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ABSTRACT 

Despite the documented benefits of clinical decision support systems in reducing the number of adverse drug events (ADEs) 

and medication errors, their adoption has been very limited.  In this paper, we propose a clinical learning model that 

incorporates the use of a Clinical Decision Support System (CDSS) to improve the decisions on the initial drug selection and 

ongoing dosage and application. The model allows for the analytical investigation of the effects of different CDSS 

functionalities on clinical learning.  The analytical results suggest that using CDSS to improve drug selection decisions 

positively influences the importance of the patient-level information for the physician.  On the other hand, absent 

improvements in successful drug selection, the use of CDSS may in fact negatively influence the clinical learning.   

Keywords 

Clinical decision support system (CDSS), clinical learning, prescription error, drug selection, dosage 

INTRODUCTION 

People in the U.S. younger than 65 purchased a mean of 10.8 prescription drugs, and those 65 or older purchased a mean of 

26.5 prescription drugs in 2001 (Pancholi and Stagnitti 2004).  Each year, physicians write four billion prescriptions, of 

which four percent contain an error, and 1.5 million people are injured due to preventable adverse drug effects (ADEs) and 

medication errors (Wall Street Journal 21 January 2009). According to a much-cited Institute of Medicine report, 44,000 to 

98,000 of the prescription errors are fatal.
1
  Physicians can prevent 28 percent of the ADEs (Bates et al. 1995). 

Improving physician responsiveness, facilitating learning and clinical experience are important in preventing ADEs.  As the 

gatekeepers to prescription medication access, physicians face significant challenges in keeping up with the developments 

and new findings in the market each year and in matching the best drugs to individual patients.  Mirco et al. (2005) find that 

the most common prescription errors (in the order of importance) are deficiencies related with (i) choosing the right drug 

class but the wrong drug, (ii) choosing the correct dosage, and (iii) the clarity of orders.  After surveying prescriptions, 

Seidling et al. (2007) report that many prescribed dosages tend to exceed the approved limits.   

Recent empirical studies corroborate the importance of each individual physician’s learning, clinical experience, and patient 

interaction on the actual prescription behavior.  Patient-physician interaction is important due to potentially unexpected drug 

reactions on different patients, while clinical experience provide critical information to physicians during the prescription 

process.  Chan and Hamilton (1996) show that even the least effective drug may still have a significant market share because 

of the heterogeneity of effectiveness and the side effects of drugs on patients.  Coscelli and Shum (2004) find that physicians 

are initially reluctant to prescribe new drugs and underestimate the quality of innovations.  They also find that physicians 

regularly update their beliefs on the efficacy of new drugs based on their clinical experience.  Further, the authors observe 

that prices of drugs do not have much effect on physicians’ prescription choices. Crawford and Shum (2005) develop a 

forward-looking framework to examine the learning behavior of patients who switch between different treatments.  The 

authors find that (i) patients search for a match among different treatments for their problems, (ii) they learn fairly quickly 

about drug effects, and (iii) their drug efficacy perceptions vary substantially.  Akçura et al. (2004) provide further evidence 

of learning by patients in OTC drug categories. The authors argue that marketing and communication strategies can expedite 

the learning behavior and contribute to the search behavior.  

Clinical decision support systems (CDSS) have the potential to help physicians with their clinical learning and hence 

prescription accuracy.  Researchers have long advocated the use of CDSS to help improve physician’s prescribing choices 

and expand their pharmacological knowledge in order to minimize ADEs.  Seidling et al. (2007) suggest that prevention of 

prescription dosage errors are possible but require implementation of an appropriate database and decision support tools.  To 

                                                           

1
 See http://books.nap.edu/books/0309068371/html/.   
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help with physicians’ learning process, Tamblyn (1997) proposes computer-based drug information networks and expert 

decision-making support systems as means to achieve an accurate record of drugs (and associated problems) currently being 

taken by patients and an expert resource in the selection of drug treatment.   

CDSS may reduce physician errors by identifying the right drug for a patient.  Computerized physician order entry (CPOE) 

plays an important role in CDSS for an improved drug – patient match. CPOE facilitates the accurate drug selection and 

reduces the rate of non-intercepted serious medication errors by more than half (Bates et al. 1998, Bates et al. 1999).  

