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Abstract

The volume of information of the most various types stored electronically in a
company is increasing to an ever-greater extent. While in the field of opera-
tional systems everything is aimed at achieving the quickest possible
throughput, in the dispositive field, questions regarding the total overview or
detailed views are of interest. OLAP servers are multidimensionally
structured. They are therefore suited for the analysis of multidimensional
datastores. The functionality of the OLAP server, such as, creation of forms,
drill down, roll up, slice and dice, analysis technology, multidimensional con-
solidation, etc. demonstrate the advantages of this tool. The analysis of the
relevant features of the data warehouse and OLAP is based on both the
mainstream literature and on our experience in a two-year project Data
Warehouse for Tupperware Inc.

The second problem addressed by this paper is the discussion of recent ap-
proaches for a proposition some formal definitions of basic constructs used in
so called multidimensional modelling which seems to be an important tech-
nique for data warehousing and OLAP. It is different from E-R modelling
and offers a number of important advantages that the E-R modelling lacks.

We show a relationship of E-R modelling to the multidimensional modelling
and describe a broad class of multidimensional databases based on so called
constellation schemes with explicit hierarchies.

1 Introduction

The volume of information of the most various types stored electronically in a
company is increasing to an ever-greater extent. The information stored in this
manner in the fields of, for example, marketing, design, production, management
and even as far as controlling represents an important information potential.
However, in most enterprises, it is not possible to utilize the whole of the data
capacity. In the areas mentioned above, the data often cannot be utilized fully as,
as a rule, it is insufficient or inadequately structured.

Even the possibility of using external data – already possible today – such as, for
example, market research data, information from external suppliers, etc. is hardly
used or not used at all.

It is known that such in information pool1 cannot consist of operative data only.
By uniting operative, external and historical data from the enterprise, so-called
dispositive or flexible data, which form the data warehouse, is created  (Aberdeen
                                                       
1 The associated software technology is called usually OLTP (Online Transaction

Processing).
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Group Market Viewpoint, 1995). In section 2 we introduce a data warehouse
example at Tupperware Germany. Section 3 describes the most important func-
tionalities of OLAP.  OLAP design problems are discussed in section 4.  The
main part of the paper, section 5, is focused on multidimensional modelling
which makes it possible to fulfil the OLAP functionality. The approach presented
is based on the theory introduced in (Pokorny 1998a) and (Pokorny 1998b).
Finally, section 6 contains some conclusions.

2 An Example of Data Warehouse and OLAP

A data warehouse was 1997 implemented as a prototype (so-called ”Pilot
Project”) in Tupperware Germany. It is a part of the Tupperware Company, an
enterprise that has been affiliated with the American group of Premark Inter-
national since 1987. At present, there are some 165 so-called regional trading
offices, economically independent enterprises, which, in the same way as the
wholesale company, Tupperware Deutschland GmbH, carry out a purely selling
function. The regional trading offices form the interface between the consultants
who work throughout the whole of Germany, who offer and sell the Tupperware
products during home presentations (”Tupper Party”) and the central
organization. The regional dealers (RD) are allocated employees according to the
regions in which they are located. These employees are, in turn, employees of
Tupperware. These consultants are divided into groups. Each of these teams is
cared for by a so-called Group Consultant (GC). She is the partner for the RD
and for the consultants. The structure of the sales organization described in the
foregoing is depicted in Fig. 1.

Tupperware Germany

Regional DealerRegional DealerRegional Dealer

Group with GC Group with GC Group with GC

Consultant Consultant Consultant

Figure 1: Company organizational sales structure
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The software (Fig. 2) which is used to create the data warehouse is ideal for a
medium-sized company such as Tupperware Germany. There is no necessity to
install a completely new system as the selected products run on a platform-
independent basis. In the Tupperware trading organization, the data warehouse
was implemented on a NT server. For analysis, standard IBM compatible
personal computers are used. It is possible for every department in the company
and for management to carry out analyses – taking into account the data release
involved – via a network which has been installed within the company.

