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Abstract  
 

Self-organizing neural network (SONN) is known to 
be able to extract features in input samples [Kohonen, 
1995]. By updating not only the weight vector of the 
winning neuron in the self-organizing layer but also those 
of its neighboring neurons, neighboring neurons would 
eventually become to respond similarly to a specific input 
vector. Then the distribution of winning neurons for a 
class may be distinguished from those for other classes. 
Luttrell proposed a SONN which can inherently use the 
correlation between input vectors of separate clusters and 
he called it self-supervised adaptive neural network 
[Luttrell, 1992]. 

In this report, we propose the use of the self-
supervised adaptive algorithm in analyzing the correlation 
between cognitive style and the accuracy of intuitive 
time-series forecasting, and suggest a way to compare the 
relative degree of correlation between each of cognitive 
style, subjective emotion and physiological phenomenon 
and the accuracy of intuitive time-series forecasting. 
 
Category: Technical 
Keywords: emotion engineering, self-organizing neural 
network, self-supervised adaptive neural network, 
determinant analysis, intuitive forecasting, scatter matrix, 
J-measure 
 
Introduction 
 

We often need to make judgmental time-series 
forecastings such as estimating stock exchange indices, 

weather forecasting, and so on. In this report, we propose 
a non-traditional method to analyze the effect of cognitive 
style of decision-makers on the accuracy of intuitive time-
series forecasting. We use the self-supervised adaptive 
algorithm [Luttrell, 1992] to find out any correlation 
between them. 
 
Self-Supervised Adaptive Neural Network 
 

Self-organizing neural network, a competitive 
network, extracts features in input samples by usually 
projecting input vectors from a space of higher 
dimensions into a space of lower dimensions [Kohonen, 
1995]. Self-organizing algorithm updates not only the 
weight vector of the winning neuron in the self-organizing 
layer but also those of its neighboring neurons. With this 
training scheme, neighboring neurons would become to 
respond similarly to a specific input vector.  
 When the training is completed successfully, we 
may expect that the weight vectors of neighboring 
neurons constitute prototypes for a certain class. That 
means the distribution of winning neurons for a class may 
be distinguished from the distributions of winning 
neurons’ groups of other classes.  

Luttrell proposed self-supervised adaptive neural 
network [Luttrell, 1992], which is a SONN and inherently 
uses the correlation between input vectors of separate 
clusters. The self-supervised adaptive algorithm achieves 
the ability by updating the weight vectors of neurons in a 
cluster using the information of the training status of the 
other clusters. He uses the information to determine the 
shape of the neighborhood function. In the self-supervised 
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adaptive algorithm the neighborhood function is not 
necessarily symmetric, which constitutes the most 
important difference from the conventional SONNs. And 
the degree of correlation between input vectors of 
separate clusters affect the performance of the network 
[Luttrell, 1992]. Actually with the self-supervised 
adaptive algorithm, we could obtain better forecasting 
performance in power load forecasting problem than other 
much more complicated models [Yoo et al., 1999]. 
 
Experiments 
 

We first evaluated cognitive styles of 29 students, 
and measured their forecasting error. Then we added 48 
students to get enough number of students for each 
cognitive style. Hence, the total number of subjects was 
77. 
 
Data Generation 
 
A. Cognitive Styles 
 

We used a test to categorize students into four 
different cognitive styles, i.e., Analytic (A), Behavioral 
(B), Conceptual (C), and Directive (D). The number of 
subjects in each group was 25 (32.5 %), 17 (22.0 %), 23 
(29.9 %), and 12 (15.6 %), respectively. 

We use four-dimensional vector consisting of the 
four cognitive styles as the input vector to a neuron 
cluster. When a student belongs to a specific cognitive 
style, we assign 0.8 to the corresponding element of the 
input vector and 0.2 to the other elements. 
 
B. Forecasting Error 

 
We showed the students some time-series field data 

and measured the mean absolute percent error (MAPE) of 
subjects’ forecasting results. 

The correlation between cognitive style and the 
forecasting error is explored using the following method. 
 
 
The Structure of the Self-Supervised Adaptive 
Neural Network 
 

We use two clusters of neurons in the self-supervised 
layer and deploy neurons in one dimension for each 
cluster. The cognitive styles form the input vector to the 
first cluster, and the forecasting error becomes the input to 
the other cluster.  