Bochicchio et al. (2006) report that the use of web-based handheld decision support technology is highly effective in 

improving antibiotic decision accuracy among physicians.  In a recent review of the literature, Ammenwerth et al. (2008) 

provide evidence that the use of CPOE leads substantial reductions in medication errors and ADEs (13 to 99 percent, as 

reported by 23 of the 25 studies that have been reviewed).  Shamliyan et al. (2008) find that the use of CPOE was associated 

with a 66 percent reduction in total prescribing errors in adults.   

CDSS may also reduce the ongoing dosage- and drug application-related errors once the drug is prescribed.  Kirk et al. 

(2005) assess the rate of medication errors in predominantly ambulatory pediatric patients and the effect of computer-

calculated doses on medication error rates of two commonly prescribed drugs.  They find a computer-calculated error rate of 

12.6 percent compared with the traditional error rate of 28.2 percent, with most errors resulting from under-dosage.  Berner et 

al. (2006) conduct a randomized, controlled experiment and find that participants with a personal digital assistant-based 

CDSS made fewer unsafe treatment decisions than participants without the CDSS.  Mirco et al. (2005) find evidence that the 

use of clinical decision support systems is vital in achieving maximum medication safety and reducing medication error rates.   

In this paper, we propose a clinical learning model for physicians supported by two important CDSS features. The first 

feature is related to the initial drug selection. The second CDSS feature provides an ongoing dosage and application support 

for a focal drug. The proposed framework provides an analytical model to investigate the effects of different CDSS features. 

Using the proposed model, we investigate how the two CDSS features relate to the clinical learning of physicians. 

The analytical results suggest that the decision support on drug selection is critical.  Improving the initial drug selection 

process raises the drug-patient match conviction and positively influences the importance of the patient-level information for 

the physician.  On the other hand, absent improvements in successful drug selection, the use of CDSS may in fact negatively 

influence the clinical learning.  The intuition behind this result is the following.  CDSS makes physicians more certain on the 

expected efficacy of a drug without affecting their patient-drug match conviction.  Consequently, the information gathered 

from individual patients is weighed relatively less compared to their efficacy expectations while prescribing a drug.  

We next present a model for the clinical learning mechanism and then analyze the role of CDSS on physicians’ learning 

behavior. We conclude the paper concludes with a summary of results and briefly outline the salient aspects of an empirical 

analysis that we aim to conduct in this domain. 

MODEL 

Consider a physician who needs to decide whether to prescribe a focal drug representing a treatment plan.  Selecting the 

treatment requires an ongoing decision on dosage and application of the focal drug. For example, a patient may be diagnosed 

with bi-polar disorder. Then, the treatment plan requires an initial decision on prescribing a treatment in the therapeutic 

category. Once a specific treatment is prescribed, the physician observes the patient’s response to the drug and collects 

additional information on an ongoing basis.  

Prescription preferences evolve over time. Physician i’s preference is represented by 
it

Q . 
it

Q is a function of the past 

preferences 
, 1i t

Q
−

, other information sources such as detailing and sampling activities by the institutions, represented by 

vector 
it

X , and an error term 
it

v :   

1it i i,t it i it
Q G Q X β ν

−
′= + + .       (1) 

The vector 
i

β  in the above equation contains the parameters reflecting the i
th

 physician’s responsiveness to the information 

sources given in 
it

X .  The parameter 
i

G  captures the persistence in preference over two successive time periods.  Physicians 

differ based on their prescription habits, and the subscript i captures the physician-specific carryover coefficients.  A high 

value of 
i

G  implies that physicians carry over their preferences into the future periods. For example, when a physician 

prescribes a mature drug that has been in the market for a sufficiently long time and follows an established treatment plan, 

there may be limited new information during period t. Then, the preference towards the treatment plan would be mainly 



Akçura et al.  Physician Learning and Clinical Decision Support Systems 

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 3 

based on past preferences. A low value of 
i

G  characterizes the prescription behavior that is not much influenced by the 

previous period’s preferences. When enough new information is available for a treatment plan, the prescription preference 

becomes a function of the most recent information '
it i

X β  and the error term 
it

v .  

