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 I.  Abstract 

Logic programming presents us with a wonderful 
paradigm within which to develop reasoning systems.  This 
paradigm is very expressive, has well understood 
mathematical properties, and is an area of intense 
international research.  However, the research has not yet 
been adopted by the practitioner community.  Current 
implementations center around rule-based systems, and 
object-oriented systems.  Thus, the practitioner community 
is missing out on very powerful reasoning tools. 

The semantics of logic programs is a very difficult, 
technical arena.  The purpose of this paper is to disseminate 
this information in a very understandable format, in the 
hopes that technology transfer w.r.t. logic programming will 
begin to take place.  Both, the synthesis and the simplicity of 
this presentation of the stable model languages is absent 
from the literature. 

 

 II.  Introduction 

The goal of an automated reasoning system is to 
perform inferences (that is, arrive at new information) that 
currently elude traditional software approaches, and that 
seem to exhibit some sort of intelligence.  Typically we 
approach such an endeavor in an application specific 
manner.  That is, in trying to solve a specific problem, we 
limit ourselves to the domain of that specific problem.  The 
idea of a single reasoning agent being able to reason in all 
domains seems  impossible.  Even laying aside intractable 
problems (that is, those problems which are mathematically 
provable to be impossible w.r.t NP-completeness), the 
thought of having a semi-omniscient reasoning agent seems 
far-fetched.  Yet, in the ideal, this is exactly the kind of 
agent we desire.   

Our quest is to produce a machine much like the 
computer “HAL” in the movies “2001:  A Space Odyssey”, 
and “2010:  The Year We Make Contact”.  The foundation 
upon which such a machine can be built is logic.  Significant 

areas of reasoning based upon logic include knowledge 
representation, nonmonotonic reasoning (that is, jumping to 
reasonable conclusions), common sense reasoning (that is, 
systems that are not so brittle), and deductive databases (or 
intelligent databases.)  In short, we face many problems, 
including:  problems with computation time (that is, fast 
enough computers), problems with computation space 
(massive amounts of memory and massive amounts of 
storage), identifying the corpus of knowledge that such a 
system must posses, and identifying proper approaches to 
reasoning.  Another way to express this last point is to say 
we desire systems that can reason in semantically correct 
ways. 

Logic programming, and in particular the semantics of 
logic programs, is concerned with this very issue (of 
reasoning in correct ways).  It concerns itself with the matter 
of “how do we reason about such a problem”?   There are 
competing approaches to semantics within the logic 
programming community.  Yet, by far, the most popular and 
most thoroughly researched semantics is the stable model 
semantics. 

In this paper, an overview of five logic programming 
languages will be given.  These languages belong to a family 
of languages that we herein refer to as the stable model 
languages.  These five languages are not competing 
languages.  Rather, these languages form a strict hierarchy of 
expressiveness and complexity.  Each level of this hierarchy 
is more expressive than the previous level, each level 
completely subsumes the expressiveness of the previous 
level, and each level has a greater price to pay for such 
expressiveness in the form of increased computational 
complexity.  For the sake of brevity and simplicity, we will 
avoid a plethora of definitions, technicalities, and hair-
splitting issues, all of which are the subject of the author’s 
past work, work in progress, and planned work. 
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 III.  The Stable Model Languages 

Overview 

Figure 1 presents the hierarchy of stable model 
languages.  The topmost part of the figure represents the 
highest, most expressive, and most complex level of the 
hierarchy.  Conversely, the lowest part of the figure 
represents the lowest, least expressive, and least complex 
level of the hierarchy.  Chronologically, the languages were 
developed from the bottom of the hierarchy up.  Each level 
of the hierarchy completely subsumes the lower level.  That 
which can be expressed at the lowest level, can be expressed 
in each of the higher levels, etc.  Rule-based systems and 
Prolog slightly blur the boundaries, and perhaps belong to 
the class of programs at the deductive database level.  (Some 
hair-splitting issues this paper avoids begin to arise here.) 