Hence, we use four-dimensional input vector for the 
first cluster. Each input element corresponds to A, B, C, 
and D cognitive styles, respectively. When the student 
belong to class A, 0.8 is assigned to the first element and 
0.2 to the rest. The input vector to the second cluster has 
one element, which is the forecasting error. However, the 
number of neurons for each cluster is the same and large 

enough (at least two times the number of classes for the 
input vectors for the first cluster).  

During the training, we accumulate and store the 
output (i.e., feature value) of each neuron for each pattern.  
 
Discriminant Analysis 
 

After the training, we use the histograms of the 
accumulated feature values of neurons to obtain the 
scatter matrices for discriminant analysis of statistics 
[Fukunaga, 1990] to eventually figure out the relative 
correlation degrees between the cognitive styles and the 
error of intuitive time-series forecasting.  

During the training we accumulate feature values of 
each neuron for each pattern in the array  

     
    

 
where the subscripts p, g and n are indices of patterns, 
clusters, and neurons, respectively. Then we store the 
accumulated feature values of neurons for each class (or 
cognitive style) in the array 
    

    
 

for patterns in class c             (3.1) 
 
where NP(c) = number of patterns in class c. The average 
of the histogram values of neurons for each class is stored 
in the array 

   
for patterns in class c             (3.2) 

 
The two arrays in Eqs. 3.1 and 3.2 reflect the sensitivity 
of neurons to each class. 
 To find out how differently the neurons respond to 
different classes by using the mean feature values, we 
compute the discriminant array shown in Eq. 3.3. 
      

 
 

 
where c1 and c2 are the indices for classes and N stands 
for the number of neurons in each cluster. This matrix is 
zero-diagonal and symmetric. The average of 
discriminant feature over clusters is stored in the array 
   

  
  

      
                                        (3.4) 
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where NG stands for the number of neuron clusters in the 
network. 
The average of discriminant feature over clusters and 
classes is stored in the array 
      

  
  

  
                 (3.5) 
 
which shows the distinctness of each class. The average 
of discriminant feature over class and comparing class is 
computed and stored in the array 

  
 
 

      
                           (3.6) 
 
which shows the performance of each cluster. 
 For class c, we can compute 
   
   E{(X – Mc)(X – Mc)

T | ωc} 
 

    = (xp – Mc) (xp – Mc)
T   (3.7) 

 
where xp, Mc, and Pc stand for the feature vector, class 
mean feature vector, and the number of feature vectors in 
class c, respectively. In a cluster, the diagonal elements 
show the squared distance between feature vectors 

 and class mean feature vectors      
                           
            . 
  
We assign an array for this matrix as 
 

          . 
 
To show the scatter of samples around their class 
expected vector, we use the measure 
 

Sw =  p(ωc) E{(X – Mc)(X – Mc)
T  

 
| ωc} 
 

 
     = (xp – Mc)(xp – Mc)

T 
   

      
             (3.8) 
 
where NP stands for the total number of patterns, NP(c) 
stands for the number of patterns in class c and NC stands 
for the number of classes. This measure corresponds to 
the average of the array feature scatter over classes. We 

assign an array for this within-class feature scatter matrix 
as 
 

                    . 
 
 We use a measure for the scatter of class mean 
feature vectors as in Eq. 3.9. 
 
  Sb =             p(ωc) (Mc – M) (Mc – M)T  

 
    where  
 

      M = E{X} =            p(ωc) Mc.  
            (3.9) 

 

We declare an array to store the results of the formula 
(between-class feature scatter) as 
      

      . 
 
 Finally, we use a J-measure 
   

   tr(Sw
-1 Sb)             (3.10) 

 

to formulate criteria for class separability. It is larger 
when the between-class scatter is larger or the within-
class scatter is smaller.  

We can repeat the simulation with subjective emotions 
and physical phenomena instead of the cognitive styles. 
Then, by using the results of Eq. 3.10 from the three different 
simulations, we can compare the correlation degrees between 
each of the three parameters and the forecasting error. 
    We expect that using the self-supervised adaptive 
neural network is advantageous over using the 
conventional self-organizing neural network in figuring 
out the correlation degrees between input vectors of 
separate clusters, since the self-supervised adaptive 
network can inherently use the correlation between them, 
and its performance is proportional to the degree of the 
correlation [Luttrell, 1992]. 
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