
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

A Bird's Eye View of the Stable Model Languages
James D. Jones
University of Arkansas at Little Rock, james.d.jones@acm.org

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Jones, James D., "A Bird's Eye View of the Stable Model Languages" (2000). AMCIS 2000 Proceedings. 49.
http://aisel.aisnet.org/amcis2000/49

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301345731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/49?utm_source=aisel.aisnet.org%2Famcis2000%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 A BIRD’S-EYE VIEW OF THE STABLE MODEL LANGUAGES

 James D. Jones

 Computer Science
 College of Information Science and Systems Engineering
 University of Arkansas at Little Rock
 Little Rock, AR. 72204-1099
 james.d.jones@acm.org

 I. Abstract

Logic programming presents us with a wonderful
paradigm within which to develop reasoning systems. This
paradigm is very expressive, has well understood
mathematical properties, and is an area of intense
international research. However, the research has not yet
been adopted by the practitioner community. Current
implementations center around rule-based systems, and
object-oriented systems. Thus, the practitioner community
is missing out on very powerful reasoning tools.

The semantics of logic programs is a very difficult,
technical arena. The purpose of this paper is to disseminate
this information in a very understandable format, in the
hopes that technology transfer w.r.t. logic programming will
begin to take place. Both, the synthesis and the simplicity of
this presentation of the stable model languages is absent
from the literature.

 II. Introduction

The goal of an automated reasoning system is to
perform inferences (that is, arrive at new information) that
currently elude traditional software approaches, and that
seem to exhibit some sort of intelligence. Typically we
approach such an endeavor in an application specific
manner. That is, in trying to solve a specific problem, we
limit ourselves to the domain of that specific problem. The
idea of a single reasoning agent being able to reason in all
domains seems impossible. Even laying aside intractable
problems (that is, those problems which are mathematically
provable to be impossible w.r.t NP-completeness), the
thought of having a semi-omniscient reasoning agent seems
far-fetched. Yet, in the ideal, this is exactly the kind of
agent we desire.

Our quest is to produce a machine much like the
computer “HAL” in the movies “2001: A Space Odyssey”,
and “2010: The Year We Make Contact”. The foundation
upon which such a machine can be built is logic. Significant

areas of reasoning based upon logic include knowledge
representation, nonmonotonic reasoning (that is, jumping to
reasonable conclusions), common sense reasoning (that is,
systems that are not so brittle), and deductive databases (or
intelligent databases.) In short, we face many problems,
including: problems with computation time (that is, fast
enough computers), problems with computation space
(massive amounts of memory and massive amounts of
storage), identifying the corpus of knowledge that such a
system must posses, and identifying proper approaches to
reasoning. Another way to express this last point is to say
we desire systems that can reason in semantically correct
ways.

Logic programming, and in particular the semantics of
logic programs, is concerned with this very issue (of
reasoning in correct ways). It concerns itself with the matter
of “how do we reason about such a problem”? There are
competing approaches to semantics within the logic
programming community. Yet, by far, the most popular and
most thoroughly researched semantics is the stable model
semantics.

In this paper, an overview of five logic programming
languages will be given. These languages belong to a family
of languages that we herein refer to as the stable model
languages. These five languages are not competing
languages. Rather, these languages form a strict hierarchy of
expressiveness and complexity. Each level of this hierarchy
is more expressive than the previous level, each level
completely subsumes the expressiveness of the previous
level, and each level has a greater price to pay for such
expressiveness in the form of increased computational
complexity. For the sake of brevity and simplicity, we will
avoid a plethora of definitions, technicalities, and hair-
splitting issues, all of which are the subject of the author’s
past work, work in progress, and planned work.

10

 III. The Stable Model Languages

Overview

Figure 1 presents the hierarchy of stable model
languages. The topmost part of the figure represents the
highest, most expressive, and most complex level of the
hierarchy. Conversely, the lowest part of the figure
represents the lowest, least expressive, and least complex
level of the hierarchy. Chronologically, the languages were
developed from the bottom of the hierarchy up. Each level
of the hierarchy completely subsumes the lower level. That
which can be expressed at the lowest level, can be expressed
in each of the higher levels, etc. Rule-based systems and
Prolog slightly blur the boundaries, and perhaps belong to
the class of programs at the deductive database level. (Some
hair-splitting issues this paper avoids begin to arise here.)

Deductive Databases

The first and simplest semantics that we will discuss
are deductive databases (Gelfond 92). A deductive database
is a set of rules of the form:

A0 7 A1, ..., An

where Ai are ground atoms. A0 is called the head of the
rule, and A1, ..., An is called the body of the rule. n >_ 0 The
Ai in the body of the rule are treated as a conjunction. A
simple example of a deductive database would be the
following:

smart_student(X) 7 merit_scholar(X),
currently_enrolled(X)

which states that X is a smart student if X is a merit scholar,
and if X is currently enrolled.

