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Abstract 

Certain data standards can help improve the quality of the data created according to the 

standards. But data standards do not always improve data quality. We introduce the notion of 

“quality of data standards” and argue that quality of data is affected by the quality of the 

standards used. We develop metrics for assessing quality of data standards. The metrics are 

evaluated empirically using company financial reports created using the eXtensible Business 

Reporting Language (XBRL) data standards. Our findings show the use frequency of standard 

data elements roughly follows a power law distribution. Tradeoffs exist between relevancy and 

completeness dimensions and between a single user perspective and user community perspective. 

Keywords:  data quality, interoperability, data standards, XBRL, power law distribution, long tail 
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Introduction 

In Desert Storm, an aerial observer located an enemy unit and sent a bombing request to the artillery headquarters. 

Using the enemy location’s coordinate received from the artillery headquarters, the Navy ship off the coast fired two 

rounds, but both missed the target by 527 meters (Herrera 2003), a distance way greater than the expected precision! 

What went wrong? It turned out that the artillery headquarters and the Navy used different geo-coordinate systems 

with which the same coordinate represents different locations on earth. This is a form of data quality problem caused 

by lack of interoperability between organizations and between systems.  

Aside from battle grounds, data sharing among organizational units and between organizations is also required in 

ordinary day-to-day operations. Data from disparate sources must have high quality and be unambiguously 

interpretable for the users to make good decisions. Data standardization has the potential of ensuring quality and 

enhancing interoperability of data from disparate sources.   

The Department of Defense (DoD) later found a simple solution to the data quality problem mentioned earlier. In a 

project dubbed “Cursor on Target”, the DoD standardized target data exchanged among different branches of the 

armed forces. The standard is rather simple and consists of only three entities and 13 attributes (Rosenthal et al. 

2004). Regardless of the coordinate system used internally, the target data exchanged using the standard can be 

correctly interpreted by any branch that receives it. Another successful DoD project developed a standard for 

exchanging meteorological (i.e., weather-related) data among different systems. The standard consists of 

approximately 1,000 elements and took five years to develop (Rosenthal et al. 2004). This standard worked very 

well partially because the concepts represented by the data elements are commonly understood with precise 

scientific definitions 

Do data standards always improve data quality and interoperability of disparate sources, especially when the 

standards are large with thousands of data elements? This is an under-researched area and there is evidence showing 

that the impact of standards on data quality can go either way, depending on the “quality of standards”.  

In this paper, we introduce the concept of “quality of standards”, develop a framework for assessing the quality of 

standards, and empirically evaluate the framework using data standards and corresponding data instances. The 

empirical evaluation uses a collection of eXtensible Business Reporting Language (XBRL) (XBRL International 

2006) taxonomies (the data standards) and XBRL financial statements (the data sources) filed by approximately 140 

public companies to the Securities and Exchange Commission (SEC). Our analysis show that many companies only 

use a small fraction of the data elements in the standard taxonomies and have introduced a large number of 

additional data elements not defined in the standard taxonomies. As a result, the financial statements from different 

companies cannot be easily compared. The lack of interoperability among financial statements of different 

companies is largely due to the low quality of the standard taxonomies measured using our metrics for quality of 

data standards.     

Quality of Data Standards 

Most data quality research focuses on data, not the standards used to create and organize the data. Data quality is a 

multi-dimensional concept that goes beyond accuracy. Prior research has identified 16 dimensions (e.g., consistency, 

interpretability, completeness, relevancy, etc.) of data quality (Wang and Strong 1996). Data quality perceived by 

users of different roles within an organization can be assessed using survey instruments (Lee et al. 2002). Quality of 

database schemas is discussed in (Redman 1996). Although a database schema is a type of data standard, it is mainly 

used within a single organization to organize and store data in a database. In contrast, the main objective of many 

data standards is to allow for meaningful exchange of data among multiple organizations so that the data from 

different organizations are interoperable.  

