2Famcis2007%2F294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2007/294?utm_source=aisel.aisnet.org%2Famcis2007%2F294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Balijepally, Nerur and Mahapatra IT Value of Software Development

1

IT VALUE OF SOFTWARE DEVELOPMENT: A MULTI-
THEORETIC PERSPECTIVE

VenuGopal Balijepally
Prairie View A&M University

vebalijepally@pvamu.edu

Sridhar Nerur
University of Texas at Arlington

snerur@uta.edu

RadhaKanta Mahapatra
University of Texas at Arlington

mahapatra@uta.edu

Abstract

Software development in organizations is evolving and increasingly taking a socio-technical hue. While
empirical research guided by common sense reasoning has informed researchers and the software
community in the past, the increasing social character of software development provides us with the
context and the motivation to provide theoretical underpinnings to our empirical work. In this paper we
sample three theoretical domains that could serve our empirical research efforts: social capital,
organizational learning and knowledge based view of the firm. We illustrate the utility of these theoretical
perspectives by articulating a research model that captures the IT value created by software development
teams practicing different methodologies.

Keywords: software development, social capital, agile methodologies, organizational learning, knowledge
management

Introduction

The field of software development has undergone significant changes in recent years. A hypercompetitive business
environment characterized by change and uncertainty has prompted the software community to evolve new ways of building
software. The emerging methodologies follow an evolutionary delivery model (Gilb 1987) that allows developers to adapt to
changing requirements. This is counter to the traditional plan-driven approach that uses a linear process in accomplishing the
tasks involved in software development. In such an approach, an enormous amount of time and effort are spent in gathering
requirements and evolving specifications with a view to preparing for all foreseeable changes during the lifecycle of the
product. In contrast, emerging approaches such as agile methodologies rely on short iterative cycles with continuous
stakeholder feedback and frequent planning to cope with and leverage change (Nerur et al. 2005).

Agile methodologies have attracted a lot of attention in the recent past. This new approach differs considerably from
traditional software development in many ways. Foremost, there is an increased emphasis on self-organizing teams that enjoy
greater latitude in goal-setting and decision-making with regard to setting priorities, deadlines, etc. Team members are
encouraged to play multiple roles, such as developer, architect and analyst. A shared understanding and vision of the
evolving product is facilitated by practices such as joint code ownership, role rotation and reflection workshops. This is in
contrast to specialized roles assigned to developers in traditional methodologies. In the agile approach, specifications evolve

mailto:mahapatra@uta.edu
mailto:snerur@uta.edu
mailto:vebalijepally@pvamu.edu

Balijepally, Nerur and Mahapatra IT Value of Software Development

2

through constant dialogue and feedback between developers and customers, while in the traditional approach, extensive
specifications gathered upfront from customers guide the development process. Thus, there is a perceptible shift from a
hierarchical, process driven, and command-and-control based approach to one that emphasizes people-orientation,
collaboration, and leadership (Highsmith 2003).

The changes in methodologies highlight the underlying transformation of software development from a technical enterprise
to a more socio-technical endeavor. The lack of theory-driven empirical work in software development may be attributed to
the emphasis that was placed on technical aspects of software development. Theoretical grounding of empirical research is
still not considered an essential requirement, especially in the software engineering domain. Though there is some evidence
of increasing awareness of theoretical issues (Hannay et al. 2007), the dominant thinking is predicated on the primacy of
common sense reasoning over generalizable theory (Lindblom 1987). While use of theory is taken for granted in various
business disciplines, including several areas of IS research, software development research is still grappling with the issue of
whether theory should be used (Hannay et al. 2007). The current social “makeover” of software development provides us
with the context and the opportunity to refocus empirical research in software development towards theory building and
testing. The centrality and importance accorded to teams and collaboration among team members by emerging methodologies
affords an opportunity to draw on the extensive body of knowledge in organizational and management theory.

