
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2009 Proceedings Americas Conference on Information Systems
(AMCIS)

2009

A Conceptual Model and Typology for
Information Systems Controls
Lior Limonad
University of British Columbia, lior.limonad@sauder.ubc.ca

Yair Wand
University of British Columbia, yair.wand@ubc.ca

Follow this and additional works at: http://aisel.aisnet.org/amcis2009

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Limonad, Lior and Wand, Yair, "A Conceptual Model and Typology for Information Systems Controls" (2009). AMCIS 2009
Proceedings. 469.
http://aisel.aisnet.org/amcis2009/469

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301346104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2009%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2009?utm_source=aisel.aisnet.org%2Famcis2009%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2009%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2009%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2009?utm_source=aisel.aisnet.org%2Famcis2009%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2009/469?utm_source=aisel.aisnet.org%2Famcis2009%2F469&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Limonad and Wand  A Conceptual Model and Typology for IS Controls 

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 1 

A Conceptual Model and Typology for  
Information Systems Controls 

 
Lior Limonad 

Sauder School of Business 
University of British Columbia 

lior.limonad@sauder.ubc.ca 

Yair Wand 
Sauder School of Business 

University of British Columbia 
yair.wand@ubc.ca 

  

ABSTRACT 

Controls are widely used in business and are often related to information technology (IT) because IT systems are used to 
implement business controls and because the introduction of IT entails additional control concerns. Thus, control aspects 
should be part of information systems analysis and design. Furthermore, information systems need to be examined for 
completeness and correctness of their controls. 

However, despite the importance of IT controls, no general, well formalized framework is available to guide the analysis of 
controls requirements, the design of controls in systems, and the audit of existing systems. 

This paper presents a conceptual framework of controls based on an ontological foundation and an extended typology of IT 
controls. The framework can be used to analyze IT control issues and manage IT control assets. An initial evaluation of the 
typology using a published control framework and an example indicates its potential usefulness. 

Keywords 

Information systems controls, conceptual modeling, information systems analysis, ontology. 

 

INTRODUCTION 

The purpose of controls is to assure that the organization operates in compliance with external regulations and internal 
policies. The importance of compliance has increased with the introduction of laws and regulations enacted in response to 
security threats and business misconduct. Examples are the Patriotic Act (Doyle et al. 2002) and the Sarbanes-Oxley act 
(Lander 2004).  

To assure compliance, organizational activities are subject to auditing inspections (Weber 1998). Auditors focus on whether 
administrative controls have been well designed and whether they are operating effectively. Considering the complexity of IS 
and the interdependencies between policy artifacts, it is essential for organizations to substantiate a chain of traceability 
between controls and policies and regulations (Ueli et al. 2006). Auditing needs now reflect demand for timely and broader 
information from decision makers and various stakeholders such as potential investors, creditors, customers and suppliers 
(AICPA 1999; Kogan et al. 1999). 

In addition to acting in response to external motivators, organizations install controls to address managerial concerns.  Being 
able to assess the effectiveness of control activities is the key for an organization’s ability to assess risks, enforce coverage of 
concerns, and being able to systematically address them. 

Since IT is used to support business activities, control needs impact IT applications. IT applications both need to reflect 
control considerations, and are used to help implement controls. As well, the introduction of IT brings about additional 
control concerns.  In fact, frameworks such as COSO1, COBIT2 and ITIL3 are strongly related to control aspects of IT. More 

                                                           
1 http://www.coso.org 
2 http://www.isaca.org 



Limonad and Wand  A Conceptual Model and Typology for IS Controls 

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 2 

specifically, control mechanisms such as 'input validation', 'exception handling' and ‘user’s authentication’ are already widely 
embedded in application systems. It follows that control considerations are an important part of IT requirements, and should 
be included as part of systems analysis and design. 

To be able to analyze control needs and to assess existing controls, it is necessary to have well-defined notion of controls, and 
a “map” of control concerns. No such generally accepted theoretically-based framework exists yet. In this paper we propose a 
formal conceptualization of controls based on ontological foundations. We use the conceptualization to generate a typology, 
of controls. We suggest that this typology can be used to both analyze control needs and manage control assets.  

