
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

A Social Analysis of Software Development Teams:
Three Models and their Differences
Steve Sawyer
Pennsylvania State University, sawyer@ist.psu.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Sawyer, Steve, "A Social Analysis of Software Development Teams: Three Models and their Differences" (2000). AMCIS 2000
Proceedings. 2.
http://aisel.aisnet.org/amcis2000/2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301345725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/2?utm_source=aisel.aisnet.org%2Famcis2000%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A Social Analysis of Software Development Teams:
Three Models and their Differences

Steve Sawyer, School of Information Sciences and Technology, The Pennsylvania State University, 513 Rider I
Building, University Park, PA 16801, sawyer@ist.psu.edu.

Abstract:

In this paper we analyze the socio-technical activity
called software development by focusing on the social
perspective. We do so to pursue two questions: What can
we learn about software development by focusing on its
social aspects and what insight does a social perspective
give us regarding the production methods, techniques and
tools uses in software development? From the social
perspective, this analysis suggests three models of
software teams. For each of these we outline, compare,
and comment on issues with the way the task, methods
and tools are conceptualized. We include a brief
discussion of hybrid models such as those used at
Microsoft and other packaged software vendors.

Introduction

What can we learn about software development by
taking a social perspective? That is, what can we learn
about software development by focusing on social
structures, interpersonal interactions, and the rules and
norms that define these structures and interactions? And,
what insight on software development production
methods, techniques and tools does a social perspective
provide? By social perspective we mean explicitly
acknowledges that a work group’s members organize
themselves and interact in ways that both respond to and
shape the production tasks which they are charged to
perform (Goodman, 1986). A social perspective on
software development differs from the more traditional
production perspective by highlighting the social milieu
in which the work done to make code takes places
(Sawyer and Guinan, 1998; Wynn and Novak, 1995). By
taking a social perspective we focus on the social unit –
an aggregate set of behaviors – and only indirectly
address the individual perspective on software
development.

This paper continues in five sections. We begin by
highlighting the socio-technical nature of software
development to highlight the interdependencies between
the social and technical (or production) aspects of this
effort. In the second section we outline three general
models of software development that a social perspective
helps to illuminate. In the third section we discuss some
of the issues and insights that arise from comparing these
three models of software development. Section five
presents a short discussion of hybrid models. We
conclude with a discussion of hybrid software models.

The Socio-Technical Nature of Software
Development

In this paper software development is conceptualized
as a set of activities comprised of people interacting with
each other and with (primarily information) technologies
they use to do their work. That is, software development
is a socio-technical activity (Bijker, 1995). A socio-
technical characterization of software development
highlights the analytic distinction between people and the
technologies they use. However, in practice it is very
difficult to disentangle the way people do things from the
technologies that they use. Nor is it easy to gain insight
into the use of a technology if it is removed from the
social context of its use. That is, while the social and
technical aspects of a socio-technical system can be
explicitly characterized, they are mutually interdependent.
This mutual interdependence makes it difficult to
understand either aspect independently.

Interdependence also suggests a context-dependency –
that a specific socio-technical system is, in turn, a part of
a larger socio-technical system. This further suggests that
different contexts will shape the use of the same technical
artifact in differing ways (Sproull and Goodman, 1989).
One example of this context-dependency is the different-
ial uses of Lotus Notes across departments of a large
consulting firm (Orlikowski, 1993) and the same tech-
nology at Zeta Corp. (Orlikowski, 1996). Another
example is the variations in use of similar computer-aided
software engineering (CASE) tools among software
development teams (Guinan, Cooprider and Sawyer,
1997).

Relative to software development, the technical
aspects of this socio-technical system include production
methods (such as the spiral model), production techniques
(such as joint application development or JAD) and
production tools (such as computer aided software
engineering or CASE). The social aspects of software
development include the range of social actions and
efforts between and among members and stakeholders,
the structure of these interactions and the relationship
between the task and group member’s structures and
processes. Issues of skill, domain knowledge, inter-
personal conflict and project management thus reflect the
social aspects of software development’s socio-technical
nature (Sawyer, Farber and Spillers, 1997).