The semantics of deductive databases is demonstrated
by figure 2. Those formula which are entailed by the
program are true, and those which are not entailed by the
program are false. Thus, deductive databases employ the
closed world assumption (CWA). With respect to figure 2,
the circle labeled true represents those facts that are
explicitly listed in the database, or those additional facts
which can be inferred from the database via the rules.
Everything else is considered false.

11

CWA is appropriate in applications for which it is
appropriate to assume that the reasoner has complete
knowledge. (Actually, there may be missing information.
However, all the instances of a relation must be present.
Appealing to a comparison with database technology, all the
tuples must be present, even if the columns are not fully
defined.) Such an application would be an airline schedule.
 If we ask the reasoner if there is a 3:00 flight from Dallas to
Chicago on Friday, the answer is easily determined. If there
exists a record in the flight table for such a flight
(equivalently, if the database entails such a formula), then
the answer is yes (equivalently, true.) Otherwise, it is false
that such a flight exists.

Monotonic Deductive Databases

In many applications, it is a very reasonable to assume
CWA. However, for many areas of reasoning, use of CWA is
quite limiting, and in fact may even produce incorrect
results. That is, it is too harsh to say that something is false
simply because we do not know it to be true. Imagine how
one would feel if a relative was on an airplane that crashed.
Upon asking if the relative was alive, the system responded
with “no” simply because no information existed.

A monotonic deductive database (Gelfond 92) solves
this problem by removing CWA, and by allowing a new
operator, 5, to represent strong negation (Gelfond 92)
(Gelfond, Lifschitz 91). Note that CWA is a “problem” only
if it is inappropriate for the application at hand.

Rules in a monotonic deductive database are of the
same form as deductive databases, except that the Ai are
ground literals (Gelfond 92). This means that each Ai may
or may not be preceded by the 5 operator. A formula
(precisely, an atom) preceded by the 5 operator means that
the fact is explicitly false. That is, a formula such as

5smart_student(john)

means that it is absolutely false that John is a smart
student. A more elaborate example of its use is the
following:

5preferred_vendor(X) 7
vendor(X),past_due_account(X)

which means that X is not a preferred vendor if X is a
vendor, and X is past due on its account.

The semantics of monotonic deductive databases is
illustrated by Figure 3. There are two crucial, noteworthy
items of interest here. First, what was previously viewed as
false (i.e., if it could not be proved, it was concluded to be
false) has been partitioned into that which is provably false,
and that which is unknown1. Another way of looking at this
is that that which was unknown before was concluded to be
false. That which is unknown now is genuinely recognized
as unknown.

The second crucial point is that at this level we can
generate additional inferences. We have more bases upon
which to make inferences. We can use true information to
prove something to be false (as illustrated by the arc labeled
“1”.) We can use false information to prove something to be
true (as illustrated by the arc labeled “2”.) We can use any
combination of true and false information to infer something
true (or respectively, false).

1 Note that with this figure, and with all

remaining figures, it would have been more correct to
have an elipse for true, and another elipse for false. That
which is false, is isomorphic with that which is true. For
simplicity of understanding, these diagrams will
emphasize that which is true. All statements and diagrams
about that which is true apply equally to that which is
false.

12

Extended Logic Programs

Monotonic deductive databases acknowledge that there
is a distinction between that which is unknown, versus that
which is provably false. Far greater expressive power is
gained by being able to reason about this distinction. That
is, the power to reason is greatly enhanced by being able to
explicitly reason about that which is unknown. Extended
logic programs (Gelfond, Lifschitz 91) allow us to do this.
A new connective not is introduced, which intuitively means
that a literal is not believed. For example, not A(a) means
that A(a) is not believed (equivalently, A(a) cannot be
proved). On the other hand, not 5A(a) means that 5A(a) is
not believed. The not operator is also called negation-as-
failure. An example of this usage would be the following:

smart_student(X) 7 merit_scholar(X),
currently_enrolled(X),
not on_academic_probation(X)

which states that X is a smart student if X is a merit scholar,
X is currently enrolled, and X is not on academic probation.

Note that saying that it cannot be proved that X is on
academic probation is much weaker (and more useful since
much of life is unknown) than stating that it is definitively
false that X is on academic probation. That is,

not on_academic_probation(X)

is a weaker statement than

5on_academic_probation(X).

The semantics of extended logic programs are
illustrated by figures 4 and 5. These semantics incorporate
the semantics of the previous level of our hierarchy. That is,
these semantics also distinguish between that which is
unknown and that which is false, and these semantics allow
the additional inferences possible by reasoning about both,
true and provably false information.