The error term 
it

v  captures the errors associated with the drug efficacy which depend on the use, application and dosage. For 

example, depending on the specific condition of the patient, the optimal prescription dosage, frequency of use and overall 

application may change.  We let 
it

v  follow a normal distribution with (0, )
i

N Vδ  where, 0 1δ< < , 0
i

V< . When a physician 

is not using a CDSS, the physician relies only on her own memory. This is the case where δ  equals to one and all the 

uncertainty is captured by the physician-specific variance 
i

V . On the other hand, availability of a CDSS reduces the 

uncertainty. The effectiveness of the CDSS in reducing the uncertainty is captured by δ . As δ  decreases towards zero, the 

CDSS becomes more effective and essential in identifying and minimizing dosage related errors. Note that, according to the 

model, although CDSS provides a useful tool in reducing uncertainties, physicians still differ given their own work 

environments and skills, and a physician experiencing a high degree of uncertainty (
h

V ) benefits from the CDSS more than a 

physician with a low degree of uncertainty (
l

V ) since (1 )( ) 0
h l

V Vδ− − > . 

Patient life styles vary and may influence the initial decision to follow a specific treatment. Some patients working under 

strenuous conditions or suffering from other pains may not follow certain types of treatments or take drugs that may interfere 

with their conditions. The number of new prescriptions is a function of  

it it
Q ω+ ,             (2) 

where the random term 
it

ω  includes the errors related to the drug selection. 
it

ω  follows a normal distribution with mean 0 and 

variance 
i

Wγ , where 0 1γ< < , 0
i

W< . We allow the variance 
i

W  to vary across physicians due to differences in patient 

profiles. The parameter γ  captures another feature of the CDSS. A low value of γ  indicates that the CDSS is effective in 

identifying and reducing the potential drug interaction with patient profile match related errors.   

Suppose during period t physician i  handles 
it

n  new patients. Let Yit denote the total number of new prescriptions in period t 

and follow a Poisson distribution. The probability of observing yit  prescriptions equals 

   p( )
!

it it
y y

it it

it

e
Y y

y

µ
−

= =  ,           (3) 

where the mean of the distribution 
it

µ
 
is proportional to  

exp( )
it it it

n Q ω+ .        (4) 

According to Equations (3) and (4), the mean number of prescriptions for the focal drug Yit depends on the total number of 

new patients 
it

n . We see in Equation (4) that a change in 
it

Q  alters the probability of prescribing the focal drug (
it

µ /
it

n ) and 

accounts for 
it

n . 
it

Q
 
takes a high value if the drug works all the time for all patients in the therapeutic category.  On the other 

hand, a low value of 
it

Q  reduces physicians’ probability of prescribing the focal drug. 

Clinical Experience 

So far, the process discussed above captures a prescription behavior independent of the clinical learning that occurs via the 

treatment plans followed by patients. Whereas in reality, each physician likely develops an intrinsic preference about a 

treatment plan based on the clinical experience with the patients. In general, physicians follow their patients while searching 

for the best treatment plans, the right drugs and applications in order to better serve their patients.  A search behavior leads to 

changes in choices when sufficient new information is acquired (Kohn and Shavell 1974) and learning occurs as inferences 

about the quality of available alternatives are made (Meyer 1982).  For example, if a physician discovers after an initial 

prescription that the focal drug being used for the treatment is leading to certain adverse side effects on patients, she may 

revise her intrinsic preference. Alternatively, a repeated positive experience with a focal drug may lead a physician to 

prescribe the drug more frequently.  

Physicians start each period with a prior preference based on the perception of a drug’s efficacy. Physicians’ clinical 

experience in a period allows them to update their perception of the drug’s efficacy at the end of the period to form a 
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posterior perception, a process that is repeated every period.  Let physician i’s prior preference at time t be denoted by 
, | 1i t t

Q
−

. 

The index t|t-1 represents the fact that the updating process involves the clinical information gathered until the end of period 

t-1, but it does not include the clinical information obtained in period t. 
, | 1i t t

Q
−

is a function of the physician’s posterior 

preferences at the end of period t-1, 
, 1| 1i t t

Q
− −

.   