Data standards are meta-data that specifies the characteristics of data elements and their relationships. From the 

perspective of standard users, meta-data is also data. Therefore certain aspects of data quality are also applicable to 

data standards. Data standards also have their distinct characteristics that require different quality metrics or 

different measurement methods for the same metrics. Since a data standard is designed for use by multiple 

organizations, and quality is defined as fitness for use, it is necessary to observe and analyze how different 

organizations use the standard when assessing the quality of the standard.  
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In this study, we will focus on two quality dimensions that have significant impact on the interoperability of data 

created by multiple organizations that use a common standard: completeness and relevancy. When a standard has 

low completeness, users must introduce new elements, in which case the data instances are not interoperable.  When 

a standard has low relevancy, users incur unnecessary cognitive cost and have increased propensity of misusing data 

elements, in which case the data instances contain Error.  

In (Wang and Strong 1996), completeness is defined as “the extent to which data are of sufficient breadth, depth, 

and scope for the task at hand”, and relevancy is defined as “the extent to which data are applicable and helpful for 

the task at hand”. Schema completeness and pertinence (i.e., relevancy) are defined similarly in (Redman 1996). 

These definitions are useful at conceptual level, but they do not offer metrics for measuring quality along the defined 

dimensions. Below, we develop metrics that can be used to assess completeness and relevancy of a data standard. 

From standard user’s perspective, the “task at hand” is to use the standard to create data instances that can 

interoperate with data created by other users. Thus we need to examine the data instances of various standard users 

to assess standard quality. Figure 1 illustrates this point.  

Standard Elements

Company A 

Elements

Company B 

Elements

S
A

B

 

Figure 1.  Quality of Data Standard 

A data standard specifies a set of elements, S, represented by the solid oval in Figure 1. Suppose there are only two 

organizations that use the standard: company A and company B. Each company extends the standard by adding its 

own elements, which can be identified by examining the company specific standard. To identify the elements 

actually used by a company, we have to examine the data instances created by the company. The sets of elements 

used by companies A and B are represented in the figure as A (the dashed oval) and B (the dotted oval), 

respectively. The completeness and relevancy of the standard from the perspective of a given company may be 

defined straightforwardly. For example, from company A’s perspective,  
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From the standard developer’s perspective, we need to evaluate different definitions of the metrics. For example, it 

may be tempting to define them as 
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But the definition does not take into account the intersection of A and B. It may be more appropriate to take the 

harmonic mean or the geometric mean of the metrics measured for all companies.  

In order to obtain the measurements of the metrics, we must identify the standard elements used by each company. 

Thus these metrics provide more information about how a standard is used than other studies that only report the 

average of the number of standard elements used by all companies. For example, an investigation on how U.S. 

companies used XBRL in their SEC filings (Boritz and No 2008b) finds that an average company used 162 standard 

elements and 190 extension elements. From the averages, we cannot infer the number of standard elements used by 

all companies because we do not know the degree of overlapping of the standard elements used by different 

companies. It will be incorrect to say that 8.1% (which is 162/2,000) of the 2,000 elements were used by the 

companies - this would be correct only if all companies used the same 162 elements.   

By examining both the standards and the instances, we can also identify ways of improving standard design and 

areas where advanced technologies are needed to enable interoperability of data sources in the presence of 



Design Science 

4 Thirtieth International Conference on Information Systems, Phoenix 2009  

“imperfect” standards. For example, a standard with low completeness will cause the standard users to introduce a 

large number of elements not defined by the standard. The interoperability of the data created by the users will be 

low in this case. We need to match up these elements amongst different users to enable interoperability. 

Technologies are desired to automate the matching process and reconcile other subtle semantic differences (Zhu and 

Madnick 2006).   