1645

Traditionally the most common perspective on
software development has been technical, focusing on the
means of production. That is, most of the software
development literature is focused on production methods,
techniques or tools research. Because of the socio-
technical nature of software development, implicitly or
explicitly this body of research embeds certain views of
the social aspects of this effort into the production view.
For example the Software Engineering Institute’s (SEI)
Capability Maturity Model (CMM) focuses primarily on
the production aspects of software development. The
People-Capability Maturity Model (P-CMM) goes on to
explain how people can best fit the CMM approach
(Humphrey, 1989; 1995). Together, the CMM and P-
CMM reflect the traditional production first, people
second, approach to the socio-technical nature of software
development. In contrast, in this paper we ask: what can
we learn about software development by privileging the
social perspective?

Three Models of Software Development
Behavior

From a social perspective we can articulate three
perspectives that highlight the social processes of
software development: the sequential, the group and the
network model. We define each of these in Table 1. In
the rest of this paper we address two questions that arise
from this characterization. Firstly, in what ways do these
perspectives differ? Secondly, what insight can these
differences provide? Responding to the first question, in
Table 2 we present a summary of the contrasts among
these three social process models of software
development. We discuss each in the following sub-
sections.

Table 1: Three Models of the Social Processes of
Software Development

Model Definition

Sequence Software development is seen as a
production effort. It is a linear set of
discrete tasks. People work in
specialized functions with a minimal
need to interact across these functions.
All information needed for subsequent
steps/tasks are embedded in the work
product or in supporting documentation.
This implies a functional organization of
people with a hierarchical management
approach. The traditional waterfall
model is an example of the sequential
model of software development.

Group Software development is seen as
combination of development and
production. A set of discrete tasks may
need to be repeated until the product is
complete. Group members are
interdependent and are valued for their
particular skills and for heir ability to
work with others. This implies a team-
based model and a collaborative
management approach. The spiral or
evolutionary method is an example of
the group model of software
development.

Network Software development is seen as a
process of constant development with a
specific focus on the outcome/ product.
Tasks are not seen as sequential. Tasks
are also tied to individuals (or small
groups) who often compete for
inclusion. Group members are valued for
these abilities. This implies a complex
network of ties between people and a
hub-and-spoke management approach.
The open source effort exemplifies the
network model of software development.

Table 2: Aspects of the Three Models of Software
Development Team/Behavior

 Model
Aspect

Sequence Group Network

Conceptual
Basis

Industrial
Engineering

Social
Psychology

Sociology

Perspective Process 1st Process 1st Product 1st

Orientation Control Conflict Interaction
Use Prescriptive Normative Descriptive
Task view Production Production /

Development
Development

Implied
Method

Linear &
Sequential

Iterative &
Sequential

Emergent &
Non-linear

People’s
Actions

Prescribed Role & goal-
driven

Individual
but linked

Examples SDLC,
SEI/CMM

Spiral, JAD,
RAD

Open source

680

The Sequential Model

 The conceptual basis for the sequential model of social
processes in software development comes from the work
design literature in industrial engineering (Nadler, 1963).
This perspective on software developer interactions is
driven by the work first laid out by Frederick Taylor and
often known as scientific management. The social
process embedded in a sequential model of software
development implies a linear and pre-specified ordering

1646

of the requisite tasks. This pre-specified ordering further
implies a prescriptive view of the production model.
Each person’s task is discretized and specialized.
Specialization allows for greater expertise within the task
and makes it easier to train for the task. The sequence
model prioritizes the process over the product and the
underlying belief is that a good process leads to a good
product.

The social interactions in a sequence model of
software development are based on the concepts of
control. That is, people’s interactions are seen solely as a
function of the work they do. This work can be measured
and compared, the roles are stable, so the needed
interactions can be formalized (and perhaps even
automated). This also suggests that any particular
member can be replaced as needed by another person with
the same functional level of training. The sequence
model of social process also highlights the importance of
automation: for discrete tasks (such as coding or testing)
capital can replace (or at least augment) labor. The social
structures of a sequence approach are hierarchical, with
little intra-functional discussion needed (save through
formal channels). The emphasis is on embedding the
required information in the work product and/or
associated documents to pass on to each downstream task.
As such there is a control orientation to the interactions
among team members and very little need to create strong
social bonds. Examples of this include the traditional
waterfall models (such as the systems development life
cycle or SDLC), the CMM and the SPICE project.