In the following, we present the ontological foundation, followed by a conceptual model of controls. The following sections 
present the typology, demonstrate its evaluation and provide a short example for its usage. 

  

A GENERAL CONCEPTUALIZATION OF CONTROL 

Ontological Basis 

In this work, we use an ontological formalization to model controls.  In particular we use Bunge’s ontological view (Bunge 
1977, 1979) and its adaptation to IS modeling (Wand and Weber 1989, 1990, 1995). According to the ontological view, a 
domain can be described as a composition of things that possess properties. Properties can be intrinsic to things or mutual to 
several things. Humans perceive properties as attributes whose values may change over time. The set of attribute values at a 
given time is the state of the thing. Each attribute function (over time) is termed a state variable. Interaction among things is 
defined in terms of their effects on each other’s states. 

When a thing changes its properties, human perceive this change as a change of state, termed an event. Events are internal - 
caused by internal transformations in the thing, or external – caused by interactions with other things.  Not all states are 
possible, and not all state changes can occur. The rules governing possible states and state changes are termed state laws and 
transition laws, respectively. 

We model organizational activities using an ontology-based business process model (Soffer and Wand 2004, 2007). A 
domain is a composite thing – comprising a set of things and their interactions. A domain can be described in terms of its 
state variables.  A sub-domain is a part of the domain, modeled by a subset of the state variables of the domain. Formally, a 
(sub)domain D is modeled in terms of a set of state variables XD=<x1…xn> where xk=fk(t)  are attribute functions. The set of 
possible states is denoted: SD={<x1…xn>}. 

Changes in a (sub)domain can occur due to internal transformations, determined by the domain transition laws, and due to 
interactions with things outside the (sub) domain. The latter are termed external events. When a state can be changed by an 
internal transformation it is termed unstable. If a state can only be changed by interactions it is termed stable.  The behavior 
of a (sub)domain is modeled as follows (Wand and Weber 1988): 

Definition 1: The behavior of a domain D is BD=<SD,ED,LD>, where SD is a set of possible domain states (lawful 
states), ED is a set of relevant external events, and LD is a set of laws determining internal domain transformations. 

We make certain premises regarding the domain behavior. First, based on an ontological assumption that every thing 
changes:  

Assumption 1: Every domain state changes with respect to time.  

Additional premises will be described in the following sections. 

A Formal Conceptual Model of Control  

The development of the proposed model of controls is accompanied by a simple example of a fire door and a self-closing 
spring. The purpose of the spring is to implement the policy that the door has to be closed, which in turn reflects the need to 
comply with Occupational Safety and Health Administration (OSHA) regulations4. 

We distinguish between the target domain (T) and the implementation component domain (IC). The target domain is a part of 
the organization which is required to comply with certain rules (e.g. policies, regulations, and business rules). The 

                                                                                                                                                                                                         
3 http://www.itil.org 
4 http://www.osha.gov/comp-links.html 



Limonad and Wand  A Conceptual Model and Typology for IS Controls 

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 3 

implementation component is the organizational mechanism (any combination of people and technology) put in place to 
assure compliance. An example for a target domain in a company is payroll operations. In this case the implementation 
component may include the software which is used to calculate and pay salaries. In our simplistic example, the target domain 
is the door and the implementation component is the spring. In our analysis we will be interested in information systems as 
implementation components.  

We denote the behaviors of the target domain and the implementation component by BT and BIC respectively. We 
distinguish between expected behavior - indicating how the domain is expected to behave, and the actual behavior. In the 
example, the expected behavior is that the door must be shut unless forced to open. This rule should be enforced by the 
spring, once the door and the spring are installed and attached properly. The actual behavior of the door indicates what really 
happens once it is in place. For example, it might not be shut completely because the spring is poorly attached. The various 
behaviors are summarized in Table 1. 