AS/400 Model 510 OLAP - Server

OLAP - Cube

SQL

ODBC

:::
TOKEN-RING

Figure 2 : System structure of data warehouse at Tupperware Germany

The development of a product can be quickly and reliably evaluated, it is
necessary to have an analysis tool, which enables intuitive enquiries to be made.
At Tupperware, it was decided to use the product with the name of Improptu
(from Cognos).

Here, metadata and raw data, which are available on an IBM-Computer, are
transferred to the data warehouse via an ODBC interface.

The development is changing from the previously hierarchical order of the
information system in an enterprise towards that of the data warehouse. The
elementary fact here being that the data warehouse is a data source of all
information systems, independent of their hierarchical order (Glassey 1997).

For example, a manager wants to have an analysis of his area of responsibility.
For this purpose, he wants to know how many pieces of certain category of
product have been purchased by which dealers in a prescribed period of time and
wishes to compare the results with the figures for the previous year.
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It can be seen that the information must be described in an n-dimensional form.
This is referred to as ”multidimensionalism”. Thus, OLAP environment needs
more satisfiable design methods. Most of them are based on so called
multidimensional (or dimensional) modelling.

There are two basic approaches to multidimensional modelling:

• conceptual structures are based on tables (dimension and fact tables) arranged
into so called star schemes,

• conceptual structures are based on so called hypercubes (data cubes,
multidimensional arrays) that represent the data as a multidimensional
structure.

OLAP2 servers (Frye 1995), usually running over a warehouse, are
multidimensionally structured to store data and relationships among data. As a
result of this fact, they are especially suitable for the analysis of multidimensional
datastores.

As opposed to relational databases, the strengths of the OLAP servers lie in their
powerful analytical functions (Mann and Mehta 1996).

3 Functionalities of OLAP

The advantages of the OLAP server lie in the fact that it is possible to achieve the
following functionalities without any additional programming work:

a. The Creation of Formulas

 The fields involved cannot always be called up directly. They must be calculated
from the data available. This then means that such data, as is the case with all
other data from the data warehouse, must be treated with equal priority by the
OLAP server for analysis.

b. Multidimensional Consolidation

 Hierarchically classified data represent no problem for the OLAP server.
Compilations and complex calculations can be implemented easily. For example,
the number of articles sold per customer can be compiled and then further
aggregated per region. This demonstrates that the OLAP server can support
aggregates, consolidations and various types of hierarchies.

c. Drill down Roll up (Fig. 3)

 ”Drill down” means that the very aggregated results are broken down step by
step according to their hierarchy. For example, the total turnover of a company
can be subdivided into North and South. From here, in any continent or region
selected, a further drill down can be carried out into sales regions and further into
individual states and even as far as individual customers.

                                                       
2 Online Analytical Processing
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 The ”roll up” has the reverse function. It begins at the data level and aggregates
the data step by step.

 

Total overview

High compression

Low compression

DetailsDetails Details
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 Figure 3: Drill down and roll up

d. Slice and Dice

 With this it is possible to present the OLAP cube in specific partial views such as
slices or dices. For example, it is possible to see a slice with the turnover of all
products. By turning and revolving the cube further, more and more new views
are presented (Fig. 4).

ManagementRegional Dealer

Group
Leader

Marketing Department

Turnover
Figures

Products

Time
Regions

Figure 4: Slicing and Dicing
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e. Data retention in the OLAP server

 Multidimensional data is stored in aggregated or compressed form. The
compression of the data is adapted to suit the data warehouse. The storage of
matrices with a large number of ”zero cells” is treated separately from matrices
with a low volume of ”zero cells”. This leads to a minimization of storage space,
thus making the analysis of great volumes of data possible. By means of this
special form of storage, access to the hard disk is avoided which in turn has a
positive effect on performance. In the OLAP server itself, only greatly aggregated
data is to be found. If, something which occurs only very seldom, the analysis of
the data goes back as far as an individual booking, the server accesses the
operational datastores. This means that the gigantic volumes of booking data
remain in the operative system but are, nevertheless, available at all times
(Weldon 1995).

f. Analysis technology

 If an analysis is started, the OLAP server ”knows” exactly what the status of the
last analysis is. If a further reaching analysis is now started, then the server does
not begin from scratch, but instead uses the data already selected (Glassey 1997).