The primary objective of this paper is to demonstrate the applicability of theoretical perspectives in software development
research. One of the critical problems that confront software managers today is the choice of methodologies. This poses an
interesting research problem that can be theoretically investigated. Keeping this in mind, we articulate three theoretical
streams, namely social capital, knowledge-based view of the firm, and organizational learning. Traditionally, human capital
is considered as the main resource of a software team that produces valued outcomes. While the resource value of
relationships of members from within and across teams is understood by the software community at an intuitive level, the
current trend towards increasing socialization of software development calls for capturing such resource value of social
relationships in more explicit ways. We bring in social capital as a new explanatory factor to capture such social dynamics of
software development in general and agile development in particular. Further, we propose a research model, informed by
these theories, that explores the IT value created by software development teams. While many researchers have focused on
the differences between agile and plan-driven approaches, or on the differences between pairs and individuals in software
development, there has hardly been any effort to understand how these approaches create value by emphasizing different
knowledge outcomes. Such an understanding should help software practice in making more informed methodological
choices. The proposed model is a small step in this direction.

The next section describes the three theoretical perspectives that can potentially inform research on software development
challenges. This is followed by an articulation of the research model and the propositions. Finally, conclusions are drawn.

Theoretical Perspectives

Three theoretical perspectives of potential interest to software development research are briefly described below.

Social Capital

Social capital is an interesting theoretical lens attracting increasing research attention in sociology and management
literatures. Social capital is defined as “the sum of the actual and potential resources embedded within, available through, and
derived from the network of relationships possessed by an individual or social unit” (Nahapiet and Ghoshal 1998).
Traditionally human capital embedded in the team in terms of skills and abilities of members is considered a critical success
factor for software development teams. Social capital theory seeks to position network of relationships as another form of
capital that provides significant benefits to the individual or the collectivity in the conduct of social affairs. Unlike human
capital, which rests in the individuals, social capital is embedded in the networks of mutual acquaintances and relationships
of the individual, group or the organization (Bourdieu 1986; Coleman 1988; Putnam 1993). Social capital lens could be very
useful to explain several IS phenomena such as software development, IS outsourcing, organizational knowledge
management, and IT-based inter-organizational networks (Balijepally et al. 2004).

Organizational Learning

Organizational learning is a mature theoretical stream of enduring value used in several research domains. According to this
view, learning is the process of acquiring, interpreting or distributing information, that changes the range of potential

Balijepally, Nerur and Mahapatra IT Value of Software Development

3

behaviors for the entity (Huber 1991). For Argyris, learning is about detecting and correcting mismatches or errors. Learning
occurs when a match is produced for the first time between intentions and actuality, that is genuinely new to the actors
producing it (Argyris 1996). In organizational learning, the entity involved is the organization as against the individual.
Organization learning is “the process of improving actions through better knowledge and understanding.” It leads to
cognitive systems, associations and memories, developed and shared by organizational members (Fiol and Lyles 1985).
Learning in organizations may be conceptualized as adaptive learning and generative learning. Adaptive learning occurs
when an organization seeks to accomplish performance requirements through active shaping of actions and responses based
on feedback from previous actions. When the organization starts questioning its values and assumptions and seeks “new ways
of looking at the world” in its actions and behaviors, the resulting learning is considered as generative learning. While
adaptive learning underscores coping behaviors, generative learning is about creating (Senge 1990). This has parallels to
Argyris’s single loop and double loop learning (Argyris 1977; Argyris 1996) and Fiol and Lyles’s low level and high level
learning (Fiol and Lyles 1985).

Knowledge Based View of the Firm

Knowledge based view is based on the notion that knowledge is a valuable organizational resource, and the firm is a
dynamic, evolving, quasi-autonomous system of knowledge and application (Spender 1996). Based on Polanyi, a distinction
is made between two forms of organizational knowledge – explicit and tacit (Polanyi 1966). Explicit knowledge is the
codified knowledge that could be transmitted through formal systematic language. Tacit knowledge on the other hand is
“deeply rooted in action, commitment, and involvement in a specific context” (Nonaka 1994). It is therefore intangible and
cannot easily be articulated. The tacit and explicit knowledge types could be at both individual and group levels, the
aggregate of which constitutes the intellectual capital for the collectivity or the organization (Nahapiet and Ghoshal 1998).
Knowledge based view conceives organizations as innovating and knowledge creating entities where exchange, combination
and dynamic interaction of explicit and tacit knowledge at both individual and aggregate level creates new knowledge.
Innovation is typically viewed as “a process in which the organization creates and defines problems and then actively
develops new knowledge to solve them” (Nonaka 1994).