                                Domain 
 
Behavior 

T - Target  
 
(examples:  Fire Door in place,  
computerized accounting system) 

IC - Implementation Component 
 
(example:  returning spring, 
the accounting software) 

Expected BT(E)=<ST(E),ET(E),LT(E)> BIC(E)=<SIC(E),EIC(E),LIC(E)> 
Actual BT(A)=<ST(A),ET(A),LT(A)> BIC(A)=<SIC(A),EIC(A),LIC(A)> 

Table 1 - Behaviors related to controls 

We now formalize the concepts further. 

Definition 2: The expected behavior of the target domain is BT(E)=<ST(E),ET(E),LT(E)> where ST(E) are the 
acceptable states, ET(E) is the set of expected external events, and LT(E) is the set of transformations that can 
happen.  

Both sets ET(E) and LT(E) are in the form of {<s→s’> | s,s’∈ST(E)}. In ET(E) s is stable, and the change is forced by 
interaction with something outside the domain. In LT(E) s is unstable and a change happens due to actions in the domain. 

Although ST(E) includes only acceptable states, it is also possible to describe required states in the definition of BT(E). A 
required state sr is either a direct result of an expected external event (i.e. ∃s:<s → sr> ∈ ET(E)) or an indirect outcome of an 
external event reached through a sequence of internal transitions included in LT(E). 

In the context of the fire door example, ST(E) can include all positions and angles the door can be at as depicted in the door 
blueprint. ET(E) includes all direct reactions of the fire door to external stimuli as described in the blue print (e.g. the door 
being pushed from the inside). LT(E) includes all indirect reactions that will eventually change the state of the door to being 
closed as required by the OSHA policy. 

Definition 3: The actual behavior of the target domain is BT(A)=<ST(A),ET(A),LT(A)>, such that: ST(A) is the set of 
all actual states that can be observed, ET(A) is the set of all actual external events that can be observed, and LT(A) is 
the set of all internal transformations that actually occur. 

We assume that everything that can happen over time will be eventually observed. 

The formalization of actual behavior is based on the assumption of deterministic behavior as follows. 

Assumption 2: The actual behavior BT(A) is deterministic. That is, given a specific initial state, if the same external 
stimuli occur, the system will always reach the same state. 

The expected behavior is captured by the allowed states ST(E) and transformation laws LT(E), and reflects both laws of nature 
and organizational requirements reflecting regulations, business policies, and norms. Except for laws of nature, all other laws 
cannot be guaranteed to hold in the actual behavior of the target domain. To enforce these laws, additional mechanisms are 
often used. We term such a mechanism an implementation component. In the fire door example, the implementation 
mechanism is the returning spring intended to shut the door after it has been opened. 

The implementation component comprises a separate domain (IC) then the target domain. However, the two domains are 
connected. This means that they can interact and (ontologically) this means they have some mutual state variables. For 
example, the spring is attached to the door. We define the implementation component: 



Limonad and Wand  A Conceptual Model and Typology for IS Controls 

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 4 

Definition 4: An implementation component is an artifact that is included in target domain so that the combined 
behavior will satisfy: ST(A)=ST(E) and LT(E)⊆LT(A). 

Note, the definition allows for additional transformation laws (specifically, those related to the behavior of IC). 

In our example, the spring is one possible realization for an implementation component. Other realizations, not necessarily 
technological, are also possible. For example, a policy that forces employees to assure the door is shut. 

Similar to the target domain, the implementation component has two assigned behaviors - expected and actual: 

Definition 5: The expected behavior of the implementation component is BIC(E)=<SIC(E),EIC(E),LIC(E)>.  

Definition 6: The actual behavior of the implementation component is BIC(A)=<SIC(A),EIC(A),LIC(A)>.  

The interpretation of each element in these definitions is the same as for the target domain. 

The IC is intended to assure the correct behavior of the target domain T. Hence, its expected behavior should include a part 
that reflects this behavior. We term this the derived behavior (denoted BIC(E)/T)). For example, whenever the door is open the 
spring is expected to push it back. As well, the IC has an inherent behavior (BIC(E)-BIC(E)/T). An example would be the 
internal working of the spring. Accordingly, we distinguish between: 

• EIC(E)/T and LIC(E)/T – external events and internal transitions of IC that represent the expected behavior of T. 

