
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

Contributions of Object Oriented Software Design
Towards Limiting the Problems Caused by a Lack
of Software Engineering
Jennifer Bevan
University of California - Santa Cruz, jbevan@cse.ucsc.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Bevan, Jennifer, "Contributions of Object Oriented Software Design Towards Limiting the Problems Caused by a Lack of Software
Engineering" (2000). AMCIS 2000 Proceedings. 109.
http://aisel.aisnet.org/amcis2000/109

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301345745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/109?utm_source=aisel.aisnet.org%2Famcis2000%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Contributions of Object Oriented Software Design towards Limiting the Problems
Caused by a Lack of Software Engineering

Jennifer Bevan, Department of Computer Engineering, University of California at Santa Cruz
jbevan@cse.ucsc.edu

Abstract

The Radio Science Validation and Processing (RSVP)
software suite was created to replace an outdated and
disorganized set of legacy software. The development
process applied no formal software engineering methods,
but the initial phase did employ a rudimentary object-
oriented approach. The modules developed during this
initial phase were later recognized to be the most stable
and easily maintained portion of the resulting software
suite. This paper discusses some of the problems
frequently caused by a lack of software engineering, and
examines how an object-oriented foundation mitigated the
effects of these problems on the overall quality of the
RSVP project.

Introduction

While the benefits of software engineering are no longer
considered to be strictly hypothetical quality
improvements (Paulk, et al., 1997), the consistant use of
software engineering principles is still far from
widespread. While the number of software engineering
baccalaureate programs worldwide increased from none in
1994 to dozens in 1999 (Hew, et al., 1999), the creation of
a standard regarding the requirements of such a degree is
still in progress. On the other hand, object-oriented
languages are slowly becoming the rule rather than the
exception in the required programming courses for
computer science baccalaureate degrees. This education is
creating a growing pool of programmers in the workforce
who are somewhat familiar with the basics of object-
oriented design (Parnas, 1995), yet who are not familiar
with software engineering principles. Given the obsession
with lowering a product's time-to-market, if it seems
possible to create that product using familiar techniques,
commercial developers will use what they know. New
learning generally occurs only when a sufficient benefit is
clearly shown to, and approved by, project management.
While this increase in the use of object-oriented designs
provides many benefits in software development, it is not
a replacement for software engineering.

However, the use of object-oriented principles in software
design is certainly not mutually exclusive with the use of
software engineering principles, and in fact helps to
ensure that some basic software engineering issues are

addressed. This report identifies common problems
incurred by the lack of software engineering, discusses the
aspects of object-oriented design which overlap software
engineering concerns, and examines how an object-
oriented foundation mitigated the effects of these
problems on the overall quality of a specific scientific data
processing tool.

Development Overview

The development of the Radio Science Validation and
Processing (RSVP) software suite was divided into three
phases, the first of which was to allow the extraction of
scientific data from any of several input formats, including
two that had not been previously used by the Radio
Science Team. The development team for the first phase
involved a single programmer for the new code, and two
programmers dedicated to porting the legacy fortran code
from the old hardware to the new. This porting involved
the removal of code that expected the presence of an array
processor, as well as the selection of which versions of
which functional modules were to be ported. The legacy
code had evolved over twenty years in an extremely
spaghetti-like fashion, and no single person or document
could identify what each version of each module was
supposed to do "differently" than the other versions.
After the legacy code was selected and ported, the
development team was reduced to only the single
programmer who had been writing the new code, working
at less than half-time. It is this new code that constitues
the RSVP "core code". While the ported legacy software
was updated during later phases, the use of this legacy-
encapsulation approach (Bennet, 1997) during RSVP
development did restrict the design of the core code; each
functional module that transformed the data had to output
a format identical to the existing input format of the next
module. This approach did not allow for an object-
oriented design for the entire project, and in fact, only the
core code can be considered truly object-oriented.