 With the new technology of data storage and the ”intelligence” of the OLAP
server it is possible for the user to design analyses and enquiries intuitively. With
the implementation of a data warehouse on an OLAP server, valuable data can be
extracted from the masses of data, which, in its quality, can create particularly
great competitive advantages. It can be said that the OLAP technology will assert
itself in the future.

g. The heterogeneous environment (Fig. 5)

The relevant data is often obtained from heterogeneous data sources. The
structures and access possibilities can be from anything from relational databases
to simple ASCII files. In order to arrive at an efficient analysis, it is necessary to
administer these in the complex data warehouse (Aberdeen Group Market
Viewpoint, 1995).

External

Oracle

Sybase DB/2

ASCII-File

Spread-
sheatSeparate DB

(OLAP-Server)

Figure 5: Heterogeneous data sources for OLAP server
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In order to ”selectively process” a data warehouse in all of the functionalities
already mentioned, special software is required which is able to correspond with
the server.

There is already a large selection of such tools on the market. The main
characteristics of the software are its ability to generate reports without any
programming effort of its own. Software packages with a report generator, an
analysis program and an application to present this data in logically arranged
tables with graphics are offered, among others, by the following leading software
manufacturers (Fig. 6).

Business Objects
3.1

Impromptu 3.0 ShowCase Vista Express

Manufacturer Business Objects Cognos ShowCase ORACLE

Configuration Very good very good very good very good

Safety Good very good good excellent

Simple report in
column form

Good good good very good

Complex report
with several tables

Good very good satisfactory very good

Features for power
user

Satisfactory very good good good

Speed Poor very good good good

Documentation Satisfactory good satisfactory good

Support Satisfactory good satisfactory very good

Slice & Dice ü ü ü ü

Drill down ü ü ü ü

HW platform-
independent

ü ü ü ü

DB platform Tm l server
Fact Gab. …

ORACLE
SYBASE-
SQL. …

DB2/400 ORACLE
Access to all
standard SQL
databases

Operating system Windows NT,
UNIX

Windows 95, Windows
NT

AS 400 Windows 95,
Windows NT

Object-oriented ü ü ü ü

Internet
connection

– – – –

ODBC interface ü ü ü ü

MOLAP ü ü – ü

32bit application ü – – ü

Figure 6: Comparison of OLAP tools selected for the Tupperware Inc.

The picture developing for the future is one of the enterprises being connected to
its subsidiaries and partners via Internet or Intranet. These problems are solved in
(Sokolowsky et al 1997).
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4 OLAP Database Design

There are significant differences between OLTP and OLAP3 databases (see, e.g.
Fig. 7 adapted from (Codd 1993)). Whereas in OLTP databases indexing,
precalculated fields, and data duplication are avoided, OLAP databases keep
derived tables composed of data placed in other tables. The reason for it is easy.
OLAP databases are optimized for the purpose of easy querying rather than for
inserting and updating data as the OLTP databases do it. Notice that DW and,
consequently, OLAP databases store relatively stable data that are updated rather
periodically than immediately.

In OLAP, the most important aspect of database design is focused on how we will
to need analyze the data. Well-known modelling methodologies with the most
common E-R diagrams as the leading one in OLTP environment are
inappropriate in OLAP environment. The main difference between E-R
modelling and OLAP application design is representation of understanding of
processing logic. E-R schema assumes that data are processed by programs and
represents only the relationships between objects.

Criteria OLAP OLTP

Enquiries In part, not predictable,
(answer time: seconds to minutes)

Predictable
(answer time: 0-5 seconds)

Data contents Several years,
Deduced and aggregated data

Current periods,
Possibly, short histories

Data organization The investigation can extend to
cover the whole of the enterprise

Application oriented

Dimensionality Frequently multi-dimensional Two dimensional

Use of data Mostly unstructured, the
investigation is at the core

High degree of structuring
(transaction oriented and enables
location of individual data records)

Information types Formatted or, resp., unformatted and
internal/external information

Formatted and internal information

Redundancy Monitored redundancy (star and
snowflake)

Minor

Access Mainly reading Reading and writing

Figure 7: Comparison between OLAP and OLTP

On the other hand, the calculation of derived data is crucial to designing OLAP
databases.
We have already mentioned two approaches to the multidimensional modelling
as a method supporting so-called data centric data processing. Examples of both

                                                       
3 Among other typical OLAP features we also include visualizing aggregations in a

graphical way.
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approaches from a car business subject area are in Fig. 8a and Fig. 8b
respectively.