• EIC(E)-EIC(E)/T and LIC(E)-LIC(E)/T – all external events and internal transitions of IC not derived from the expected 
behavior of T (i.e. inherent to IC). 

The insertion of the implementation component adds new external stimuli to the behavior of the target domain. These add  
events to ET(A) which are the result of the interaction between the target and implementation domains, hence: 

Assumption 3: the insertion of an implementation component does not add any new event to the target domain T 
that has no corresponding event in the implementation component domain IC. 

Being an artifact, the actual behavior of the implementation component might be different than expected for several reasons: 

• Planning errors: not all states and events (internal or external) of the target domain T were considered (i.e. incomplete 
coverage or incorrect design).  

• Implementation errors: the actual behavior of the implementation component is inconsistent with its expected behavior 
as a result of some flaw in its construction. 

• Operation errors: the usage and operation of the new implementation component is not as expected (specifically, it is 
subject to external events not planned for). 

Due to such errors, the implementation component might fail to assure the target system behaves as expected. The purpose of 
a control system is to overcome this problem. 

 

THE CONTROL SYSTEM 

We describe the essence of control mechanisms in organizational settings according to the dynamic view and the concepts 
that were presented in the previous section. We adapt the basic definition of the control from (Wand and Weber 1989; Weber 
1998).  This definition relies on the same ontological foundations and therefore fits well with our dynamic view of the 
organization. According to this view, a control system is defined as follows. 

Definition 7: A control System is any system that either prevents, detects, or corrects unexpected transitions (i.e. 
events) or unexpected states of another system. 

In organizational settings, the target of the control system is the implementation component domain IC (e.g. the spring). 
Similar to other components in the organizational environment, the control system resides in its own domain – the control 
domain (C). Like all other domains, the domain C is associated with two behaviors: expected and actual. The expected 
behavior of the control system has a dual responsibility: 

• Functional – assuring that the implementation component (i.e. the spring) achieves its objective as defined in definition 
4, by checking that the actual behavior of the target domain BT(A) meets all acceptable states and expected transitions in 
BT(E).  



Limonad and Wand  A Conceptual Model and Typology for IS Controls 

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 5 

• Non-functional – assuring that the inherent operation of the implementation component is as expected, namely, checking 
that BIC(A)-BIC(A)/T meets all its inherent expected behavior BIC(E)-BIC(E)/T (i.e. all aspects not related directly to the 
target domain behavior). 

According to the above, the functional responsibility is achieved by monitoring the target domain (e.g. the fire-door) behavior 
and not of the implementation component (e.g. the spring) behavior. The behavior of the implementation component can, in 
principle, serve as a proxy for that of the target domain (e.g. the position of the spring's arm represents whether the door is 
closed or not). However, its actual behavior cannot be guaranteed to be flawless and hence cannot be monitored instead of 
that of the target system. Monitoring the implementation component only will contradict the original motivation for control – 
identifying errors in its operation. On the other hand, monitoring the target domain when the implementation component is in 
place will also test if the latter behaves correctly (i.e. BIC(E)/T). Thus, in a general control system, the functional focus is on 
the target domain and not on the implementation component. This assumption can be relaxed only in cases where the 
implementation component is a reliable representation of the target domain (see next sub-section about IS Controls). This 
general view also reflects the principle of control dependability in safety critical systems (Storey 1996). 

In our example, a sensor that sounds an alarm when the door is open for longer than a certain time can make a valid 
functional control system. Such a sensor is independent of the self-closing spring and it operates only based on the state of 
the door (i.e. the target domain). 

Next, we add an assumption to eliminate the possibility of failures due to lack of information:  

Assumption 4: All domain behaviors in our model are subject to the closed world assumption. 

This assumption amounts to the closed world assumption used in formal logic. Based on this assumption it can be presumed 
that all states and transitions that are not stated in BT(E) can be considered as failures in the system. Otherwise, functionality 
of the control system cannot be specified. 

A third aspect of control is implied in Definition 7. A control can be preventive, corrective or detective. 