Additionally, the semantics of extended logic programs
allow us to reason explicitly about the fact that something is
unknown (as illustrated by the not on_academic_probation(X)
above.) The arcs labeled by “1” and “2” illustrate that new
inferences can be made on the basis of unknown
information. Arc “1” illustrates that true information can be
inferred from unknown information. Arc “2” illustrates that

provably false information can be inferred from unknown
information. (Of course, positive inferences, and negative
inferences can be made on the basis of any combination of
positive information, negative information, or unknown

information.)

Unfortunately, figure 4 represents only part of the
story. Negation-as-failure (that is, use of the not operator)
creates the possibility of having multiple belief sets. (That
is, multiple models, or multiple ways of viewing the world.).
 For space considerations, let us refer to a future figure:
consider figure 5 without the arcs. In figure 5, there are
multiple (two) ellipses that are labeled “yes”. Each ellipse
represents a model of the world. It is only the intersection of
the ellipses that represent that which is true with respect to
the program. (Similarly, but not shown by the figure, there
are multiple areas that should be labeled ”false”. It is only
the intersection of all those areas which represent that which
is false with respect to the program.) All else is unknown.
Multiple models represent some computational problems.
For instance, circumstances could be such that a program
may go into an infinite loop when computing these models.
Therefore, a substantial amount of research is invested in
identifying those classes of programs which are “safe”.
Much work has been done to identify which programs have
unique models. Much work has also been done to identify
other classes of programs which pose no problem, even
though they do have multiple models.

13

Disjunctive logic programs

Disjunction is the facility that allows us to represent the
fact that we know that at least one of two possibilities is true,
but that we do not know which one of the two is true. To
represent disjunction, a new connective or is introduced
(Gelfond, Lifschitz 91). This operator is called epistemic
disjunction, and appears only in the heads of rules. A formula
of the form

A or B 7

is interpreted to mean “A is believed to be true or B is
believed to be true, but both are not true.” A disjunctive
deductive database is a collection of rules of the form:

L0 or ... or Lk 7 Lk+1, ..., Lm, not Lm+1, ..., not Ln

where Li are literals (as before.)

Again, figure 5 without the arcs is representative of the
semantics of disjunctive logic programs. While it appears
that the semantics of disjunctive logic programs are the same
as the semantics of extended logic programs, (Eiter, et al.
97) proves that there are problems that can be represented
by disjunctive logic programs that cannot be represented by
extended logic programs.

Epistemic Specifications

There is a major intuitive problem with the posture of
requiring that all models must agree on the truth or falsity of
a formula in order for that formula to be true or false. (Such
is the case with extended logic programs, and with
disjunctive logic programs.) For instance, there is a
fundamental difference between claiming something is
unknown because we have no earthly idea about it, and
claiming something is unknown because the multiple models
cannot agree on it. In the later case, we do have some idea
about the formula in question, it is just that we do not have a
unanimous consent about the formula.

Epistemic specifications (Gelfond 92) introduces
modal operators to allow us to introspect among our belief
sets. In particular, the modal operator M signifies that
something may be true (that is, it is true in at least one belief
set). The modal operator K signifies that something is
known to be true (that is, it is true in all belief sets.) As

illustrated in Figure 5 the arc labeled “1” indicates
additional inferences that may be made by ascertaining that
something is true in all belief sets. The arc labeled “2”
indicates additional inferences that may be made by

ascertaining that something is true in at least one belief set.
Further, positive information or negative information can be
inferred on the basis of any combination of: positive
information, negative information, unknown information, or
recursively any of this information which is true in any or all
models.

An example of the usefulness of introspecting among
belief sets would be the following:

broken_arm(john) or spained_arm(john) 7
order(plaster) 7 M broken_arm(X)

This example states that John has either a broken arm, or a
sprained arm (but not both). Wanting to be prepared for any
situation which may deplete our inventory, we wish to order
medical supplies (i.e., plaster) to meet potential needs. This
example has two belief sets: one in which
broken_arm(john) is true, and the other in which
spained_arm(john) is true. The 2nd rule states that if there is
any belief set in which an individual has a broken arm, we
want to order some plaster. This is achieved by the M
modal operator. Therefore, there are two belief sets for this
program: {broken_arm(john), order(plaster)} and

14

{spained_arm(john), order(plaster)}. Since order(plaster)
appears in both belief sets, plaster will indeed be ordered.

A truer picture of the semantics of epistemic
specifications would be a 3-dimensional view of figure 5.
Figure 5, which is one plane would be referred to as one
worldview. Each worldview can consist of or more belief
sets. There may be multiple worldviews. We can
conceptually think of this as several parallel planes. It is the
intersection of all worldviews that determines that which is
false and that which is true with respect to the program.
(Imagine the planes as being collapsed into one plane so that
there is an intersection of all the worldviews.) All else is
unknown. However, now with the ability to introspect
among belief sets, the unknown is truly unknown.