 

Deductive Databases 

The first and simplest semantics that we will discuss 
are deductive databases (Gelfond 92).  A deductive database 
is a set of rules of the form:   

A0 7 A1, ..., An   

where Ai are ground atoms.  A0 is called the head of the 
rule, and A1, ..., An is called the body of the rule.  n >_ 0   The 
Ai in the body of the rule are treated as a conjunction.  A 
simple example of a deductive database would be the 
following: 

 

smart_student(X) 7 merit_scholar(X), 
currently_enrolled(X) 

 

which states that X is a smart student if X is a merit scholar, 
and if X is currently enrolled. 

The semantics of deductive databases is demonstrated 
by figure 2.  Those formula which are entailed by the 
program are true, and those which are not entailed by the 
program are false.  Thus, deductive databases employ the 
closed world assumption (CWA).  With respect to figure 2, 
the circle labeled true represents those facts that are 
explicitly listed in the database, or those additional facts 
which can be inferred from the database via the rules.  
Everything else is considered false. 

11



CWA is appropriate in applications for which it is 
appropriate to assume that the reasoner has complete 
knowledge.  (Actually, there may be missing information.  
However, all the instances of a relation must be present.  
Appealing to a comparison with database technology, all the 
tuples must be present, even if the columns are not fully 
defined.)  Such an application would be an airline schedule. 
 If we ask the reasoner if there is a 3:00 flight from Dallas to 
Chicago on Friday, the answer is easily determined.  If there 
exists a record in the flight table for such a flight 
(equivalently,  if the database entails such a formula), then 
the answer is yes (equivalently, true.)  Otherwise, it is false 
that such a flight exists. 

 

Monotonic Deductive Databases 

In many applications, it is a very reasonable to assume 
CWA.  However, for many areas of reasoning, use of CWA is 
quite limiting, and in fact may even produce incorrect 
results.  That is, it is too harsh to say that something is false 
simply because we do not know it to be true.  Imagine how 
one would feel if a relative was on an airplane that crashed.  
Upon asking if the relative was alive, the system responded 
with “no” simply because no information existed. 

A monotonic deductive database (Gelfond 92) solves 
this problem by removing CWA, and by allowing a new 
operator, 5, to represent strong negation (Gelfond 92) 
(Gelfond, Lifschitz 91). Note that CWA is a “problem” only 
if it is inappropriate for the application at hand. 

Rules in a monotonic deductive database are of the 
same form as deductive databases, except that the Ai are 
ground literals (Gelfond 92).  This means that each Ai may 
or may not be preceded by the 5 operator.  A formula 
(precisely, an atom) preceded by the 5 operator means that 
the fact is explicitly false.  That is, a formula such as 

 

5smart_student(john) 

 

means that it is absolutely false that John is a smart 
student.  A more elaborate example of its use is the 
following: 

 

5preferred_vendor(X) 7 
vendor(X),past_due_account(X) 

which means that X is not a preferred vendor if X is a 
vendor, and X is past due on its account. 

The semantics of monotonic deductive databases is 
illustrated by Figure 3.  There are two crucial, noteworthy 
items of interest here.  First, what was previously viewed as 
false (i.e., if it could not be proved, it was concluded to be 
false) has been partitioned into that which is provably false, 
and that which is unknown1.  Another way of looking at this 
is that that which was unknown before was concluded to be 
false.  That which is unknown now is genuinely recognized 
as unknown. 

The second crucial point is that at this level we can 
generate additional inferences.  We have more bases upon 
which to make inferences.  We can use true information to 
prove something to be false (as illustrated by the arc labeled 
“1”.)  We can use false information to prove something to be 
true (as illustrated by the arc labeled “2”.)  We can use any 
combination of true and false information to infer something 
true (or respectively, false). 