Finally, a control mechanism itself is a system which resides in its own domain. As for other domains, this domain has 
expected and actual behaviors. Since the control system is an artifact, it is subject to the same types of errors as the 
implementation component. This brings about the possibility of inconsistency between the two behaviors – expected and 
actual - of the control. In organizational settings, this is the purpose of audit, which is beyond the scope of this paper. 

IS Controls as a Variation of the General Conceptualization 

In this section we specialize the general notion of the control to information systems by adopting the deep structure view of 
an IS (Wand and Weber 1995). According to this view, an IS is an artifact intended to represent some perceived aspects of a 
represented domain. This representation view entails the state tracking requirement that the states and behavior of the IS 
faithfully represent the states and behavior of the represented domain. The represented domain can be either concrete or a 
conceived system. Therefore, this view encompasses systems that monitor the present state of affairs in the organization (e.g. 
Transaction Processing IS), systems that aggregate information about past states (i.e. Management Reporting Systems), and 
an IS that represents future states (i.e. Decision Support Systems). 

In the context of our work, we consider the IS as the implementation component. An example would be an organizational 
Payroll System. The Payroll System is an implementation of the organizational activity of paying employees and is subject to 
rules (such as government regulations and employment contracts). A non-computerized, alternative implementation could be 
the employment of a payor - a person employed by the organization who has the responsibility to calculate salaries and 
deposit cash to the accounts of all employees every month. Based on our earlier conceptualization of controls the Payroll 
System is an implementation component intended to guarantee that the target domain – payroll activities – operate as 
required and employees are indeed being paid according to the rules (i.e. BT(A) is as specified in BT(E) which reflects 
regulations and employment contracts). 

As an IS, the Payroll System should be able to represent, at any given time, data about past payments, the payable activities 
of each employee, salary calculation details for each employee, and all other details to be considered by the organization in 
order to process salary payments. A good Payroll System will account for the relevant expected behavior of the organization. 
That is, the system should assure paying all salaries as required by regulations and contracts. However, as mentioned above, 
the Payroll System is an artifact. As such, it may be subject to the types of errors described in the previous section (i.e. 
planning, implementation, and operation). Therefore, a control system should be put in place. The responsibility of such a 
control system will be twofold: 

• Functional responsibility – verify that payroll operates as required (salary calculations are correct and salaries are paid).  



Limonad and Wand  A Conceptual Model and Typology for IS Controls 

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 6 

• Non-functional responsibility – verify all inherent aspects in the Payroll System that are not derived directly from the 
payroll requirements (e.g. safety and security of information, and correct system usage). 

Based on our proposed model, the first responsibility should be enforced by comparing the actual behavior BT(A) (e.g. 
statements issued by the bank that confirm payments) and the expected behavior BT(E) (e.g. employment contracts). Such 
verification should be independent of the implemented Payroll System. This requirement for independence was made as there 
is no way to assure that the state of the Payroll System is consistent with the state of the target domain (which includes, in 
particular, the employee's account). However, since the notion of representation is an inherent characteristic of the Payroll 
System (i.e. it is an IS), the validity of such representation is enforced by the control system as part of its non-functional 
responsibility. Therefore, in the general context of IS as an implementation component, the functional responsibility of the 
control system can be enforced through the IS itself. That is, assuming that the Payroll System is a faithful representation 
(which is enforced by the non-functional responsibility of the control system), verification of payments can be validated by 
comparing information about payments in the Payroll System with employee's contracts.  

Based on the above discussion, we specialize the general concept of control described earlier to the case of an IS Control 
System as follows: 

Assumption 5: when the implementation component is an information system, the actual behavior of the 
implementation component BIC(A) is expected to be a faithful representation of the actual behavior of the target 
domain BT(A). Therefore, controls can be based on the IS. 

Therefore, the modified responsibilities of an IS Control System are: 

• Functional – assuring that the IS achieves its objective as specified in definition 4, by checking that the actual behavior 
of the IS BIC(A) meets all acceptable states and expected transitions in BT(E).  