The Group Model

The group model draws its intellectual roots from
social psychology, primarily that of “work redesign.”
(Hackman and Oldham, 1980). Work redesign arose in
response to the issues (such as motivation, retention and
productivity) that typically arise in response to a work
design approach. In a group model of software
development social process the work effort is seen as
interactive and collaborative. The tasks, while often
sequential, are seen as iterative and there is explicit
attention to process improvement (or tuning) by the
members of the group. Thus, a group model is normative.
From this perspective, software development processes
are based on a set of predefined tasks but this must also
take into account (and build on) the individual skills and
weaknesses of the group’s members.

A group model of software development makes
explicit that there is a role for social interaction among the
group’s members. This means that there is the potential
for semi_ automation of tasks and that the tools and
methods should explicitly provide for collaboration
among the group’s members. The social structures and
interaction modes are oriented to resolving the inevitable
conflicts that arise from people collaborating. The group
model also explicitly recognizes, in its iterative nature,
that software production and development are (often

intimately) linked. From this perspective, the production
process is more flexible than it is from a sequence
perspective. Still, the implicit belief reflects the process-
first approach also present in the sequential model.
Examples of group models of the social process include
the spiral or evolutionary approach to software develop-
ment, rapid application development (RAD) and joint
application development (JAD).

The Network Model

The network model draws on social network theory
(Grannovetter, 1973; Wellman, et al, 1996). In this model
a group of people are linked by the relative “strength” of
the social ties between them. These ties reflect the
frequency and value derived from these ties. Stronger ties
reflect common interests, significant information sharing
and significant interaction. Weaker ties reflect less
frequent interactions and different forms of information
transfer.

The chief programmer team model of software
development (see Baker, 1972) is one well known
example of a network model. In this form, the network
appears to be a hub-and-spoke: strong ties between
members and the chief programmer and weak ties
between individual team members. The recent growth of
open source development efforts (see Raymond, 1999)
reflects a second form of the network model. This
network has multiple hubs (of varying relative ties
strengths) and multiple ties between members of the
network. In both, however, there is some form of central
hub. The chief programmer is the clear center in Baker
(1972) while most open source efforts rely on small
number of hub/people to server as a center.

In the network model, the production process is
secondary to the product. Moreover, the process typically
emerges and reflects the network ties developed by the
participants. This implies that a network model tends to
be descriptive – it reflects a “what is happening”
perspective. However, this emergent process is
constrained by tasks. That is, even if the process is not
central, there is some form of version control, of testing
and of documentation. One belief underlying the
network model of the social processes of software
development is that a good product comes from having
good people. This people-first approach recognizes that it
is very difficult (if not impossible) to replace key
members (or a member) of a network as they are the hubs
of connection. Simply, what would have happened to
Mosaic (and Netscape) if Mark Andreesen had left the
project?

The network perspective implies that the individual
members, and the social ties that connect them, define the
software development effort. To support the network it
becomes critical that the software development tools
provide for interconnection. Simply, any software
development tool is valued for how it helps the individual
member and/or for how well it enables network

1647

interconnectivity. A second implication is that a network
model, being both emergent and descriptive, reflects a
developmental view (as opposed to production) of
software. Further, given the centrality of the social
structures and individual members interaction to a
network model, the group’s effort are often contentious
(Zachary, 1998). From this perspective, the interactions
between the members are focused on product features,
functions or actions. There are few procedural details and
the expectation among the network’s members is,
essentially, “show and tell.” That is, the resolution of
disagreements is often rooted in delivering code that
delivers on the concepts discussed. This also re-affirms
the product (or outcome) oriented belief mode that
typically permeates a network model of the social
processes of software development.