In 1994, there were 11 input formats that the software was
required to process. By 1999, this number had grown to
14. Within these formats, data of the same data type (such
as received frequency, time-stamp, or other format
elements) were not always represented in identical units or
encodings. The developer for the RSVP core code was
not familiar with any sort of formalized object-oriented
design process (Booch, 1991) nor with software

406

engineering principles. In early 1994, after two days of
attempting to force these data formats into the struct
constructs of C, she realized that an object-oriented
approach was probably a better way to go, and started
over. Less than a year later, she had a working initial
version that could handle all of her test data sets correctly.
The transition to real data was more problematic, as
unexpected deviations from the expected format were
discovered one by one. By 1996, the core code was
handling real data, could output data readable by the
legacy code, and had already undergone a new data format
addition; work then started on incorporating the legacy
code hooks into the GUI front-end used by RSVP. In
May, 1997, the first official release of RSVP and the
ported legacy software occurred (Bevan, 1997),
containing approximately 24,000 lines of new code, and
implementing classes for 13 different data formats. Later
versions added another data format class, and added in
rewritten and reorganized replacement modules for the
legacy software. The latest release is RSVP 3.1 (Bevan,
1999), containing approximately 59,000 lines of code.

RSVP Architecture

The two main class heirarchies in RSVP are implemented
as libraries, so that other scientists may more easily adapt
their own analysis software to accept new datafile formats
by reusing the extraction methods within RSVP. These
heirarchies are both single inheritance, single-depth trees
with a basic container class providing both virtual
methods for the subclasses, and generic methods for
subclass-independent data manipulation. The "main"
program of RSVP gets user input to determine what type
of data is being input, instantiates the appropriate classes,
and then hands control over to the GUI's <i>select</i>-
type loop. Figure 1 shows a high-level diagram of this
control path.

The first generic container class used by RSVP is the

Record class, which holds all of the common data across
the different formats, as well as data search functions.

Format-specific classes inherit from this Record class and
add the necessary data types and flags to correctly control
the processing control and output. Virtual functions in the
Record class lead to format-specific subroutines in the
appropriate class, subroutines which generally consist of
bit-level unpacking of data formats. Figure 2 shows a
small subset of the classes currently used in the Record
heirarchy.

The second generic container class in RSVP is the ioType
class, a base class for multiple media-specific subclasses,
in order to allow the access methods of half-inch magnetic
tapes, 8mm magnetic tapes, CD/ROMs, and disk files to
be isolated from the rest of the code. While the ioType
class was being created, additional type-specific classes
were added to handle byte streams and arrays. The
structure of the ioType class heirarchy is identical to that
of the Record class heirarchy. The virtual methods
provided by the ioType class are read, write, seek, tell,
open, and close.

The motivation behind structuring this portion of RSVP in
this manner arose primarily from the volatility in data file
formats. Specific issues related to the design of RSVP can
be found in later sections.

Common Problems Involved with Informal
Product Development

The purpose of software engineering is essentially to
provide methods by which the probability of creating the
right product, in the best possible way, is maximized.
Checkpoints are inserted into well-defined developmental

Figure 2: Record Class HeirarchyFigure1: RSVP High-Level Control Path

407

stages which attempt to discover bugs and other "features"
as early as possible, thereby reducing the number of
problems found after product deployment. Software
engineering methods encourage the development of
software that is easily upgraded or otherwise maintained.
In other words, the goal is to produce software with as
much thoughtful planning and execution as is commonly
applied in other engineering disciplines (Bauer, 1997).

Some common problems which frequently result from a
lack of such formal development techniques include an
incomplete or incorrect understanding of the product
requirements and designs that, even if formally
established, are not flexible in the direction of the most
likely upgrade path. Additionally, implementations are
created that require system-wide changes for maintenance
or upgrade modifications; these changes are frequently of
the type that cause unintended side effects in unexpected
parts of the code. While software engineering does not
guarantee an error-free product development cycle, it
certainly does provide a framework which aids developers
in avoiding these problems.

Software Engineering Issues Addressed by
Object-Oriented Design

Object-oriented design, while not a process that can be
applied to a product's entire life-cycle, certainly addresses
some of the same concerns as software engineering. The
re-classification of a problem domain into objects
enforces a fairly in-depth examination of the requirements
of a project. The resulting object-oriented models create
an understanding of the behavior of the system (Booch, et
al., 1999), including the volatile functional- and object-
based upgrade paths. Object-oriented implementation is
more tightly connected with a verified design, and the
software engineering metric of high cohesion is analogous
to the object-oriented design goal of encapsulation.