First, consider the end of period t-1 when the physician incorporates all the information and establishes the posterior 

perception 
, 1| 1i t t

Q
− −

. Let 
, 1| 1i t t

Q
− −

 follow a normal distribution with N(
, 1| 1i t t

M
− −

,
, 1| 1i t t

R
− −

). Then, the mean and variance of physician 

i’s prior perception at the start of period t , 
, | 1i t t

Q
−

, are given by:  

, | 1 , 1| 1 i
,

i t t i i t t it
M G M X β

− − −
′= +             (5) 

2

, | 1 , 1| 1 i
.

i t t i i t t
R G R Vδ

− − −
= +       (6) 

We observe in Equation (5) that the mean of the prior perception 
, | 1i t t

M
−

 depends on the mean of posterior perception, 
, 1| 1i t t

M
− −

, 

as well as information signals from the most recent information in 
it

X . The uncertainty associated with the prior perception 

is reflected in the expression for 
, | 1i t t

R
−

 in Equation (6).  

ttiQ |,  
denotes the posterior updated after the observation of the clinical experience by the physician during period t.  Let 

it
ϕ  

represent the observed mean efficacy of the treatment plan at the end of this period. Then, the distribution of the posterior is 

given by  
, |

~
i t t

Q  N(
, |i t t

M ,
, |i t t

R ), where 

, | , | 1 , | 1
( ),

i t t i t t it it i t t
M M K Mϕ

− −
= + −      (7) 

, | , | 1 , | 1
,

i t t i t t it i t t
R R K R

− −
= −               (8)  

, | 1

, | 1

i t t

it

i t t i

R
K

R Wγ

−

−

=
+

.     (9)  

Equations (7), (8) and (9) are obtained by a technique called Kalman filtering, which requires marginalizing a joint normal 

distribution, is a common technique used in the learning literature (Akçura , Gönül and Petrova 2004, Coscelli and Shum 

2004). See Appendix for a sketch of the proof. In our case, Equations (1) and (2) are jointly normal, and Equations (7) to (9) 

are derived by marginalizing the joint distribution given the information obtained from the prescription observation 
it

ϕ .  

Analysis of the Clinical Learning Model   

Equations (7), (8) and (9) jointly represent the clinical learning mechanism. Next, we review these equations and analyze the 

clinical learning behavior.  Following this analysis, we investigate the impact of the CDSS on the clinical learning behavior.  

First, consider Equation (7). The term 
, | 1

( )
it i t t

Mϕ
−

−  in Equation (7) represents the information discrepancy between the 

observed efficacy at the end of period t and the physician expectation at the start of period t.  The change in posterior mean 

, |i t t
M  in Equation (7) depends on the sign of this discrepancy.  For example, a physician may realize that certain dosages 

should not have been prescribed and the treatment plans may have more adverse effects. This results in a lower-than-expected 

observed efficacy and a negative 
, | 1

( )
it i t t

Mϕ
−

− .  Then, such a clinical observation reduces the posterior mean
, |i t t

M .  

Equation (8) shows that the posterior variance decreases as new information is acquired. Over time, physicians gain clinical 

experience and reduce their uncertainties on the drug’s performance and its fit to their patients. The posterior uncertainty 

(
, |i t t

R ) decreases in proportion to the prior uncertainty (
, | 1i t t

R
−

) in Equation (8). The information obtained initially under a high 

level of uncertainty reduces the uncertainty relatively more compared to the information obtained later when the degree of 

uncertainty is lower . 

We also observe in Equations (7) and (8) that the extent to which a physician relies on new clinical experience in updating 

the efficacy perception is determined by the value of the coefficient 
it

K . 
it

K  represents the weight attached by physician i to 

the information signals received through clinical experience.  The magnitude of 
it

K  ranges between 0 and 1 depending on the 

uncertainty levels (
, | 1i t t

R
−

 and 
i

Wγ ) as specified by Equation (9).  
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If a physician faces a high level of treatment uncertainty, learning through clinical experience will be significant. A high δ
i

V  

in Equation (6) results in a high value of 
, | 1i t t

R
−

, which in turn increases 
it

K  through Equation (9) and allows significant 

updating through clinical observations (see Equations 7 and 8).  On the other hand, a physician who is relatively more 

confident about the drug efficacy and the treatment plan (i.e., low δ
i

V ) will update her preference in a much limited manner 

since low values of  δ
i

V  and 
, | 1i t t

R
−

 result in a small 
it

K value (close to zero). This restricts the value of new information and 

limits the updating process through clinical experience. 