Theoretical Model and Research Propositions

The focus of the theoretical model developed here is on the software development project team undertaking a software
project using traditional plan-driven methodology or one of the agile methodologies. In case of large projects, this could be a
project team working on an identifiable project subcomponent. We adopt social capital theory along with knowledge
management and organizational learning perspectives to examine the IT value created by the software team. Figure 1
showcases the research model. We view the network of relationships among members of a software development team as a
form of social capital for the team. This network of relationships could be from within the team or across project teams
within the organization or even beyond the organization. This is in addition to the human capital available to the focal team in
terms of skills and abilities of its members and captures the resources potentially available to the team and its members
through the network of relationships.

Generative LearningAdaptive Learning

Methodology
Agile vs. Plan-driven

Combinative
Capabilities

Figure 1– Value Creation in Agile and Plan-driven Software Development Teams

IT Value

IT Enabled Innovation
Internal IT Partnership

Social Capital
Structural, Relational and

Cognitive

Human Capital
Skills and Abilities Knowledge Outcomes

Explicit Knowledge
Tacit Knowledge

Balijepally, Nerur and Mahapatra IT Value of Software Development

4

We argue that software development is a knowledge creating activity, the knowledge outcomes of which are both tacit and
explicit. IT artifacts such as plans and designs, test cases, data models, data flow diagrams, source code and documentation
exemplify explicit knowledge created by the team (Boehm and Turner 2004). The tacit knowledge generated could be in the
form of mental schemas of the system and know-how regarding the technologies used and the business context. This tacit
knowledge created could be both at the individual (objectified) and group (collective) level. It is the combination of these
knowledge types that exemplifies the knowledge outcomes of software development effort.

We consider the two-step process of organizational learning as underpinning the value derived from software development
activity in project teams. In a recent article Ye and Agarwal adopted a similar two stage learning process to articulate the
value derived from strategic outsourcing partnerships (Ye and Agarwal 2003). The adaptive learning for the software
development team involves intuition, interpretation, and integration (Crossan et al. 1999) of team knowledge resources
derived from human and social capital in creating the design artifacts, the software and the new knowledge that contributes to
the knowledge stock of the team. The generative learning occurs when new ways of looking at things and recombining
existing knowledge stock and capabilities take effect to create higher valued outcomes for the team and the organization. This
is consistent with capabilities integration articulated by Grant (Grant 1996b) and involves concepts such as information
interpretation and distribution and organizational memory (Huber 1991; Ye and Agarwal 2003). The next few sections
showcase propositions related to the model.

Knowledge Creation in Software Teams

Software development is a dynamic knowledge creation endeavor wherein the business and technical knowledge of team
members in both tacit and explicit forms is exchanged and combined in complex ways to generate new knowledge some of
which remains tacit within the team while the explicit form of the knowledge manifests in the software product and the
documentation produced by the team. All knowledge creation occurs through the two generic processes of combination and
exchange (Moran and Ghoshal 1996). In a software development team, the knowledge resources of the individuals are
combined to create the various IT artifacts and the software. There is exchange of information and knowledge between
various members of the team such as between users and systems analysts, systems analysts and developers, developers and
testers. The increased emphasis placed by agile methodologies on collaboration and self-organization among team members
as well as on role rotation is likely to enhance the quality and intensity of knowledge exchanged.

Combination is the process of reconfiguring, sorting, adding, and conceptualizing existing explicit knowledge to create new
explicit knowledge. It involves reconfiguring of existing information (explicit knowledge) through, adding, sorting, re-
contextualizing and reappraising to provide new insights (Nonaka 1994). In a software development team, explicit
knowledge of analysts, developers and users is combined to produce new explicit knowledge through articulation to one self
and to the team and applying to the problem context to create new explicit IT artifacts. Internalization is the process of
converting explicit knowledge into tacit knowledge, which is akin to the conventional notion of ‘learning.’ Action or
‘learning by doing’ helps in the internalization process. Through trial and error, ideas and concepts are articulated and
reconfigured till a more concrete form emerges (Nonaka 1994). Internalization occurs at the individual level when explicit
knowledge available such as user requirements and technical documentation and the resultant interactions during actual
software development are absorbed as know-how.