Evaluation Method 

In the financial accounting community, there has been an effort since the late 1990s to develop a set of data 

standards so that financial statements from different companies can be easily compared (i.e., interoperable). The data 

standards, known as taxonomies, are specified using an eXtensible Markup Language (XML)-based language called 

the eXtensible Business Reporting Language (XBRL) (XBRL International 2006). There are country-specific 

taxonomies to accommodate differences in accounting methods and reporting requirements. In the U.S., there are a 

taxonomy for commonly used financial reporting terms (approximately 2,000 elements) and a set of industry-

specific taxonomies. Collectively, the taxonomies form a standard for companies publicly traded in the U.S. to 

create electronic financial statements (which are called XBRL instances). Since the standard may not define all 

possible elements, companies are allowed to extend the standards with their own elements. Unlike meteorology, the 

financial accounting domain has concepts that lack precise and uniform definitions.      

With the interest of adopting XBRL, the Securities and Exchange Commission (SEC) of the U.S. established a 

voluntary XBRL filing program in 2005 to allow companies to submit their financial statements in XBRL. As of 

April 30, 2009, 140 companies had submitted XBRL taxonomy extensions and XBRL instances, and many of the 

companies have submitted multiple filings for different accounting periods.  

By analyzing the XBRL instances submitted to the SEC, we can identify the data elements used by the companies 

and evaluate the proposed metrics for measuring the quality of data standards. There are two additional benefits of 

using actual company data. First, it allows us to investigate if the XBRL standards have helped with the creation of 

high quality and interoperable financial statements. Preliminary studies show that there are still interoperability 

challenges (Debreceny et al. 2005; Zhu and Madnick 2007) and more than a half of the XBRL instances filed to the 

SEC have errors (Boritz and No 2008b; Chou 2006). Second, we can discover how data standards are used, and 

from the usage pattern we can further develop methods and guidelines for designing high quality data standards.  

To assist with data analysis, we have developed an XBRL processing tool to extract data elements from XBRL 

instances and separate standard elements from those defined by the company. Figure 2 shows the partial user 

interface after the elements of an XBRL instances have been extracted and separated. In this particular example, the 

company used 70 elements defined in XBRL data standard and 45 elements defined by the company.  

 

Figure 2.  Screenshot of XBRL Process Tool 
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Evaluation Results 

The results are based on the analyses of the XBRL instances of 140 companies collected from the SEC’s voluntary 

filing program. Most companies have more than one filing. We treat all filings of each company as opposed each 

filing as a data point. For a company that has more than one filing, the set of data elements used by the company is 

the union of the elements used in all filings.  

Before we present the details, we first highlight the main findings: there were large variations across accompanies 

and the use frequency of standard elements roughly followed a power law distribution.  

Figure 3 shows the distribution of the number of filings per company (i.e., number of XBRL instances per 

company). Most companies only filed once or twice, but there are two companies that filed more than 16 times.  
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Figure 3.  Histogram of Number of SEC Filings per Company 

The use of standard elements and company-specific elements also varied substantially across companies. Table 1 

provides the summary statistics. Both extreme cases exist: company that only used elements from the standard and 

company that did not use standard elements at all! An average company used 128 elements from the standard (which 

defines ~2,000 elements) and introduced 64 elements of its own. To the average company, the completeness of the 

standard was 66.67% (which is 128/(128+64)), and the relevancy of the standard was 6.40% (which is 128/2000).  

Table 1. Statistics of Number of Standard Elements 

and Company Elements 

 Standard Company 

Min 0 0 

Max 528 593 

Mean 128.28 64.26 

Median 110 38 

Stand deviation 78.32 85.78 

Although on average a company only used a small fraction of the standard elements, the 140 companies used 1385 

standard elements. That is, using the metric suggested earlier, the relevancy of the standard from the standard 

developer’s perspective was 69.25% (i.e., 1385/2000). On the other hand, the companies introduced 8996 elements 

of their own. Assuming these elements were unique (a big assumption), the completeness of the standard from the 

standard developer’s perspective was only 13.34% (i.e., (1385/(1385+8996)).  