If a physician experiences significant drug selection uncertainty and patient-drug match is in doubt (high 
i

Wγ ), the effect of 

new clinical experience on the preference updating process will be limited.  Note that 
it

K  decreases with 
i

Wγ  (see Equation 

9). Drug interactions and different patient lifestyles may generate idiosyncratic differences that prevent a physician from 

obtaining all the necessary information and, in turn, limit the updating of the efficacy perception (low 
it

K ). In the presence of 

a significant patient-drug match uncertainty, a physician will not be able to make inferences about the quality of the 

treatment. Consequently, clinical learning as well as the level of change in future prescription behavior will be limited.  

The dynamic structure behind the clinical learning mechanism and 
it

K  allows the information obtained at the beginning of 

the process to have more impact on clinical learning compared to the information obtained later in the process. Note that, as 

discussed before, 
, | 1i t t

R
−  

decreases as physicians obtain more information and become more certain on a treatment’s efficacy 

(see Equation 8). Decreasing uncertainty (
, | 1i t t

R
−

) also results in a lower 
it

K  value as physicians reduce their uncertainty with 

more experience (see Equation 9). Consequently, the role of new information in the updating process is limited.  

We provide a graphical illustration of the model in Figure 1. Figure 1a represents the case with no impact of clinical 

experience. In the figure, the horizontal axis represents the time period while the vertical axis represents the likelihood 

physicians prescribing the focal drug ( /
it it

nµ ). The solid line in the figure provides the clinical efficacy on the patients.  As 

an example, take the case where the focal treatment should be prescribed to the majority of the patients in the category. In 

this example, the physician prescribes the treatment at a strictly lower rate, which is represented by the dotted curve entitled 

Physician Prescription Preference in Figure 1a. Although the drug has a superior efficacy than what is actually perceived by 

the physician (and perhaps despite the patients’ overwhelmingly positive response to the drug), she does not incorporate these 

observations in her prescription behavior. Consequently, over the periods, the actual physician preference represented by the 

dotted curve remains well below the correct prescription rate. The difference between the actual prescription preference and 

the clinical efficacy-based correct prescription is represented by the long dashed curve in Figure 1a, which does not trend 

lower since the physician does not incorporate the information gained from the clinical experience.  In Figure 1b, we present 

a similar graph for the evolution of the prescriptions, but this time with an active learning mechanism. Contrary to the case 

with no clinical learning, the gap between the actual preference and the efficacy eventually disappears, and the long dashed 

curve approaches zero over time.  

If a physician effectively uses new information and updates her intrinsic preference, the overall error in Figure 1b should be 

quickly minimized and the observed prescription rate should closely follow the correct prescription rate. This is the case 

where 
it

K  coefficient in Equation (9) is high, suggesting a significant level of updating through Equation (7) and the long 

dashed curve’s quick approach to zero in Figure 1b.  Recall that 
it

K  is subject to the values of the physician-level 

uncertainties δV and γW (see Equation 9) and CDSS adoption plays a role on 
it

K .  

In the special case where δ = 1 and γ = 1, the CDSS has no impact on physicians’ prescribing behavior. The long dashed 

curve in Figure 2 is the equivalent of the long dashed curve in Figure 1b. This curve represents the base case with no CDSS. 

Next, consider the case where the CDSS supports correct dosage successfully (lowers δ) but with no significant impact on the 

correct drug selection decision. The dotted curve in Figure 2 represents this case (δ < 1 and γ = 1). Although the curve trends 

towards zero, the trend is slower than that in the baseline case with no CDSS (see the dotted curve versus the long dashed 

curve in Figure 2). Hence, the difference between physician prescription rates and the prescription rates based on the actual 

clinical efficacy is higher compared to the base case.  In other words, lowering δ without first lowering γ through the use of 

CDSS may not be effective since physicians discount most of the clinical observations. This represents the case where CDSS 

usage makes physicians more certain on the expected effects of the focal drug without improving their patient-drug match 

conviction.  This may be because significant drug interactions and uncertain observations confound physicians and limit their 

clinical learning ability.  