 Concluding Remarks

Each of the 5 semantics presented may be the
appropriate solution for particular problems. However, as a
practical matter, the language of extended logic programs is
the language of choice for most applications. Extended
logic programs represent the best compromise between
expressive power and performance. Further, the languages
lower in the hierarchy than extended logic programs
(deductive databases and monotonic deductive databases)
can be implemented as extended logic programs.
Disjunctive logic programs, and epistemic specifications
provide incredible reasoning power. However, these
languages introduce computational complexities that make
their implementation for large applications impractical at
this time.

Monotonic deductive databases can be implemented as
extended logic programs by disallowing the operator not.
Without not, extended logic programs have the exact same
form as monotonic deductive databases. The semantics of
entailment would be exactly the same as well.

It takes a bit more work to implement deductive
databases as extended logic programs. First, let us point out
that CWA, which is inherent in deductive databases, can be
selectively implemented in extended logic programs.
Consider a human resources database that implements the
employee relation with rules of the form:

employee(john, accounting, 40000)

which states that john is an employee who works in the
accounting department, earning a salary of $40,000.

Suppose we ask the query (or similarly, try to prove the
goal)

employee(mary, X, Y)

which asks whether or not mary is an employee. Suppose
that such a fact is not provable in our database. Interpreted
as a deductive database, the answer would be no (or false).
Interpreted as an extended logic program, the result would
be unknown. We could achieve the desired result in an
extended logic program by applying CWA to the employee
relations. This would be done with the following rule:

5employee(X, Y, Z) 7 not employee(X, Y, Z)

This rule means that if it is not believed that X is an
employee, then it is definitively false (by way of default
reasoning) that X is an employee. To implement a deductive
database as an extended logic program, for each predicate,
we would have to create a rule similar to the one above.

As an indication of the “state of the art” in research,
the logic programming research community is currently
enamored with disjunctive logic programs. Epistemic
specifications possess far superior reasoning abilities.
However, implementations of these languages are not yet
efficient enough to be seriously considered for applications
development at this time. Further, the deep properties of
this language are not yet well understood.

 References

(Apt, Bol 94) Apt, Krzysztof R., and Roland N. Bol: Logic
Programming and Negation: A Survey, Journal of
Logic Programming, vol 19/20 May/July 1994.

(Baral, Gelfond 94) Baral, Chitta, and Michael Gelfond:
Logic Programming and Knowledge
Representation, Journal of Logic Programming,
vol 19/20 May/July 1994.

(Deransart, Maluszynski 93) Deransart, Pierre, and Jan
Maluszynski: A Grammatical View of Logic
Programming, Cambridge Massachusetts: The
MIT Press

(Eiter et al. 97) Eiter, Thomas, Georg Gottlob, and Heikki
Mannila: Disjunctive Datalog, ACM Transactions

15

on Database Systems, vol 22, no. 3, September
1997)

(Gelfond 92) Gelfond, Michael: Logic Programming and
Reasoning with Incomplete Information (to appear
in The Annals of Mathematics and Artificial
Intelligence, 1994)

(Gelfond, Lifschitz 88) Gelfond, Michael and Vladimir
Lifschitz: The Stable Model Semantics for Logic
Programming, 5th Intl Conference on Logic
Programming 1988

(Gelfond, Lifschitz 90) Gelfond, Michael, and Vladimir
Lifschitz: Logic Programs with Classical
Negation. In D. Warren and Peter Szeredi, editors,
Logic Programming: Proceedings or the 7th Int�l
Conf, 1990.

(Gelfond, Lifschitz 91) Gelfond, Michael, and Vladimir
Lifschitz: Classical Negation in Logic Programs
and Disjunctive Databases, New Generation
Computing, No. 9 1991

(Genesereth, Nilsson 87) Genesereth, Michael R., and Nils
J. Nilsson: Logical Foundations of Artificial
Intelligence, Los Altos, Ca.: Morgan Kaufman

(Lifschitz, 89) Lifschitz, Vladimir: Logical Foundations of
Deductive Databases, Information Processing 89,
North-Holland

(Lloyd 87) Lloyd, J.W.: Foundations of Logic
Programming, Berlin, Germany: Springer-Verlag

(Reeves, Clarke 90) Reeves, Steve, and Michael Clarke:
Logic for Computer Science, Workingham,
England: Addison-Wesley Publishing Co.

16

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	A Bird's Eye View of the Stable Model Languages
	James D. Jones
	Recommended Citation