Existing tacit knowledge of individuals and the team is converted into new explicit and tacit knowledge through the processes
of externalization and socialization respectively Experience is considered critical to the transfer of tacit knowledge. The
externalization mode triggers through a series of interactions and dialogue between software team members. Metaphors
typically play an important role in articulating otherwise difficult to articulate individuals’ perspectives and technical know-
how. Being situated in practice, tacit knowledge of the software development team members is externalized while working
on the problem at hand. Experienced programmers and systems analysts could externalize, through demonstration to other
members of the team, tacit knowledge inherent in activities such as abstracting object designs, creating and using design
patterns, identifying classes from the generic and organizational class libraries, using appropriate control structures and
debugging techniques. Socialization is the process through which existing tacit knowledge of individuals is converted to new
tacit knowledge. Socialization occurs through interaction between developers as in apprenticeship. Knowledge transfer by
socialization could occur even without the help of language, through observation, imitation and practice. The shared
experience during software development provides the context for people to transfer their thinking processes (Nonaka 1994).
The amount of knowledge creation through socialization in software development teams is however dependent upon the
methodology used.

Balijepally, Nerur and Mahapatra IT Value of Software Development

5

Human Capital and Team Knowledge Outcomes

The human capital of the software development team, reflected in the skills and abilities of software developers, is an
important factor determining the effectiveness of all aspects of software development irrespective of the methodology used.
Skills and abilities reflect the existing knowledge resources inherent in the members of the team. These skills include
programming ability and technical domain knowledge. For systems analysts, generalist skills (Benbasat et al. 1980; Green
1989) and technical skills that complement business skills (Todd et al. 1995) become important. For customers or users who
may be part of systems development team either full time or part time, the ability to understand and articulate the business
requirements becomes important. Unsuitable customer representation is a known project risk factor (Boehm and Turner
2004). High ability developers, analysts and testers with higher levels of tacit skills are better equipped to work on the
various explicit knowledge artifacts such as requirement specs, architecture plans and existing code artifacts in producing
higher explicit and tacit outcomes by pooling their knowledge and skills through the four generic processes of knowledge
conversion, that is combination, internalization, externalization and socialization.

We therefore argue that higher skills and abilities of software developers (human capital) in software development team
contribute to higher knowledge outcomes, both tacit and explicit.

Proposition 1: The human capital embedded in a software development team is positively related to both explicit
and tacit knowledge outcomes of the team

Social Capital and Team Knowledge Creation

Social capital is a multidimensional construct with three analytically distinct but related facets: structural, relational and
cognitive. Structural dimension of social capital refers to the overall pattern of connections between actors. In a software
development team the networks of relationships could be both internal and external to the team. While ties between the
members of the team capture the internal structure, the nature of relationships with other project teams within the
organization or even external to the organization constitute external network structures. Strength/weakness of ties (both
internal and external) and the resource content of these networks (e.g., network heterogeneity) are some structural aspects of
social capital. (Nahapiet and Ghoshal 1998). The relational dimension of social capital refers to personal relationships such as
respect or friendship individuals develop among themselves through a history of interactions that help fulfill different social
motives such as approval, sociability, and prestige. Trust and identification capture the relational aspects of social capital.
The cognitive dimension refers to the resources that provide shared representations, interpretations, and systems of meanings
among parties (Nahapiet and Ghoshal 1998). Shared vision and transactive memory systems capture this dimension of social
capital. Although individual dimensions of social capital are of immense research interest, in the interest of brevity, social
capital is treated as an aggregated construct in deriving propositions in the rest of the paper.

As conceptualized in Figure 1, we argue that the social and human capital embedded in a software development team yield
knowledge outcomes and IT value through a combination of adaptive and generative learning. Social capital, conceptualized
as the actual and potential resources available through the network of relationships of the focal actor, signifies the resource
value of relationships. In software development project teams, we view the network of relationships of members of a
software development team as a form of social capital for the team. This network of relationships enable access to potential
resources that supplement the human capital available in the team and contribute to valued team outcomes by fostering
adaptive and allocative efficiencies (Nahapiet and Ghoshal 1998). Allocative efficiency results from improvement in
information flow in the social network of the team members through reduction in structural redundancies in the network
(Burt 1997).

