
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

A Knowledge-Based Agent Modeling and Design
Environment
Vijayan Sugumaran
Oakland University, sugumara@oakland.edu

Sooyong Park
Sogang University, sypark@ccs.sogang.ac.kr

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Sugumaran, Vijayan and Park, Sooyong, "A Knowledge-Based Agent Modeling and Design Environment" (2000). AMCIS 2000
Proceedings. 19.
http://aisel.aisnet.org/amcis2000/19

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301345727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/19?utm_source=aisel.aisnet.org%2Famcis2000%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A Knowledge-Based Agent Modeling and Design Environment

Vijayan Sugumaran, Dept. of DIS, Oakland University, Rochester, MI 48309, sugumara@oakland.edu
Sooyong Park, Dept. of Computer Science, Sogang University, Seoul, Korea, sypark@ccs.sogang.ac.kr

Abstract

Agent-oriented software systems are becoming large
and complex. This paper presents a methodology for
agent-oriented software development, grounded in
software engineering principles. It also presents a
knowledge-based agent modeling and design environment
that supports different phases of the agent-software
lifecycle.

Introduction

As software applications get large and complex, very
sophisticated environments are needed to support and
execute heterogeneous and distributed real-time
applications. To manage this complexity, intelligent agent
technology is beginning to be employed as part of the
solution in various software environments (Maes, et al.,
1998). Since its introduction in the AI community, agent
technology has permeated to various application domains
as simple as e-mail filtering, to as complex as Air-traffic
Control (Jennings et al., 1998). Recently, in distributed
and heterogeneous environments such as Electronic
commerce (EC) applications, intelligent agents are
increasingly being utilized to perform various tasks.

Since agents are used in many application areas, a
systematic approach that is grounded within the software
engineering paradigm is highly important for the develop-
ment of agent-oriented software. However, there has not
been enough research on this subject in the Software
Engineering Community (Woolridge et al., 1999).

This paper presents a systematic approach for
developing agent oriented software and an agent develop-
ment environment. This development environment, uses
a knowledge-based approach for generating new software
agents from a family of agent oriented system.

Agent-Based Software Development Model

To develop agent-oriented software, a full life cycle
model is needed. Our suggested model, which is depicted
in Figure 1, is an adaptation of the traditional Waterfall
model and contains the following major activities:
a) domain analysis - problem domain understanding and

modeling, and agent identification,
b) agent modeling - intra-agent and inter-agent modeling,
c) agent design - agent architecture & componentization,
d) agent implementation – implementing the agents using

agent building tools and communication languages,

e) agent integration – integration of multi-agents and
other components, and

f) verification and validation – testing and simulation of
the agent functionalities.

In order to effectively carryout the above mentioned
activities, there is a great need for a software engineering
environment that would facilitate agent modeling, design,
development, and testing. In particular, this environment
should support the user in problem domain analysis and
domain model creation, from which potential agents could
be identified. It should provide mechanisms for
generating customized agents from generic agent
templates based on the user requirements. During the
customization process, the system should perform
consistency checking to ensure that the resulting agents
are consistent with each other in terms of functionalities
and interface.

Agent Modeling

Before agents could be implemented, one has to model
these agents to clearly articulate their functionalities and
how they interact with each other in cooperative problem
solving. To accomplish this, we propose two types of
models: a) intra agent model, and b) inter agent model.
The intra agent model represents the characteristics and
behaviors internal to the agent, while the intra agent
model represents how agents communicate and interact
with each other.