MODEL SALES ORGANIZATION

SALES

COLOUR

Type

Type

Description
Number of seats
Class

Representative
Office

SalesOrg_ID

SalesOrg_ID

Colour ID

Colour ID

Quantity
Cost
Revenue
Profit

Name

Figure 8a: Star schema

SALES ORGANIZATION

MODEL

COLOUR

Figure 8b: Hypercube

The latter shows data in cells arranged by dimension of the data. There is a close
relationship between both approaches. In (Gyssens, Lakshmanan, and
Subrimanian 1996), a tabular data model is developed which provides a unified
apparatus to star-like multidimensional databases and to hypercubes. We will
focus rather on the first approach.
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5 Multidimensional Modelling

Multidimensional or, shortly, dimensional modelling (DM) is a logical design
technique that uses the relational data model with some important restrictions.
The basic components of DM are facts, dimensions, attributes. Similarly to the E-
R model, which has many variants, DM has also no referential set of constructs.
The same we can say about its formal fundamentals.

We could begin with the approach advocated by R. Kimball, the author of the
seminal book (Kimball 1996) and the material (Kimball 1997). Each dimensional
model is composed of one table with a multi-part key, called the fact table, and a
set of tables called dimension tables. Each dimension table has a single-part
primary key that corresponds exactly to one of the components of the multi-part
key in the fact table. Tables are conceived here in a similar way as the tables in
SQL, e.g. each table has rows whose components are elements of associated
column domains. As usually, each table is a subset of the Cartesian product of its
column domains. The set of tables is also consistent in the sense of the referential
integrity induced by its star schema.

The following definitions highlight the clean distinction made in the general
conceptual modelling between table schemes and tables (the latter are sometimes
called table instances or states in the literature). We use upper letters D, F, … for
table schemes and D*,F*, … for tables.

The schema expressing mentioned tables has a characteristic ”star-like” structure
and is called the star schema. For its associated diagram we will use the term
DM-diagram in the multidimensional conceptual modelling (see, e.g. Fig. 8a).
Table schemes are connected with lines, which express many-to-many
cardinalities of relationships that are modelled by the fact table. In terminology of
the E-R model, the notion of star schema is used only for special types of
relationships.

5.1 Preliminaries

More formally, a star schema is a triple <D, F, CC>, where D is a set of
dimension table schemes Di with attributes Ai, i=1,...,n. F is a fact table schema,
and CC is a set of cardinality constraints. One attribute of each table Di is called
the key of Di and is denoted as KDi. The key of F table is the union of KDi,
i=1,...,n. Other (non-key) attributes of F are called facts.

The cardinality constraint CCi for F and Di, i=1,...,n, is defined as follows. Let F*

and Di
* be a fact and a dimension table, respectively. Then the cardinality

constraint is satisfied by these tables, when for each row u from F* there is only
one row v in Di

*, such that

u.KDi = v.KDi
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Informally, rows of the fact and dimension tables are in many-to-one
relationship. In more precise notation could be this fact expressed with the help
of min-max pairs as

<F:(1,1), Di:(0,n)>

i.e., some rows from Di
* are associated with no row from F*. Thus, dimensions

are independent on facts, facts can not exist without dimensions. Cardinality
constraints also imply that each KD is a foreign key in F. In contrary to the SQL,
the value of any foreign key in F* must not be NULL.

Now we can define a multidimensional database. Let S be a star schema. A
multidimensional database over S is a set of tables Di

*, i=1,…,n, and F* that
satisfy all cardinality constraints from CC.