The use frequency of the 1385 standard elements is shown in Figure 4. There are a few elements that were used by 

more than a third of the companies. But most the elements were only used by a couple companies. This is a typical 

power law distribution, also known as the long tail distribution.  
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Figure 4.  Use Frequency of Standard Elements 

The top 50 most frequently used standard elements and their use frequencies are provided in Table 2 (e.g., 

StockholdersEquity is used by 45 companies). Elements are ordered according to descending order of use frequency.  

Table 2. Top 50 Standard Data Elements and Use Frequency 

StockholdersEquity 45 LiabilitiesCurrent 31

Assets 43 NetCashProvidedByUsedInFinancingActivities 31

CommonStockValue 41 RetainedEarningsAccumulatedDeficit 31

OtherAssetsNoncurrent 41 LiabilitiesStockholdersEquity 30

AccountsPayable 37 NetCashFlowsProvidedUsedInvestingActivities 30

Liabilities 37 NetIncome 30

CashCashEquivalents 34 ProvisionIncomeTaxes 30

NetCashFlowsProvidedUsedFinancingActivities 34 RetainedEarnings 30

NetCashFlowsProvidedUsedOperatingActivities 34 ComprehensiveIncomeNetOfTax 29

NetIncreaseDecreaseCashCashEquivalents 34 DepreciationAndAmortization 29

EarningsPerShareBasic 33 PaymentsToAcquirePropertyPlantAndEquipment 29

EarningsPerShareDiluted 33 AdditionalPaidCapital 28

Goodwill 33 CurrentLiabilities 28

IncomeTaxExpenseBenefit 33 DeferredIncomeTaxExpenseBenefit 28

InterestExpense 33 PropertyPlantEquipmentNet 28

LiabilitiesAndStockholdersEquity 33 TotalCurrentAssets 28

NetCashProvidedByUsedInInvestingActivities 33 AccountsReceivableNetCurrent 27

NetCashProvidedByUsedInOperatingActivities 33 CommonStockParOrStatedValuePerShare 27

NetIncomeLoss 33 CommonStockSharesAuthorized 27

PropertyPlantAndEquipmentNet 33 CommonStockSharesIssued 27

TreasuryStockValue 32 OtherLiabilitiesNoncurrent 27

AccumulatedOtherComprehensiveIncomeLossNetOfTax 31 IncomeLossContinuingOperationsBeforeIncomeTaxes 26

CashAndCashEquivalentsAtCarryingValue 31 IntangibleAssetsGoodwill 26

CashAndCashEquivalentsPeriodIncreaseDecrease 31 OtherNoncurrentLiabilities 26

IncomeLossFromContinuingOperationsBeforeIncomeTaxesMinorityInterestAndIncomeLossFromEquityMethodInvestments31 PreferredStockValue 25  

When companies introduce additional elements, these elements may overlap (i.e., multiple companies introduce the 

same data elements not included in the standard). Identifying the same elements introduced by different companies 

is very difficult because different names may be used by different companies for the same concept. Similarly, the 

same name may be used to refer to different concepts by different companies. We are in the process of developing 

matching algorithms to identify overlapping elements introduced by different companies. For now, let us use simple 

string matching and assume elements with an identical name are the same data element. The top 20 overlapping 

elements under this assumption are provided in Table 3 in descending order of the number of companies introducing 

the element.  
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Table 3. Top 20 Company-Introduced Elements and Frequency 