 



Akçura et al.  Physician Learning and Clinical Decision Support Systems 

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 6 

Figure 1: An Illustration of Prescription Behavior Model 

 

Figure 1a: Prescribing the focal drug - No impact of clinical experience 

 

Figure 1b: Prescribing the focal drug - With clinical learning 

 

According to Figure 2, lowering the selection uncertainty (γ < 1) provides the most effective learning environment for 

physicians, one that allows them to extract the observation-specific efficacy information and integrate the clinical 

observations efficiently with their overall treatment efficacy perceptions. This, in turn, results in the quick elimination of the 

difference between preference and clinical efficacy.  The minimum error is achieved when the CDSS supports both features.  

The solid line in the Figure represents the most consistent level of prescriptions with minimum errors.  

CONCLUSION 

Business value of information technology (Menon et al. 2000, Devaraj and Kohli 2000) and its adoption within the health 

care sector (Hu et al. 1999, Braa et al. 2004, Khoumbati et al. 2006, Bhattacherjee and Hikmet 2007, Braa et al. 2007, 

Menachemi et al. 2007, Miscione 2007, Hikmet et al. 2008) have been the focus of the past IS research on health care.  We 

contribute to this literature by investigating how clinical decision support systems (CDSS) support physician learning and 
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their prescription behavior. We investigate the conditions under which adoption of CDSS improves clinical learning and 

contributes to the reduction of drug-related errors. Improved patient-drug match facilitates a more responsive physician 

behavior and, therefore, positively contributes to the improvements in the prescription behavior.  

 

 

Figure 2: Difference between Preference and Efficacy for different CDSS functionalities 

 

Our next step is to conduct an empirical analysis that incorporates some of the physician-level characteristics that may affect 

clinical behavior and CDSS use. We have obtained a dataset from a large pharmaceutical company in the United States that 

includes individual physician prescription records in a therapeutic category. We have the number of new prescriptions written 

by each physician in the sample during each month between 2001 and 2003. The data also include the number of details 

(visits by sales representatives) and the number of samples received by each physician per month for the drug. We also have 

data on each physician’s specialty and location by zip code. We will augment the data made available by the pharmaceutical 

firm with secondary data about per capita income and urbanicity index of each zip code in which the physicians in our sample 

are located.  We are planning to use this data to estimate physicians’ response to detailing (by physician type and location) 

and the persistence in their preferences toward the drug’s efficacy over time.  We will also analyze the estimation results by 

the type (general practice vs. specialty) and location (high vs. low income zip code) of the physicians.  Such an analysis 

would provide insights on which types of decision support offer more potential for which categories of physicians, and 

correspondingly, which CDSS implementations are more likely to fail.  We expect to obtain the empirical results by AMCIS 

2009. 

While we focus on the clinical learning in this study, we acknowledge that physicians have access to and benefit from other 

information sources such as training and detailing by pharmaceutical companies. A CDSS may be used for training activities 

as well. While our model can incorporate such additional information sources, the relative importance of these sources (e.g., 

detailing) diminishes once physicians start prescribing a focal drug. Therefore, we maintain that physicians rely most 

extensively on their clinical prescription experience.  

APPENDIX 

At the beginning of period t, Equations (1) and (2) follow the joint normal distribution:  

, | 1 , | 1 , | 1, | 1

, | 1 , | 1 , | 1 , | 1

 ~  
i t t i t t i t ti t t

i t t i t t i t t i t t i

M R RQ
N

M R R Wδ

− − −−

− − − −

 
 

Φ +  
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At the end of period t, the information set includes the information obtained from the prescription observation 
,i t

ϕ . Note that 

,i t
ϕ  is an observation from the distribution of 

, |i t
Φ . We filter 

, |i t t
Q  given this observation at the end of the period by 

marginalizing the joint normal distribution to obtain  
, |i t t

Q , see Greene (1997) p.90. 
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