Single-star schema environment is regarded as easy to understand but also a little
limited. In the OLAP environment we can distinguish another approach in which
a more star scheme is defined on the conceptual level. We obtain so-called multi-
star or, better, constellation schema.

Thus, one dimension table schema can be common for more fact table schemes.
The notion of multidimensional database over a constellation schema is a natural
extension of this notion specified in its previous definition.

Regardless of tables as the basic construct, DM expresses the conceptual level.
Certainly, multidimensional databases can be implemented in relational
databases. In the simplest DM, the basic star schema has a natural relational
representation. Each dimension is described by its own table, and the facts are
arranged in a single large table in which parts of the multi-part key are foreign
keys referring to particular dimension tables. On the other hand, a
multidimensional database can have its own implementation (e.g. RedBrick
Warehouse).

5.2 Dimensions

Dimensions are the classes of descriptors of facts. If the name of the fact table is
SALES, the dimensions might be COLOUR, MODEL, and
SALES_ORGANIZATION. Dimensions are described by attributes some of
which are descriptive, e.g. Description, Name, within the others may be included
business-oriented, enterprise-specific dimension hierarchies, e.g.

Item à Class (H1)

An important dimension is TIME structured usually into the hierarchy

date  à month à quarter à year (H2)

Other attribute hierarchy is:

Office à district à region (H3)

Attributes in a dimension hierarchy are called members of the hierarchy. In more
rigorous approach, particular members of each such hierarchy are classes of
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entities. Some hierarchies can be multiple in one dimension. For example, in the
TIME dimension the hierarchy date à week is a separate hierarchy from (H2).
An extension of a hierarchy can be defined e.g. as a set of trees. An example of
an extension for hierarchy (H3) appears in Fig. 13.

A typical usage of hierarchies is in various possibilities of aggregation.
Beginning with office we can roll up to geographically higher wholes and
aggregate the associated data.

The members of dimensions can be further described by another  descriptive
attributes. For example, each region has a Regional_Manager, a store has a city
and state, a month could be described by Ending_Date and Starting_Date. As a
consequence of this approach, we can obtain highly denormalized dimension
tables. In fact, attribute hierarchies define naturally sets of functional
dependencies, other functional dependencies are induced by the existence of
descriptive attributes. It results in the conclusion that dimension tables are not in
3NF. This does no problems because the assumption behind the star schema is
that the associated database is static, i.e. no updates are performed on-line.

Star schemes contain mostly slowly changing dimensions. This fact can imply
some important decisions on the implementation level of the multidimensional
database.

5.3 Facts

The facts are usually numeric quantities that describe, e.g., how many cars of a
given model have been sold and the money received for the cars. This numeric
data can be summed when a group of fact rows is selected. Since aggregation is
an additive process, it is best if facts are limited to additive, numeric values.

A special case offer factless fact tables. These tables have the set of non-key
attributes empty. They record, e.g., events. In a student tracking system, each
record in the fact table detects student attendance event each day. The second
kind of factless fact tables is called coverage table with which the problem of
sparsity can be solved. For example, the table SALES contains facts concerning
the sales of cars. This table cannot answer the question ”Which models were
offered that did not sell?”. The coverage table in this case keeps rows (model,
sales organization ID, colour ID) representing the current offer of cars (of given
models, colours, and from given sales organisations). The same effect could be
reached by allowing the fact table with partial non-key attributes. For some
fraction of the Cartesian product of dimension keys, values of non-key attributes
(facts) would be non-defined, i.e. set up as NULL. Any multidimensional
database can handle sparsity in the way in which it does not record rows where
some elements of the Cartesian product give invalid combinations of values.

Storing a hierarchy into one dimension table can pose problems in DM. We
would like to keep in the fact table aggregated data e.g. such as sales dollars for a
region, for a given model, and for a given colour. Thus, the question is how to
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construct the key of SALES_ORGANIZATION.  Suppose, the table schema
contains all attributes in the hierarchy, i.e. office, district, region. Then these
attributes have to participate in the table primary key. So called generated
(artificial) keys and a special attribute Level may be introduced. An example
explaining this problem is depicted in Fig. 9. The generated key is SO_key.