• Non-functional - assuring that the inherent operation of the IS is as expected: 

o Assuring that the IS acts as a faithful representation of the target domain. 

o Checking that the inherent behavior of the IS (i.e. BIC(A)-BIC(A)/T) meets all of its inherent expected behavior in addition 
to being a representation. This aspect includes, in particular, all rules that are not part of the tracking requirement. 

 

CONTROL TYPOLOGY 

Based on our conceptual model, we propose a typology of controls that can be used to manage control activities. A typology 
is defined as a multidimensional and conceptual classification. Successful classification depends on the identification of its 
dimensions. Each type in the typology is designated by a combination of specific levels (or values) for each dimension. A 
typology can be evaluated by populating it with empirical cases from a set believed to be exhaustive. Thus, our approach 
comprises two phases: first, a top-down generation of conceptual classes (e.g. IT Control types) based on the conceptual 
model; second, validation by a bottom-up matching of empirical cases from a practical domain (e.g. industry practices). 

Typology Dimensions 

Overall we propose six dimensions for a typology of controls. The dimensions are listed in Table 2. As demonstrated in the 
next section, the typology can be used to classify common control mechanisms. Such classification can be used to identify 
coverage, redundancy and similarity of different controls. Thus, we propose it as an analysis tool for control activities. 

Dimension Name Definition Possible Values Specification 
Control Focus 
 
 

The monitored domain  
 
Can be T or IC.  
For IS Controls it is IC 

Controlled aspects of T (i.e. 
specific people, devices). 

T 
 

Controlled aspects of the IC 
(i.e. specific people, devices). 

IC 

Functional / Non-
Functional 
 
(Non-functional is 
always related to IC). 

Control system responsibility: 
The expected behavior of T 
which should be realized by 
IC / other aspects of IC 

Functional: reflects the 
purpose of IC. 

For general controls: 
BT(A) vs. BT(E) 
For IS controls: 
BIC(A) vs. BIC(E)/T 

Non-Functional: aspects of IC BIC(A)-BIC(A)/T  vs. BIC(E)-BIC(E)/T 



Limonad and Wand  A Conceptual Model and Typology for IS Controls 

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 7 

not directly related to its 
purpose (e.g. correct usage).  

Control object Assuring only lawful states  
 
or  
Assuring transitions (internal 
/ external) occur only as 
expected 

Unexpected states. identify: s∈S(A)∧ s∉S(E)  

Unexpected events. Identify  
Undesired internal transitions: 
e∉ {<s;s’>|s’=L(s), L∈L(E)} 
Unexpected external events: 
e∉E(E)  

Hard / Soft Goal Whether the control system 
intends to enforce  
hard goals (necessary 
objectives) or  
soft goals (improved 
performance measures)  
(Soffer and Wand 2005). 

Hard Goal:  a subset of all 
acceptable states. 
 
 

Identify states from which there is 
no sequence of transitions to the 
goal. 

Soft Goal – an order relation 
on all goal states. 

Compares the value of a measure 
function m(s) over states to 
possible values. 

Risk Functionality Does the control addresses: 
vulnerability – possibility for 
an unsatisfactory outcome, 
hazard – potential damage, 
risk – a combination 
Risk = Hazard×Vulnerability. 
 
Related to Risk Management 
Theory (Boehm 1991; 
Stoneburner et al. 2002) 

Prevention – reducing 
vulnerabilities or mitigating 
the hazards. 

Prevents the target domain from 
reaching an unexpected state or 
from traversing an unexpected 
transition. 

Detection – monitoring and 
identifying vulnerabilities and 
hazards. 

Detects when the target domain 
reaches an unexpected state or 
traverses an unexpected 
transition. 

Correction – following 
detection, removing or 
suppressing all hazard effects. 

Alters the system into an 
acceptable state if an unexpected 
state or transition is detected. 

Control Structure 
 
(irrelevant for 
detective controls). 

Related to Systems and 
Control theory (Heij et al. 
2006) 

Open loop – no overlap 
between input (e.g. sensors) 
and output (e.g. actuators). 

no mutual state variables  
between control input and 
controlled domain output 

Closed loop – some overlap 
between input and output. 