 

 

                                                 
1  Note that with this figure, and with all 

remaining figures, it would have been more correct to 
have an elipse for true, and another elipse for false.  That 
which is false, is isomorphic with that which is true.  For 
simplicity of understanding, these diagrams will 
emphasize that which is true.  All statements and diagrams 
about that which is true apply equally to that which is 
false. 
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Extended Logic Programs 

Monotonic deductive databases acknowledge that there 
is a distinction between that which is unknown, versus that 
which is provably false.  Far greater expressive power is 
gained by being able to reason about this distinction.  That 
is, the power to reason is greatly enhanced by being able to 
explicitly reason about that which is unknown.  Extended 
logic programs (Gelfond, Lifschitz 91) allow us to do this.  
A new connective not is introduced, which intuitively means 
that a literal is not believed.  For example, not A(a) means 
that A(a) is not believed (equivalently, A(a) cannot be 
proved).  On the other hand, not 5A(a) means that 5A(a) is 
not believed.  The not operator is also called negation-as-
failure.  An example of this usage would be the following: 

 

smart_student(X) 7 merit_scholar(X), 
currently_enrolled(X),   
not on_academic_probation(X) 

 

which states that X is a smart student if X is a merit scholar, 
X is currently enrolled, and X is not on academic probation.   

Note that saying that it cannot be proved that X is on 
academic probation is much weaker (and more useful since 
much of life is unknown) than stating that it is definitively 
false that X is on academic probation.  That is, 

 

not on_academic_probation(X) 

 

is a weaker statement than 

 

5on_academic_probation(X). 

The semantics of extended logic programs are 
illustrated by figures 4 and 5.  These semantics incorporate 
the semantics of the previous level of our hierarchy.  That is, 
these semantics also distinguish between that which is 
unknown and that which is false, and these semantics allow 
the additional inferences possible by reasoning about both, 
true and provably false information. 

Additionally, the semantics of extended logic programs 
allow us to reason explicitly about the fact that something is 
unknown (as illustrated by the not on_academic_probation(X) 
above.)  The arcs labeled by “1” and “2” illustrate that new 
inferences can be made on the basis of unknown 
information.  Arc “1” illustrates that true information can be 
inferred from unknown information.  Arc “2” illustrates that 

provably false information can be inferred from unknown 
information.  (Of course, positive inferences, and negative 
inferences can be made on the basis of any combination of 
positive information, negative information, or unknown 

information.) 

Unfortunately, figure 4 represents only part of the 
story.  Negation-as-failure (that is, use of the not operator) 
creates the possibility of having multiple belief sets.  (That 
is, multiple models, or multiple ways of viewing the world.). 
 For space considerations, let us refer to a future figure:  
consider figure 5 without the arcs.  In figure 5, there are 
multiple (two) ellipses that are labeled “yes”.  Each ellipse 
represents a model of the world.  It is only the intersection of 
the ellipses that represent that which is true with respect to 
the program.  (Similarly, but not shown by the figure, there 
are multiple areas that should be labeled ”false”.  It is only 
the intersection of all those areas which represent that which 
is false with respect to the program.)  All else is unknown.  
Multiple models represent some computational problems.  
For instance, circumstances could be such that a program 
may go into an infinite loop when computing these models.  
Therefore, a substantial amount of research is invested in 
identifying those classes of programs which are “safe”.  
Much work has been done to identify which programs have 
unique models.  Much work has also been done to identify 
other classes of programs which pose no problem, even 
though they do have multiple models. 
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Disjunctive logic programs 

Disjunction is the facility that allows us to represent the 
fact that we know that at least one of two possibilities is true, 
but that we do not know which one of the two is true.  To 
represent disjunction, a new connective or is introduced 
(Gelfond, Lifschitz 91).  This operator is called epistemic 
disjunction, and appears only in the heads of rules.  A formula 
of the form  

 

A or B 7 

 

is interpreted to mean “A is believed to be true or B is 
believed to be true, but both are not true.”  A disjunctive 
deductive database is a collection of rules of the form:  

 

L0 or ... or Lk 7 Lk+1, ..., Lm, not Lm+1, ..., not Ln 

 

where Li  are literals (as before.) 