Object-Oriented Design Principles and RSVP

The object-oriented approach in the development of
RSVP addressed several software engineering aspects.
Each of these aspects, and the extent to which this
approach achieved the goals of the aspects, is discussed in
turn.

Requirements Engineering

Given the dynamic nature of the set of input formats that
RSVP would be required to process, the creation of an
object-based representation ensured that the relationship
between the data-processing software and the input data
was thoroughly examined. This process uncovered the
fact that the same nominal data type across different

formats might have different encodings, use different units
of measurement, or allow a different range of valid data
values. It also identified exactly which data types were
required by the processing, in what format they had to be
presented to the processing software, and in which data
formats this data would appear. Links between the input
format and the allowable set of processing functions could
then be created without modification of actual data
processing code, which for the majority of the
development process remained legacy code. Data value or
format modification could be done in the format-specific
subclass before the extracted data were presented to the
rest of the code.

Design

In order to encapsulate all format-specific issues, such as
bit-packing formats and units of measure, the Record class
was designed to be the only class that allows access to the
input data. High-level code can only ask for certain types
of data, which are obtained through Record class methods.
This level of information hiding was specifically designed
to make the addition of new data file format subclasses
easier. The ioType class was created for the same purpose
(the use of new media was an expected upgrade path), and
used the same heirarchy structure as the Record class. The
inheritance depth of RSVP is only one, between these
parents and their specific subclasses: the project was not
objectified to the extent that an encompassing
DataProcessing class was created.

Implementation

The Record class, as the central access point for all input
data, publicly owns the most common data types (e.g.
spacecraft identifiers, antenna and ground system
identifiers, time-stamps). Format-specific data types,
where either the data type itself was not common or where
the representation was not format-unique, were isolated in
format-specific subclasses. The Record class provided the
means to traverse the data records and the procedures to
output the data to the scientific processing programs,
while the format-specific subclasses manipulated the data
types to provide a uniform representation and generic
valid-data flags.

The addition of new input format subclasses does not
affect any existing code, with the exception of a single
localized modification to the Record class initialization
procedure. Because any instance of a Record has the
same interface, the high-level code to manipulate data
records did not need to change over the later, updated,
versions of RSVP. Similarly, new subclasses of ioType
did not affect the high-level code, for exactly the same
reasons.

408

Object-Oriented Induced Quality Aspects of
RSVP

The development of RSVP is currently considered
complete, with respect to the original project goals.
While it is certainly not a perfect product, especially with
respect to mathematical problems in specific scientific
data processing stages, the overall stability and flexibility
of the software is very satisfactory. New input media and
data formats are not a cause for concern to the scientists
using the product: they have worked through several
format additions and found no adverse effects
unintentionally introduced. The core code has not
changed beyond the addition of initialization routines for
new subclasses. Modifications to the data-extraction code
does not affect the data-processing code, and vice versa.
While there are certainly some quality aspects that a
formal software engineering process would have
improved, those aspects affected by the object-oriented
design process are recognized by the users as of high
quality.

Given that there are very few specific, universally
applicable standards for software quality, the best source
of quality information is from the users. The quality of
RSVP is generally divided into three categories by its
users. The first is the ability to quickly adapt to new
formats with respect to simple data-extraction and
reformatting issues. The second is the ability to protect
working portions of the project through numerous
maintenance-level changes. The third is mathematical
correctness. The first two issues were directly affected by
the use of object-oriented design in the initial phase of
development. The third issue, on the other hand, was not
covered by object-oriented design techniques; the legacy
code was converted in later development phases, and due
to a lack of formal verification and validation methods,
suffered during the translation.