Some mutual state variables 
between controlled domain and 
control related to domain output 

Table 2 - Control Typology (“T” – Target Domain, “IC” - Implementation Component) 

Typology Evaluation and Use for Analysis 

As an initial test of the correctness and completeness of the proposed typology we evaluated it using an existing IT control 
framework published by The Institute of Internal Auditors (IIA) (www.theiia.org). This framework, illustrated in Figure 1, 
establishes a hierarchy for different levels of concerns that should be enforced by IT controls. In order to represent all 
concerns as determined by the IIA framework, we have instantiated a possible set of 16 IT controls using a Payroll system 
example (Table 3). The typology has enabled classifying each of the given IT control types according to all dimensions and 
was found to cover the overall set of IT control types. Although the concrete classification of each control type reflects our 
subjective judgment, the typology was useful in generating relevant classification questions (e.g. identifying if the 
responsibility of a control is functional or non-functional). Furthermore, all levels of all dimensions were instantiated by at 
least one control type. Therefore, the typology was found consistent with the IIA framework. 

After classifying each control by its typological levels, the effectiveness of the overall set can be analyzed for possibly 
missing controls or for redundant controls. Based only on the example (Table 3), it is apparent that accountability for the 
correctness of payments is weak (i.e. only one control exists to verify it. As well, there are no controls to account for an 
efficient operation of the Payroll System, as there is only one 'Soft-Goal' control that addresses the development process (i.e. 
design methodology). 



Limonad and Wand  A Conceptual Model and Typology for IS Controls 

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 8 

 
Figure 1 - IIA Control Concerns (adapted from IIA) 

Control 
System 
(Payroll 
System) 

IIA Layer Focus – 
Target 
domain (T) / 
Implementatio
n component 
(IC) 

Functional 
(F) / Non-
Functional 
(NF) 

Object –
States (S) / 
events (E) 

Hard Goals 
(HG) / Soft 
Goals (SG) 

Risk 
Functionality – 
Detect (D) / 
Correct (C) / 
Prevent (P) 

Internal 
Structure – 
Open  
(OL) / closed 
loop (CL) 

Uninterruptible 
Power Supply  

Physical and 
Environmental 

IC NF (without it 
there can still 
be salary 
payments) 

S (system 
should be 
operational) 

HG (system 
should work) 

D,P: Detection 
and Prevention 
of voltage spikes 
and power 
failure 

CL (switches 
power off 
based on state 
of system) 

A transaction 
locking 
mechanism  

Financial 
Control 

IC F (preserves 
correctness of 
funds transfer) 

E (prevents 
withdrawal in 
certain cases) 

HG (i.e. 
ensures 
correctness of 
data) 

P (i.e. prevents 
wrong 
transactions) 

CL (i.e. can 
roll back) 

User 
Authentication 
and 
Authorization 
 

Separation of 
Duties 

IC NF (not 
required to 
assure payroll 
functions) 

E (prevents 
unauthorized 
changes) 

HG (assures 
system only 
operates as 
expected) 

P (prevents 
access) 

OL 
(validation is 
independent 
of system 
output) 

Design 
Methodology 
IC: The 
development 
team 

System 
Development 

T (the 
development 
environment – 
team, tools, 
etc.) 

NF (not 
necessary for 
development) 

S (project 
failure) 

SG (a good 
methodology 
should lead to 
better outcome) 

P (intended to 
prevent project 
failures) 

CL 
(contemporary 
methods use 
process based 
on feedback) 

Data backup Application-
based 

IC NF (improve 
system 
reliability) 

S (the state of 
data loss) 

HG (to assure 
data are 
available) 

C (recover in 
case of data 
loss) 

OL (fixed, 
based on pre- 
defined 
backup plan) 

Table 3 - An example for the classification of a Payroll System controls (IC is the payroll system unless otherwise indicated) 