Again, figure 5 without the arcs is representative of the 
semantics of disjunctive logic programs.  While it appears 
that the semantics of disjunctive logic programs are the same 
as the semantics of extended logic programs, (Eiter, et al. 
97) proves that there are problems that can be represented 
by disjunctive logic programs that cannot be represented by 
extended logic programs. 

 

Epistemic Specifications 

There is a major intuitive problem with the posture of 
requiring that all models must agree on the truth or falsity of 
a formula in order for that formula to be true or false.  (Such 
is the case with extended logic programs, and with 
disjunctive logic programs.) For instance, there is a 
fundamental difference between claiming something is 
unknown because we have no earthly idea about it, and 
claiming something is unknown because the multiple models 
cannot agree on it.  In the later case, we do have some idea 
about the formula in question, it is just that we do not have a 
unanimous consent about the formula. 

Epistemic specifications (Gelfond 92) introduces 
modal operators to allow us to introspect among our belief 
sets.  In particular, the modal operator M signifies that 
something may be true (that is, it is true in at least one belief 
set).  The modal operator  K signifies that something is 
known to be true (that is, it is true in all belief sets.)  As 

illustrated in Figure 5 the arc labeled “1” indicates 
additional inferences that may be made by ascertaining that 
something is true in all belief sets.  The arc labeled “2” 
indicates additional inferences that may be made by 

ascertaining that something is true in at least one belief set.  
Further, positive information or negative information can be 
inferred on the basis of any combination of:  positive 
information, negative information, unknown information,  or 
recursively any of this information which is true in any or all 
models.   

An example of the usefulness of introspecting among 
belief sets would be the following: 

 

broken_arm(john) or spained_arm(john) 7  
order(plaster) 7 M broken_arm(X) 
 

This example states that John has either a broken arm, or a 
sprained arm (but not both).  Wanting to be prepared for any 
situation which may deplete our inventory, we wish to order 
medical supplies (i.e., plaster) to meet potential needs.  This 
example has two belief sets:  one in which 
broken_arm(john) is true, and the other in which 
spained_arm(john) is true.  The 2nd rule states that if there is 
any belief set in which an individual has a broken arm, we 
want to order some plaster.  This is achieved by the M 
modal operator.  Therefore, there are two belief sets for this 
program:  {broken_arm(john), order(plaster)} and 
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{spained_arm(john), order(plaster)}.  Since order(plaster) 
appears in both belief sets, plaster will indeed be ordered. 

A truer picture of the semantics of epistemic 
specifications would be a 3-dimensional view of figure 5.  
Figure 5, which is one plane would be referred to as one 
worldview.  Each worldview can consist of or more belief 
sets.  There may be multiple worldviews.  We can 
conceptually think of this as several parallel planes.   It is the 
intersection of all worldviews that determines that which is 
false and that which is true with respect to the program.  
(Imagine the planes as being collapsed into one plane so that 
there is an intersection of all the worldviews.)  All else is 
unknown.  However, now with the ability to introspect 
among belief sets, the unknown is truly unknown. 

 Concluding Remarks 

Each of the 5 semantics presented may be the 
appropriate solution for particular problems.  However, as a 
practical matter, the language of extended logic programs is 
the language of choice for most applications.  Extended 
logic programs represent the best compromise between 
expressive power and performance. Further, the languages 
lower in the hierarchy than extended logic programs 
(deductive databases and monotonic deductive databases) 
can be implemented as extended logic programs.  
Disjunctive logic programs, and epistemic specifications 
provide incredible reasoning power.  However, these 
languages introduce computational complexities that make 
their implementation for large applications impractical at 
this time. 

Monotonic deductive databases can be implemented as 
extended logic programs by disallowing the operator not.  
Without not, extended logic programs have the exact same 
form as monotonic deductive databases.  The semantics of 
entailment would be exactly the same as well. 