During software development, analysts and developers frequently look for advice and tips while working with new
technologies. The non-redundant information available through their network contacts within and outside the team is a
critical input to the software task at hand. Such information may provide opportunities to improvise during the software
development process. Social capital facilitates such information flow by reducing the transaction costs for information
retrieval (Putnam 1993). Adaptive efficiencies result from the cooperative behavior encouraged by social capital that results
in creativity and learning (Nahapiet and Ghoshal 1998). The new information and knowledge available and accessed from the
network of relationships of team members result in superior software products. Thus, social capital potentially facilitates
creation of higher levels of both tacit and explicit knowledge.

Proposition 2 - The social capital embedded in a software development team is positively related to both explicit
and tacit knowledge outcomes of the team

Balijepally, Nerur and Mahapatra IT Value of Software Development

6

Interaction of Methodology on Human Capital and Social Capital

Software development teams using plan-driven methodologies perform elaborate requirements gathering to develop
complete, consistent, traceable and testable specifications. Big upfront planning is used to control change. User involvement
is mainly in the initial phases of development. While plans are evolved to guide development and control change,
communication among developers is primarily through extensive documentation. Thus the traditional plan driven
methodologies are predisposed to producing explicit knowledge artifacts such as designs, plans and documentation that serve
as the means of communication. Creation of these artifacts results primarily from combination and externalization processes.
The traceability and verifiability imperatives of plan-driven development entail externalization of tacit knowledge of the
developers into explicit forms. Correspondingly, there is less emphasis on tacit knowledge with fewer opportunities for
facilitating processes such as internalization and socialization that are essential for creation of new tacit knowledge.

Agile methodologies follow a minimalist approach to requirement gathering and documentation. Only some architectural
designs and project vision documents are prepared in advance that guide developers. Participating users articulate the
requirements in the form of user stories and prioritize them. The competence and knowledge of team members are used to
cope with emergent problems (Highsmith 2003). This is consistent with the idea that “communities of interaction contribute
to the amplification and development of new knowledge” (Nonaka 1994). With the primacy accorded to delivery of working
code at frequent intervals, shared vision and shared understanding of project goals and objectives is emphasized to
incorporate changes as they occur (Boehm and Turner 2004). With collocated team members and a readily accessible user
representative, the need for externalization processes to convert tacit knowledge into more explicit forms is reduced. Instead a
climate for generating higher levels of tacit knowledge is fostered through processes such as socialization and internalization.
There is thus substantially higher level of tacit knowledge generated in agile teams as compared to plan-driven software
development teams. These arguments yield the following propositions.

Proposition 3a: The human capital and social capital embedded in a software development team produce higher
levels of explicit knowledge when using plan-driven methodologies than when using agile methodologies

Proposition 3b: The human capital and social capital embedded in a software development team produce higher
levels of tacit knowledge when using agile methodologies than when using plan-driven methodologies

IT Value Creation through Generative Learning

The knowledge outcomes in the software development team underpin the organizational IT value created. The knowledge
when it undergoes a process of recombination and integration with the existing knowledge and capabilities, leads to valued
outcomes for the team and the organization (Grant 1996a; Kogut and Zander 1992). The IT value created may be
conceptualized in terms of generative learning. Generative learning typically occurs when, based on exigencies, people start
questioning the preset conditions and taken for granted assumptions. It involves changes in the underlying governing values
or master programs that lead to changes in action (Argyris 1977; Argyris 1996; Senge 1990). Such learning outcomes
enhance the human and social capital of the team and strengthen organizational capabilities for the future. We conceptualize
that the generative learning for the team and the organization is reflected in the strengthened internal IT partnership and IT
enabled innovation (Ye and Agarwal 2003). We argue that knowledge outcomes interact with the combinative capabilities of
the team in creating IT value through generative learning.