CONCLUSIONS 

We have proposed a model and typology of controls. We used an example (Payroll) to demonstrate that controls that might 
appear quite different can be framed using one set of dimensions. Our evaluation is only qualitative and is not supported by 
statistical reliability measures. As well, it is based on one framework (IIA) which is not guaranteed to be comprehensive. 
This limitation refers to the exhaustiveness of the typology. However, it does not necessarily reflect on the validity of its 
control classification criteria. We plan to conduct a more comprehensive empirical study in a realistic environment. Such 
assessment can also increase confidence in the robustness of the proposed typology (i.e. ability to classify new control types 
that were not part of this framework). In particular, a larger data set might reveal dependencies between dimensions. For 
example, in the proposed typology the focus of non-functional controls is always on the implementation component. 
Identification of more complex patterns and interdependencies will further contribute to our ability to analyze control needs 
and evaluate existing controls. 



Limonad and Wand  A Conceptual Model and Typology for IS Controls 

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 9 

 

REFERENCES 

1. American Institute of Certified Public Accountants (AICPA) (1999) Continuous Auditing - Research Report. 
2. Boehm, W., Barry (1991) Software Risk Management: Principles and Practices, Software, IEEE (8:1), pp. 32-41. 
3. Bunge, M. (1977) Treatise on Basic Philosophy, Ontology I: The Furniture of the World, Boston: Reidel, Vol. 3. 
4. Bunge, M. (1979) A World of Systems, Treatise on Basic Philosophy, Vol. 4. 
5. Doyle, C. (2002) Library of Congress, and Congressional Research Service. The USA Patriot Act a Sketch, 

Congressional Research Service, Library of Congress.  
6. Heij, C., Ran, André C. M., and F. v. Schagen (2006) Introduction to Mathematical Systems Theory, A Birkhäuser book.  
7. Kogan, A., E. F. Sudit, and M. A. Vasarhelyi (1999) Continuous Online Auditing: A Program of Research, Journal of 

Information Systems (13:2), pp. 87-103. 
8. Lander, G. P. (2004) What is Sarbanes-Oxley?, McGraw Hill.  
9. Soffer, P., and Y. Wand (2004) Goal-Driven Analysis of Process Model Validity, Lecture Notes in Computer Science, 

Springer, pp. 521-535. 
10. Soffer, P., and Y. Wand (2005) On the Notion of Soft-Goals in Business Process Modeling, Business Process 

Management Journal (11:6), pp. 663-679. 
11. Soffer, P., and Y. Wand (2007), Goal-Driven Multi-Process Analysis, Journal of the Association of Information 

Systems, (8:3), pp. 175-202. 
12. Stoneburner, G., A. Goguen, and A. Feringa (2002) Risk Management Guide for Information Technology Systems, 

NIST Special Publication, pp. 800-830. 
13. Storey, N. R. (1996) Safety Critical Computer Systems, Addison-Wesley Longman Publishing Co., Inc. Boston, MA, 

USA. 
14. Ueli, W., I. Majid, M. Matthew, N. Ana, P. Celio, and S. Jason (2006) Rational Business Driven Development for 

Compliance, IBM.Com/Redbooks.  
15. Wand, Y., and R. Weber (1988) An Ontological Analysis of Some Fundamental Information Systems Concepts, 

Proceedings of the Ninth Annual International Conference on Information Systems, Minneapolis, Minnesota, pp. 213-
225. 

16. Wand, Y., and R. Weber (1989) A Model of Control and Audit Procedure Change in Evolving Data Processing Systems, 
The Accounting Review (64:1), pp. 87-107. 

17. Wand, Y., and R. Weber (1990) An Ontological Model of an Information System, IEEE Transactions on Software 
Engineering (16:11), pp. 1282-1292. 

18. Wand, Y., and R. Weber (1995) On the Deep Structure of Information Systems, Information Systems Journal (5:3), pp. 
203-223. 

19. Weber, R. A. (1998) Information Systems Control and Audit, Pearson Education.  


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	A Conceptual Model and Typology for Information Systems Controls
	Lior Limonad
	Yair Wand
	Recommended Citation


	Microsoft Word - amcis'2009-20Apr09-CR.doc