It takes a bit more work to implement deductive 
databases as extended logic programs.  First, let us point out 
that CWA, which is inherent in deductive databases, can be 
selectively implemented in extended logic programs.  
Consider a human resources database that implements the 
employee relation with rules of the form: 

 

employee(john, accounting, 40000) 

 

which states that john is an employee who works in the 
accounting department, earning a salary of $40,000.   

Suppose we ask the query (or similarly, try to prove the 
goal) 

 

employee(mary, X, Y) 

 

which asks whether or not mary is an employee.   Suppose 
that such a fact is not provable in our database. Interpreted 
as a deductive database, the answer would be no (or false).  
Interpreted as an extended logic program, the result would 
be unknown.  We could achieve the desired result in an 
extended logic program by applying CWA to the employee 
relations.  This would be done with the following rule: 

 

5employee(X, Y, Z) 7 not employee(X, Y, Z) 

 

This rule means that if it is not believed that X is an 
employee, then it is definitively false (by way of default 
reasoning) that X is an employee.  To implement a deductive 
database as an extended logic program, for each predicate, 
we would have to create a rule similar to the one above. 

As an indication of the “state of the art” in research, 
the logic programming research community is currently 
enamored with disjunctive logic programs.  Epistemic 
specifications possess far superior reasoning abilities.  
However, implementations of these languages are not yet 
efficient enough to be seriously considered for applications 
development at this time.  Further, the deep properties of 
this language are not yet well understood. 

 

 References 

(Apt, Bol 94) Apt, Krzysztof R., and Roland N. Bol:  Logic 
Programming and Negation:  A Survey, Journal of 
Logic Programming, vol 19/20 May/July 1994. 

(Baral, Gelfond 94) Baral, Chitta, and Michael Gelfond: 
Logic Programming and Knowledge 
Representation, Journal of Logic Programming, 
vol 19/20 May/July 1994. 

(Deransart, Maluszynski 93)  Deransart, Pierre, and Jan 
Maluszynski:  A Grammatical View of Logic 
Programming, Cambridge Massachusetts:  The 
MIT Press 

(Eiter et al. 97)  Eiter, Thomas, Georg Gottlob, and Heikki 
Mannila:  Disjunctive Datalog, ACM Transactions 

15



on Database Systems, vol 22, no. 3, September 
1997) 

(Gelfond 92)  Gelfond, Michael:  Logic Programming and 
Reasoning with Incomplete Information (to appear 
in The Annals of Mathematics and Artificial 
Intelligence, 1994) 

(Gelfond, Lifschitz 88)  Gelfond, Michael and Vladimir 
Lifschitz:  The Stable Model Semantics for Logic 
Programming, 5th Intl Conference on Logic 
Programming 1988 

(Gelfond, Lifschitz 90)  Gelfond, Michael, and Vladimir 
Lifschitz:  Logic Programs with Classical 
Negation.  In D. Warren and Peter Szeredi, editors, 
Logic Programming:  Proceedings or the 7th Int�l 
Conf, 1990. 

(Gelfond, Lifschitz 91)  Gelfond, Michael, and Vladimir 
Lifschitz:  Classical Negation in Logic Programs 
and Disjunctive Databases, New Generation 
Computing, No. 9 1991 

(Genesereth, Nilsson 87)  Genesereth, Michael R., and Nils 
J. Nilsson:  Logical Foundations of Artificial 
Intelligence, Los Altos, Ca.:  Morgan Kaufman 

(Lifschitz, 89)  Lifschitz, Vladimir:  Logical Foundations of 
Deductive Databases, Information Processing 89, 
North-Holland 

(Lloyd 87)  Lloyd, J.W.:  Foundations of Logic 
Programming, Berlin, Germany:  Springer-Verlag 

(Reeves, Clarke 90)  Reeves, Steve, and Michael Clarke:  
Logic for Computer Science, Workingham, 
England:  Addison-Wesley Publishing Co. 

 

16


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	A Bird's Eye View of the Stable Model Languages
	James D. Jones
	Recommended Citation