CashCashEquivalentsBeginningYear 20 

CashCashEquivalentsEndYear 20 

OperatingActivitiesNetIncome 16 

PurchasePropertyPlantEquipment 16 

AccumulatedComprehensiveIncomeBeginningBalance 12 

AccumulatedComprehensiveIncomeEndingBalance 12 

AdjustmentDepreciationAmortization 12 

AdjustmentEquityCompensation 12 

CashDividendAmountPerShare 12 

CommonStockValueTotalBeginningBalance 12 

CommonStockValueTotalEndingBalance 12 

StockholdersEquityEndingBalance 12 

AdjustmentAssetImpairmentCharge 10 

AdjustmentDeferredIncomeTaxes 10 

ChangeAccountsReceivable 10 

ChangePrepaidExpensesOtherCurrentAssets 10 

NetIncomeRetainedEarnings 10 

RetainedEarningsBeginningBalance 10 

RetainedEarningsEndingBalance 10 

StockholdersEquityBeginningBalance 10 

We observe that certain company-introduced elements are more specific than similar elements in the standard. For 

example, the first two elements in Table 3, CashCashEquivalentsBeginningYear and CashCashEquivalentsEndYear, 

are more specific than CashCashEquivalents, the 7
th

 element in Table 2, used by 34 companies. However, these two 

elements are introduced unnecessarily because XBRL has a context mechanism to include the as-of date of 

CashCashEquivalents to indicate whether the value is for the beginning of the year or the end of the year. The 

matching algorithms we are developing will help us identify such elements that should not have been introduced by 

standard users. Introduction of such elements reduces interoperability of financial statements of different companies.  

A more specific element is usually constructed by adding additional qualifiers to a more general element. If 

company-introduced elements tend to be more specific than those in the standard, company-introduced elements are 

expected to be longer and to have more sub-terms than those in the standard. A sub-term is a word from a 

vocabulary (English in this case) that is a part of an element name. For example, CashCashEquivalents has three 

sub-terms: cash, cash, and equivalents. We have analyzed the set of standard elements and the set of elements 

introduced by all companies using measures discussed in (Good and Tennis 2009). Our results show that on average, 

a standard element has 43.05 characters and 5.75 sub-terms, whereas a company-introduced element has 53.95 

characters and 7.25 sub-terms. Thus it is likely that companies introduced certain elements because they felt those in 

the standard were too general to use. Further investigation using the element matching algorithms will reveal more 

information about the company-introduced elements.  

Discussion 

Completeness and relevancy of a data standard affect the interoperability of data created by multiple organizations 

that use the standard. Our empirical analysis shows that from an individual company’s perspective, the XBRL data 

standard has low completeness and relevancy. As a result, the financial statements from different companies have 

low interoperability because companies have introduced a large number of data elements not defined in the standard. 

The empirical analysis also reveals an interesting pattern of the usage of large data standards: a typical user only 

uses a small fraction of the standard, but when all users as a whole are considered, most of the standard is utilized. 

This raises an important question: given the high cost of standard development, how should we design a high quality 
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standard with minimal cost? How should we make the trade-offs between completeness and relevancy from the 

perspectives of an individual user and all users as a whole?   

We are currently working on the “big assumption” mentioned earlier: we assumed that the elements introduced by 

companies are unique. This may not be true. As seen in the preceding discussion, many company-introduced 

elements have identical names, indicating they are very likely identical concepts. A company may introduce a 

redundant element because the company may be unaware of its existence in the standard. This tends to happen when 

the data standard contains a large number of elements, as is the case of XBRL taxonomies. For example, the XBRL 

standard has the element AccountantName for “Accounts Information – Name”, yet a company introduced its own 

element AccountsInformationName (Boritz and No 2008a), which unnecessarily introduced redundancy. We plan to 

combine and enhance several syntactic and semantic similarity algorithms (Rahm and Bernstein 2001) to semi-

automatically identify potential duplicate data elements. These algorithms will exploit certain characteristics of 

XBRL (e.g., the equational relationships among elements) (Zhu and Madnick 2007). 

We have only considered two standard quality dimensions in this study. Future research should examine other 

pertinent dimensions and develop metrics to measure standard quality along these dimensions. Future research 

should also investigate the effects of standard quality along the additional dimensions on the quality of data 

instances created using the standard.  
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