Team Knowledge Outcomes and IT Enabled Innovation

IT enabled innovation is the deployment of IT for the creation of new products and services, new forms of organization, or
for exploring new market opportunities (Agarwal and Sambamurthy 2002). Innovation, IT enabled or otherwise, is an
important organizational capability that contributes to competitive advantage enjoyed by a firm. As any organizational
innovation provides competitive advantage for a finite period before competitors catch up, continuous innovation through
cannibalization of existing products and technologies is the mantra for organizations to survive and thrive in a competitive
marketplace. Contribution of knowledge to creating and sustaining organizational innovation is well documented in
knowledge management literature (Grant 1996a; Grant 1996b).

The knowledge outcomes of a software development team could spur IT-enabled innovation in complex ways. The IT artifact
which personifies explicit knowledge may be used in novel ways not originally conceived by the software team. The

Balijepally, Nerur and Mahapatra IT Value of Software Development

7

knowledge gained during a systems development effort could help create new software products or services by the focal unit
and the IT. For example, a software team based on its knowledge gained from a system development/implementation effort
could provide consulting services on related matters to other teams within or even outside the organization. In the presence of
generative learning, when a software team is able to come up with new ways of applying the knowledge gained to current or
new problems, such efforts are expected to result in greater IT-enabled innovation. Thus,

Proposition 4: The knowledge outcomes of software development team are positively related to its IT enabled
innovation

Team Knowledge Outcomes and Internal IT Partnership

Having an effective relationship between IT and business in organizations is considered a key requirement for deriving IT
value (Reich and Benbasat 2000). Appreciating the complementarity of mutual contributions to the organizational value is a
key to nurturing such partnerships. Internal partnership between line managers and IT managers and specialists helps an
organization in deriving higher strategic benefits from IT resources and investments. Such partnerships foster harmonious
relationships between IT and business which enhances mutual trust and confidence and even improves the overall standing of
IT within the organization. Having internal IT-business partnership constitutes IT value as the success of any IT initiative is
critically dependent upon the convergence of business and technology (Nambisan et al. 1999).

Knowledge outcomes of software development contribute to fostering IT-business partnerships for the focal team in
important ways. Higher levels of tacit and explicit knowledge outcomes enhance the visibility of the team and its
contributions to the IT unit and the business. The explicit knowledge artifacts such as documentation help ease
communication gaps between the team, IT unit and the business. The business customers carrying rich tacit knowledge from
their involvement with the software development team become ambassadors of IT in nurturing and cementing the IT-business
partnership. The boundary spanning activities of these business customers not only provides valuable resources to the focal
unit and IT during the systems development effort, but also opens up innovative collaboration possibilities. The
communication and interaction developed with business during the systems development effort also increases the
responsiveness of focal unit and the IT to future business requirements. Thus,

Proposition 5: The knowledge outcomes of a software development team is positively related to its internal IT
business partnership

Interaction of Team Knowledge Outcomes and Combinative Capabilities

Argyris and Schon originally enunciated that a performance gap is a necessary condition for first and second order
organizational learning (Argyris and Schon 1978). Other researchers identified two additional necessary conditions (Duncan
and Weiss 1979; Huber 1991). First, the organizational members should have the motivation, ability, and opportunity to
resolve the perceived performance gap for the organization. Second the first and second order learning by individual
members must be externalized or translated from the individuals’ tacit knowledge into an appropriate useful form (Arthur and
Aiman-Smith 2001). Combinative capability of software development team is a factor that could potentially moderate the
relationship between knowledge outcomes and IT value created by the team.

Combinative capability is the intersection of an entity’s capability to exploit its current knowledge to create new
opportunities (Kogut and Zander 1992). Innovation and new learning are results of an entity’s combinative capabilities to
create new knowledge and applications from its existing pool of knowledge. Kogut and Zander provide illustrations of such
abilities at the individual level and demonstrate its utility at the organizational level (Kogut and Zander 1992). We
conceptualize combinative capabilities in our model at the team level to show the generative learning outcomes of its
interaction with knowledge outcomes of software team. The combinative capabilities comprise system capabilities,
coordination capabilities, and socialization capabilities (Van Den Bosch et al. 1999). System capabilities include the various
explicitly laid down policies, procedures, manuals that provide direction in routine situations and help in the integration of
explicit knowledge. They help in reducing the need for communication and coordination while tackling every day problem
situations. Creation of higher levels of new knowledge and innovation is determined by the combinative abilities of the focal
unit and existing knowledge stock. In software development the combinative capability of the focal team include system
capabilities to codify knowledge and experience to provide future direction, coordination capabilities to manage the project
and socialization capabilities to interact with the stakeholders within and outside the focal unit. In software development
teams high levels of this ability could determine whether the knowledge outcomes created by the team result in higher IT
value for the team and by extension to the organization. This leads us to the last proposition:

Balijepally, Nerur and Mahapatra IT Value of Software Development

8

Proposition 6: The strength of the positive relationship between knowledge outcomes of a software development
team and IT value is positively moderated by the focal team’s combinative capabilities1

Conclusion

Theoretical foundations of empirical research in software development are not very robust. Given the changing nature of the
field, there is ample opportunity to draw on the extensive corpus of knowledge in organizational and management theory to
address myriad issues. This research examines the applicability of three very popular theoretical expositions to understand
the benefits of social capital that accrue to software development teams using agile versus traditional plan-driven
methodologies. We argue that software development is a knowledge creating activity where human capital and social capital
embedded in a software team work to create knowledge outcomes, both tacit and explicit. The relative extent of knowledge
outcomes is contingent upon the methodology used, with agile teams producing higher tacit knowledge and traditional plan-
driven teams creating higher explicit knowledge outcomes. Drawing from the organizational learning literature, we argue that
the adaptive learning of the software team results in knowledge outcomes, while generative learning leads to IT value for the
team and the organization. We have articulated a research model anchored in some well-known theories. In addition to
developing a robust model to investigate software development using different methodologies, we have demonstrated the
value of applying widely accepted theories to software development.

References

Agarwal, R., and Sambamurthy, V. "Principles and Models for Organizing IT Function," MIS Quarterly Executive (1:1),
2002, pp. 1-16.

Argyris, C. "Double Loop Learning in Organizations," Harvard Business Review (55:5), 1977, pp. 115-125.
Argyris, C. "Unrecognized Defenses of Scholars: Impact on Theory and Research," Organization Science (7:1), 1996, pp. 79-

87.
Argyris, C., and Schon, D.A. Organizational Learning: A Theory of Action Perspective, Addison-Wesley, Reading, MA,

1978.
Arthur, J.B., and Aiman-Smith, L. "Gainsharing and Organizational Learning: An Analysis of Employee Suggestions Over

Time," Academy of Management Journal (44:4), 2001, pp. 737-754.
Balijepally, V., Mahapatra, R., and Nerur, S. "Social Capital: A Theoretical Lens for IS Research," Americas Conference for

Information Systems, New York, NY, 2004, pp. 1585-1592.
Benbasat, I., Dexter, A.S., and Mantha, R.W. "Impact of Organizational Maturity on Information System Skill Needs," MIS

Quarterly (4:1), 1980, pp. 21-34.
Boehm, B., and Turner, R. Balancing Agility and Discipline: A Guide to the Perplexed, Addison-Wesley, Boston, MA, 2004.
Bourdieu, P. "The Forms of Capital," in: Handbook of Theory and Research for the Sociology of Education, J.G. Richardson

(ed.), Greenwood, New York, 1986, pp. 241-258.
Burt, R.S. "The Contingent Value of Social Capital," Administrative Science Quarterly (42:2), 1997, pp. 339-365.
Coleman, J.S. "Social Capital in the Creation of Human Capital," American Journal of Sociology (94), 1988, pp. S95-S120.
Crossan, M.M., Lane, H.W., and White, R.E. "An Organization Learning Framework: From Intuition to Institution,"

Academy of Management Review (24:3), 1999, pp. 522-537.
Duncan, R.B., and Weiss, A. "Organizational Learning: Implications for Organizational Design," in: Research in

Organizational Behavior, B.M. Staw (ed.), JAI Press, Greenwich, CT, 1979, pp. 75-123.
Fiol, C.M., and Lyles, M., A. "Organizational Learning," Academy of Management Review (10:4), 1985, pp. 803-813.
Gilb, T. Principles of Software Engineering Management, Addison-Wesley, Reading, MA, 1987.
Grant, R.M. "Prospering in Dynamically-competitive Environments: Organizational Capability as Knowledge Integration.,"