Hybrid Models

A more typical scenario is that an actual development
team may adopt a hybrid model of social process. For
example, both Baker (1972) and Brooks (1975) write
about the IBM System 360 development effort. Brooks
highlights the importance of a project development
structure (essentially the SDLC) while Baker explains
how the chief programmer team (a star network model)
works. In this set of cases, the sequential model
advocated by Brooks provides a stylized view of
development while Baker’s view provides insight into
how the chief programmer can create a hybrid social
process underlying the sequence of the SDLC.

One proposition that arises from this is: for the SDLC
to work, a hybrid network of relations is needed between
the developers. Circumstantial evidence suggests that this
may be true. For instance, Weinberg (1971) noted how
developer productivity fell when vending machines were
removed from programmer’s break area and they,
subsequently, spent less time interacting informally with
each other. Simply, the developers lessened their reliance
on the informal network that had emerged around the
vending machines.

Carmel and Sawyer (1998) and Sawyer (2000)
document how packaged software (software made for
sale/license to others) development approaches differ
from more traditional custom/internal software
development. They note that in packaged development –
relative to custom development, developer interaction is
greater, there is less reliance on formal processes, and
more reliance on product construction. Many of these
issues are also documented by Cusamano and Selby
(1997). They highlight this product-focused approach in
their analysis of Microsoft’s development practices.
Zachary (1998), in his research on Microsoft’s
development practices, highlight that such a product focus
allows for internal competition among developers.
Further, he characterizes the Microsoft development
approach as a hybrid between a group and network model.
For each development effort, a small number of critical

people (called the core team by Carmel and Becker, 1995)
serve as the hubs in the evolving network of
programmers. However, these networks are then formally
structured and this lead to issues (of conflict and
interdependence) of the group model to software
development.

Finally, the issues with hybrid models can also show
up in the use of tools to support software development.
For example, Vessey and Sravanupudi (1995) show how
CASE tools are typically designed to be used by
individuals (and implicitly or explicitly support a
sequence perspective). However, CASE tools are often
used by groups. The implicit (or explicit) sequence-based
model of CASE tools makes it difficult for groups to use
these effectively (Guinan, Cooprider and Sawyer, 1997).

Privileging the Social Perspective

Our point is that a social perspective on software
development helps us identify three general models of the
social organization. Comparing these three models, in
turn, leads us to insights on the socio-technical act of
software development. And, given the predominance of
the production-focused perspective of software
development, a social focus provides a means to explore
the current literature’s findings from a different
perspective.

A social perspective on the sequence model of
software development leads to highlighting why there are
problems with adhering to the production process
(methods). Simply, such a process demands people’s jobs
become over specialized and thus have little autonomy,
task feedback, task variability and limited skill sets
(Hackman and Oldham, 1980). That is, a sequence model
implies the intellectual equivalent of factory work without
the attendant product safeguards.

From a social perspective the group model of software
development provides for a more enriching and rewarding
experience for team members. The group model
explicitly ties to the production process and better reflects
the variations of its human performers (McGrath and
Hollingshead, 1994. Because this approach is premised
on consensus, problems with conflict and its management
tend to dominate the effort (Curtis, Krasner and Iscoe,
1988; Robey, Farrow and Franz, 1989; Zachary, 1998).

The network model fully embraces the social
perspective as the dominant organizing principal. This is
why this approach often has problems with process
stability and risk management (Zachary, 1994; Raymond,
1999). Because the process (and process controls) are tied
to people (or nodes) the loss of that person removes that
aspect of the process. Further, and coincidentally, such
person-specific process ownership often leads to the same
sort of over-specialization (and limited personal value)
that arises in sequence-model approaches to development.
That is, in the network model, a person could become so
tied to a few parts of what they do that it dominates their
role in the network.

1648

Such differences between these three models of
software development leads to asking: which is the best
approach? This is both an empirical and philosophical
question that we do not address in this paper. However,
we do provide evidence that hybrid social process models
exist and that these models can be decomposed into some
combination of the three base social process models.
Further, this analysis of the social processes of software
development suggests that the socio-technical nature of
this effort is often under-represented by focusing on the
technical (or production) side. A social process view of
software development helps to see past the tools and to
gain a better sense of the relation between the tools and
the people’s use of these tools.