The Intra agent modeling approach proposed in our
methodology is based on the BDI model (Rao, 1991), and

Integration of Multi-agents

Problem
Domain
Analysis
Problem
Domain
Analysis

Agent
Modeling Agent
Modeling

Agent
Design Agent
Design

Agent
Implementation Agent
Implementation

Agent
Integration Integration

 Verification
& Validation Verification
& Validation

Agent identification
Modeling problem domain

Intra -agent model
Inter-agent model

Agent architecture
Componentization

Programming

and general components

Testing
Simulation

Agent

Figure 1. Agent-Oriented Software
Development Process Model

279

Reticular Agent Mental Models proposed by Thomas
(1993). We represent the internals of an agent using the
following four models: a) goal, b) belief, c) plan, and d)
capability. Figure 2 shows an abstract view of the Intra
agent model. Goal is an ultimate objective that an agent
has to achieve, and the goal model consists of a hierarchy
of sub-goals. An agent may delegate tasks to other
agents in order to achieve a certain sub-goal. Goals are
categorized into five groups: a) achieve, b) cease, c)
maintain, d) avoid, and e) optimize. The belief model
captures information about the environment in which the
agent resides in, and the agent itself. This forms the
agent’s knowledge-base or ontology. The plan model
shows the behavior of an agent to achieve its goals. It is
similar to a sequence diagram, which shows the series of
steps that have to be taken in order to achieve a certain
goal. These steps may involve updating values, eliciting
services from other agents and objects, sending messages,
and migrate to another domain (agent mobility). The
capability model shows the operations that an agent can
perform. It shows the internal processing of an agent,
i.e., taking a set of inputs and generating a set of outputs.

Agent's mobility and the types of messages exchanged
between agents in multi agent systems are modeled in the
Inter agent modeling process. This results in two types
of models: a) agent mobility model and b) agent
communication model. The agent mobility model shows
how an agent migrates from one domain to another to
perform a specific task. It also shows the mechanisms
that determine the destination (host) that the mobile agent
migrates to. The agent communication model shows the
exchanging of messages among agents. It shows the
types of messages that agents use to communicate and
their corresponding arguments.

Knowledge-Based Agent Generation

Based on our agent oriented software development
lifecycle model, we are developing a Knowledge-Based
Agent Generation Environment, which supports the
different phases within the lifecycle. In particular, this

environment supports the following three major activities:
a) problem domain analysis and agent modeling, b) agent
design and generation, and c) agent testing and application
generation. One of the objectives of this environment is
to promote agent reuse. Using this agent development
environment, users can design and implement a family of
agent-based systems in a particular application domain.
The generic architectures of agents and systems thus
created can be stored in a reuse repository, which can then
be used as a starting point for designing a new system in
the same application domain. The following paragraphs
describe the process of designing and implementing an
agent-oriented software application, as we envision it.

Domain Analysis and Agent Modeling

The initial phase supported by the environment in
developing agent-oriented software is the domain analysis
and agent modeling. This phase consists of the following
steps: a) Problem Domain Analysis, b) Agent Elicitation,
c) Intra Agent Modeling, and d) Inter Agent Modeling (as
shown in Figure 3). A UML based Object- Oriented
Analysis Method is used for the problem domain analysis.
Since the utility of UML has been extensively validated in
different industries, the UML based approach will provide
an objective view of the domain in the early stages of
Agent Elicitation (Seleic, et al., 1998; Herman, 1998). It
also facilitates deep understanding of the problem domain
with static and dynamic aspects of the system.

After analyzing the problem domain, a domain model
is created which consists of a) use case diagram, b)
sequence diagram, c) class diagram, and d) activity
diagram. In the agent elicitation process, potential
objects that can be “agentified,” are derived from the
domain model using agent selection rules. Also,
additional agents that need to be added are identified.
Then, these agents and objects are assimilated and
represented in an Agent-Class Diagram. This diagram
depicts the relationships between the various objects and
agents. Once agents are identified, their internal
characteristics are captured in the intra-agent modeling

Figure 2. Abstract view of Intra agent model

A

GGooaall

PPllaann

BBeelliieeff

CCaappaabbiilliittyy

Figure 3. Problem Domain Analysis & Agent Modeling

Problem
Domain
Analysis

User
Requirements

Use Case
Diagram

Sequence
Diagram

Class
Diagram

Activity
Diagram

Agent
Elicitation

Agent
Modeling

Agent - Class
Diagram

Domain
Ontologies

Plan Model

Agent
Communication

Model
Agent

Mobility
Model

Capability Model

Belief Model

Goal Model

Intra - Agent Models

Inter - Agent Models

Problem Domain
Model

Domain
Knowledge

Existing Systems
Information

280

step and their external behavior is represented in the inter-
agent modeling step. The completion of the agent
modeling process results in a goal model, belief model,
plan model, capability model, agent communication
model, agent mobility model, and domain ontologies, as
shown in Figure 3.