Organization Science (7:4), 1996a, p. 375.
Grant, R.M. "Toward a Knowledge-Based Theory of the Firm," Strategic Management Journal (17), 1996b, pp. 109-122.
Green, G.I. "Perceived Importance of Systems Analysts' Job Skills, Roles, and Non-Salary Incentives," MIS Quarterly

(13:13), 1989, p. 2.
Hannay, J.E., Sjoberg, D.I.K., and Dyba, T. "A Systematic Review of Theory Use in Software Engineering Experiments,"

IEEE Transactions on Software Engineering (33:2), 2007, pp. 87-107.

1 The propositions for moderating effect of combinative capabilities on the effect of knowledge outcomes on individual
dimensions of IT value have not been shown for the sake of brevity.

Balijepally, Nerur and Mahapatra IT Value of Software Development

9

Highsmith, J. "Agile Project Management: Principles and Tools," Agile Project Management Advisory Service (4:2), 2003, p.
37.

Huber, G.P. "Organizational Learning: The Contributing Processes and the Literatures," Organization Science (2:1), 1991,
pp. 88-115.

Kogut, B., and Zander, U. "Knowledge of the Firm, Combinative Capabilities, and the Replication of Technology,"
Organization Science (3:3), 1992, p. 383.

Lindblom, C.E. "Alternatives to Validity: Some Thoughts Suggested by Campbell’s Guidelines," Knowledge Creation,
Diffusion, Utilization (8), 1987, pp. 509-520.

Moran, P., and Ghoshal, S. "Value Creation of Firms," in: Academy of Management Best Paper Proceedings, J.B. Keys and
L.N. Dosier (eds.), 1996, pp. 41-45.

Nahapiet, J., and Ghoshal, S. "Social Capital, Intellectual Capital, and the Organizational Advantage," Academy of
Management Review (23:2), 1998, pp. 242-266.

Nambisan, S., Agarwal, R., and Tanniru, M. "Organizational Mechanisms for Enhancing User Innovation in Information
Technology.," MIS Quarterly (23:3), 1999, pp. 365-395.

Nerur, S., Mahapatra, R., and Mangalaraj, G. "Challenges of Migrating to Agile Methodologies," Communications of the
ACM (48:5), 2005, pp. 73-78.

Nonaka, I. "Dynamic Theory of Organizational Knowledge Creation," Organization Science (5:1), 1994, pp. 14-37.
Polanyi, M. The Tacit Dimension, Anchor Day Books, New York, 1966.
Putnam, R.D. "The Prosperous Community: Social Capital and Public Life," American Prospect (13), 1993, pp. 35-42.
Reich, B.H., and Benbasat, I. "Factors that Influence the Social Dimension of Alignment between Business and Information

Technology Objectives," MIS Quarterly (24:1), 2000, p. 81.
Senge, P.M. "The Leader's New Work: Building Learning Organizations." Sloan Management Review (32:1), 1990, p. 7.
Spender, J.C. "Making Knowledge the Basis of a Dynamic Theory of the Firm," Strategic Management Journal (17:S2),

1996, pp. 45-62.
Todd, P., McKeen, J.D., and Gallupe, R.B. "The Evolution of IS Job Skills: A Content Analysis of IS Job Advertisements

from 1970 to 1990," MIS Quarterly (19:1), 1995, pp. 1-27.
Van Den Bosch, F.A.J., Volberda, H.W., and De Boer, M. "Coevolution of Firm Absorptive Capacity and Knowledge

Environment: Organizational Forms and Combinative Capabilities." Organization Science (10:5), 1999, p. 551.
Ye, F., and Agarwal, R. "Strategic Information Technology Partnerships in Outsourcing as a Distinctive Source of

Information Technology Value: A Social Capital Perspective," Twenty-Fourth International Conference on
Information Systems, Seattle, WA, 2003, pp. 304-315.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2007

	IT Value of Software Development: A Multi-theoretic Perspective
	Venugopal Balijepally
	Sridhar Nerur
	Radha Mahapatra
	Recommended Citation

	Microsoft Word - $ASQ2759747_File000005_31596791