References

Baker, F. Chief Programmer Team Management of
Production Programming. IBM Systems Journal, 11(1),
1972, 56-73.

Bijker, W., “Of Bicycles, Bakelites and Bulbs: Toward a
Theory of Sociotechnical Change,” MIT Press,
Cambridge, MA, 1995.

Brooks, F. The Mythical Man-Month, Datamation, 1974.
44-52.

Carmel E and Becker S. A process model for packaged
software development. IEEE Transactions on
Engineering Management, 41(5), 1995. 50-61

Carmel E and Sawyer S. Packaged software development
teams: What makes them different? Information
Technology & People, 11(1), 1998. 7-19

Curtis, W., Krasner, H. and Iscoe, N. A field study of the
software design process for large systems. Commun-
ications of the ACM, 31(11), 1988, 1268-1287.

Cusumano M and Selby R How Microsoft builds soft-
ware. Communications of the ACM, 40(6), 1997 53-61.

Goodman, P. Impact of Task and Technology on Group
Performance. San Francisco, Jossey-Bass, 1986.
Granovetter, M. The Strength of Weak Ties. American
Journal of Sociology, 78(6), 1973, 1361-1381.

Guinan, P. Cooprider, J. and Sawyer, S. The Effective
Use of Automated Application Development Tools: A
Four-Year Longitudinal Study of CASE. IBM Systems
Journal 38, 1997,124-141.

Hackman, J., and Oldham, J. Work Redesign. Addison-
Wesley, Boston, 1980.
Humphrey, W. Managing the Software Process. Reading,
MA: Addison-Wesley, 1989.

Humphrey, W. A Discipline for Software Engineering.
Reading, MA: Addison_Wesley, 1995.

McGrath, J., and Hollingshead, A. Groups Interacting
With Technology. Sage, Thousand Oaks, CA, 1994.

Nadler, G. Work Design. Richard D. Irwin, Homewood,
IL, 1963.

Orlikowski, W. Learning from Notes: Organizational
Issues in Groupware Implementation. The Information
Society 9, 237-250, 1993.

Orlikowski, W. Improvising Organizational
Transformation Over Time: A Situated Change
Perspective. Information Systems Research 7(1), 1996,
63-92.

Raymond, E., The Cathedral and the Bazaar, Available
online at http//www.tuxedo.org/~esr/writings/, 1999.

Robey, D., Farrow, D. and Franz, C. Group Process and
Conflict in Systems Development. Management Science
15(10), 1989 1172_1191.

Sawyer, S. Packaged Software: Implications of the
Differences from Custom Approaches to Software
Development. European Journal of Information Systems,
9(1), 2000, 1-18.

Sawyer, S. and Guinan, P., “Software Development:
Processes and Performance," IBM Systems Journal, 37(4),
1998, 552-569.

Sawyer, S., Farber, J. and Spillers, R.. Supporting the
social processes of software development teams.
Information Technology & People, 10(1), 1997, 46-62.

Sproull, L. and Goodman, P. Technology and
Organizations: Integration and Opportunities. in
Technology and Organizations, P. Goodman& L. Sproull,
(Eds.). San Francisco: Jossey-Bass, 1989, 254-266.

Vessey, I., and Sravanapudi, P. CASE Tools as
Collaborative Support Technologies. Communications of
the ACM, 38(1), 1995, 83-95.

Wellman, B., Salaff, J., Dimitrova, D., Garton, L., Gulia,
M., and Haythornthwaite, C. Computer Networks as
Social Networks: Collaborative Work, Telework and
Virtual Community. Univ. of Toronto, Toronto, Canada,
1996.
Wynn, E. and Novick, D. Relevance Conventions and
Problem Boundaries in Work Redesign Teams.
Information Technology & People, 9(2),1995, 61-80.

Zachary, G. Armed Truce: Software in the Age of Teams.
Information Technology & People, 11(1), 1998, 62-65.

Zachary, G. Showstopper: The breakneck race to create
Windows-NT and the next generation at Microsoft. New
York: The Free Press, 1994.

1649

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	A Social Analysis of Software Development Teams: Three Models and their Differences
	Steve Sawyer
	Recommended Citation