Agent Design and Target Agent Generation

Once the agent modeling process is completed, the
agent design process follows. The agent models created
in the previous phase serve as the primary input for this
process. Agent design templates are created based on
these agent models, as well as the domain ontology and
knowledge-base. Figure 4 shows the agent design and
target agent generation processes. In the generation of
an agent template, various optional design templates from
the template repository are considered based on domain
ontology and knowledge base that contain design options
and feature relations. The new templates that are
generated are also stored in the template repository for
later reuse. The agent templates then serve as the input
to the target agent generation process in which the
designer adds the implementation details to the agent. In
generating the target agents, the designer can make use of
existing agent components with optional features, stored
in the reusable agent repository, or integrate custom
developed components from other sources. The
knowledge-base provides support for consistency
checking. The target agents are also stored in the reuse
repository for later reuse.

Agent Testing and Application Generation

The final phase is the agent testing and the application
generation phase, as shown in Figure 5. The target
agents generated from the previous phase are first tested
individually using a variety of test cases. Then, these
agents are integrated to create a federation of agents and
this agent federation is also tested. The agent federation
along with domain specific classes contained in the agent-

class diagram form the agent-based software application.
This application is subjected to verification and validation
using several test scenarios.

Summary

In this paper, we have presented an agent modeling
method for real world applications, and an overall agent-
oriented software development process model. We have
also described a knowledge-based agent development
environment that supports various phases of this lifecycle.
This environment facilitates the analysis and modeling of
the problem domain, which helps in crystallizing the
requirements for the agent-based system. The domain
model acts as the backdrop for the agent modeling,
design, and implementation activities.

References
Harmon, P. and Watson, M. Understanding UML: The
Developers Guide, Morgan Kaufman Publishers, 1998.

Jennings, N.R., Sycara, K. P. and Wooldridge, M. “A
Roadmap of Agent Research and Development,” In
Journal of Autonomous Agents and Multi-Agent Systems.
(1:1), July 1998, pp. 7-36.

Maes, P., Guttman, R. and Moukas, A. “Agents that Buy
and Sell: Transforming Commerce as we Know It,”
Communications of the ACM, March 1999

Rao, A. S and Georgeff, M. P. “Modeling rational
agents within a BDI-architecture,” Proc. of Knowledge
representation and reasoning, Morgan Kaufmann
Publishers, 1991, pp. 473-484.

Selic, B. and Rumbaugh, J. Using UML for Modeling
Complex Real-Time Systems, 1998.

Thomas,S.R., PLACA, An Agent Oriented Programming
Language, PhD Thesis, Stanford University, 1993

Woolridge, M., Jennings, N., Kinny, D. “A Methodology
for Agent-Oriented Analysis and Design,” Proc. Of
Autonomous Agents ’99, Seattle, WA, 1999, pp. 69-76.

Inter-Agent Models

Plan

Agent
Communication

Model
Agent

Mobility
Model

Capability

Belief

Goal

Intra-Agent Models

Agent
Design

Domain
Ontologies

Knowledge
 Base

Agent
Templates

Target
Agent

Generation

Target
Agents

User
Developed

Components

Knowledge
Base

Template
Repository

Reusable
Agent

Repository

Figure 4. Agent Design and Agent Generation Figure 5. Agent Testing & Application Generation

Individual
Agent

Testing

Agent 1

Agent n

.
Agent

Integration

Target
Agent

Federation

Verification
and

Validation

Agent-
Based

Application

External
Interface

Information

Knowledge
 Base

Test
Cases

Test
Scenarios

Target
Agents

.

.

.

281

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	A Knowledge-Based Agent Modeling and Design Environment
	Vijayan Sugumaran
	Sooyong Park
	Recommended Citation