Simple Modification to Include New Formats

The simple, yet very structured design of single-point data
access via the Record class allows for new formats to be
added easily and quickly. The initial step, that of creating
the format-specific subclass, generally took only a few
hours after the new format documentation was provided to
the developer. If verification of the new subclass with test
or actual data uncovered any implementation-level errors,
they could generally be fixed in a matter of minutes or
hours. Because this stage of the data processing generally
involves only data extraction and necessary modifications
to conform to the uniform data type representations, all
such errors could only occur within the subclass
definition. This localization of potential errors greatly
increased the speed with which bugs could be found and
fixed.

Localization of Code Modification Effects

Because RSVP was developed in a three planned phases,
changes to each phase were incorporated with the
expected work of the next phase. The deployment
environment was limited to a released version and a beta
version, which was essentially the developer's copy with
minor privilege restrictions. Scientists who had requested
a modification could, if necessary, only wait for as long as
it took the developer to implement that single
modification in the beta tree, then run that version to see if
the modification made a difference to the processed data.
During these well-defined yet very informal maintenance
phases, it was crucial that a modification not be able to
affect calculations in unintended parts of the code.

The object-oriented structure of the code, which
inherently promotes the low coupling and high cohesion
principles, increased the quality of RSVP in this respect.
Modifications to the transformation routines of format
specific data types were forcibly restricted, affecting only
that subclass. Modifications to one portion of the data
processing code, while not created under an object
oriented paradigm, were nonetheless called on object
oriented data. This shielding allowed the scientists to get
the earliest possible returns on modification requests
without worry that a given change could affect the data
outside the expected modification "effect field".

Conclusions

The creation of RSVP was the work of a single developer
who, like many in the workforce now, had neither heard of
software engineering nor understood its principles and yet
was considered a "good" programmer. As is typical in
situations where there is a push to produce working code
in a short time frame (in this case due to the unreliable
nature of the hardware on which the legacy code could
run), the programmer applied the principles she did
understand, those of basic object oriented design. While
the overall quality and acceptance of the RSVP package
by its users is considered good, certain important aspects
were overlooked due to the total absense of formal
software engineering techniques. However, the quality of
RSVP is not accidentally, nor coincidentally, good. The
object-oriented design used in the initial phase, where the
legacy code had no impact on the new code except in
determining output formats, created the most stable and
reliable portion of the entire RSVP package. While this
design process did not address all of the issues which
should have been addressed, the quality of RSVP is
almost certainly much higher than it would have been
without the benefit of an object-oriented foundation.

409

References

Bauer, F. "Forward: Software engineering-a european
perspective.", Software Engineering, 1993, M. Dorfman
and R. H. Thayer, IEEE Computer Society Press, 1997.
pp. 75.

Bevan, J. RSVP 2.1 Release Pages,
http://radioscience.jpl.nasa.gov/info/software/rsvp2.1/,
1997

Bevan, J. RSVP 3.1 Release Pages,
http://radioscience.jpl.nasa.gov/info/software/rsvp.3.1/,
1999

Bennett, K. "Software Maintenance: A Tutorial",
Software Engineering, 1997, M. Dorfman and R. H.
Thayer, IEEE Computer Society Press, 1997, pp. 289-
303.

Booch, G. Object-Oriented Design with Applications,
Benjamin/Cummings, 1991, pp. v-vii.

Booch, G., Rumbaugh, J., and Jacobson, I.
The Unified Modeling Language User Guide, Addison-
Wesley, Object Technology Series, 1999, pp. 3-11.

Hew, D., Sinderson, E., and L. Spirkovska. "The state of
software engineering: Body of knowledge, education,
certification, and licencing.", Final Project, Software
Engineering Graduate Course CMPE276, Fall 1999,
University of California Santa Cruz, Nov. 1999.

Parnas, D., to Brooks, F. in "No Silver Bullet, Refired",
Software Engineering, 1997, M. Dorfman and R. H.
Thayer, IEEE Computer Society Press, 1997, pp. 221.

Paulk, M., Curtis, B., Chrissis, M., and Weber, C.
"Capability maturity model for software.", Software
Engineering, 1997, M. Dorfman and R. H. Thayer, IEEE
Computer Society Press, 1997, pp. 427-438.

410

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Contributions of Object Oriented Software Design Towards Limiting the Problems Caused by a Lack of Software Engineering
	Jennifer Bevan
	Recommended Citation