SO_Key SalesOrg_
ID

Office Repre-
sentative

District Region Region
manager

Level

234 STO3276 BUICI Jones Idaho North Smith Office

235 STO3189 BMI Hover Florida South Navara Office

236 STY5478 AUD4 Archwood Idaho North Smith Office

237 STQ6781 AUD8 Seaman Florida South Navara Office

238 NULL NULL NULL Florida South Navara District

390 NULL NULL NULL Idaho North Smith District

240 NULL NULL NULL NULL North Smith Region

241 NULL NULL NULL NULL North Smith Region

Figure 9: Dimension table with a hidden hierarchy

Often emphasized property of star schemes is that they are built for simplicity
and speed. However, the level indicator can limit its flexibility. Moreover,
summary data in the fact table can yield poorer performance, dimension tables
are huge. More structured approaches make it possible

• to split the fact table into more fact tables according to a dimension hierarchy,
• or, to build hierarchies as paths of separate tables.

 5.4 Fact Constellation Schema

 For each star schema it is possible to construct so-called fact constellation
schema. We will observe that these structures create a proper subset of
constellation schemes specified in Section 5.1. Here we only extend one star
schema along one selected hierarchy (roll up). The basic fact table of this schema
contains data aggregated by the lowest member of the hierarchy. For example, for
the hierarchy (H3), it is office. Obviously, the generated key is not necessary in
this approach. Then, particular new fact tables can be built, i.e. SALES_D and
SALES R for aggregation by district and region, respectively. Fig. 10 shows
adding the SALES D fact table to the original star schema. Obviously, the Level
attribute is not necessary here.

 Notice that the fact tables in Fig. 10 are done only for the lowest hierarchy
members of dimensions remaining the DM-diagram. Similarly it is possible to
extend the schema in other dimensions. But, when we need to aggregate data,
e.g., by district and class, it is necessary to build other fact table.
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SALES

MODEL

SALES_D

SALES ORGANIZATION

COLOUR

Description
Number of seats
Class

Type

Colour ID

Name

Type

Colour ID

SalesOrg_ID

SalesOrg ID

Type

District

Colour ID

Quantity
Cost
Revenue
Profit

Quantity
Cost
Revenue
Profit

Representative
Office

District

Region
R Representative

 Figure 10: The fact constellation schema

 The main disadvantage of the fact constellation schema is a more complicated
design because many variants for particular kinds of aggregation must be
considered and selected. Moreover, dimension tables are still large.

 In more general approach to constellation schemes specified in Section 5.7, we
will consider different fact tables built generally over different sets of dimensions.

 Another alternative to the star schema is to denormalize the dimension tables
according to its associated hierarchy. The fact table is split into different fact
tables as before. Keys of such tables point to the smaller dimension tables. By
”snowflaking” we mean here an explosion of the original star schema into more
star schemes each of them describes facts on another level of dimension
hierarchies.

 5.5 Constellation Schemes with Explicit Hierarchies

 In (Meredith and Khader 1996), snowflakes are replaced by explicitly expressed
hierarchies. Separate fact tables are again built for different kinds of aggregations
accordingly to connections with appropriate members of the dimension
hierarchies. An example is given in Fig. 11 Notice that SALE_C_D does not
contain the fact Quantity that probably offers not useful information in this
context.
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Class

Class

District

District

Region

Region

REGION

R Representative

DISTRICT

SALE_C_D$

Cost
Revenue
Profit

OFFICE

SalesOrg_ID

SalesOrg_ID

Colour_ID

SALES

Type

Type

MODEL

Number of seats

Quantity
Cost
Revenue
Profit

Description
Class

Representative
Office
District

CLASS

 Figure 11: Explicit hierarchies of dimensions

 If we create all possible aggregates, the total number of associated tables grows
rapidly. For example, for two dimension hierarchies with the number of
respective hierarchy members p and q, we could obtain p * q fact tables. Thus, a
certain caution must be kept in deciding how to design the conceptual schema.

 At first glance, it seems reasonable to try to define constellation schemes with
explicit hierarchies. This approach has a number of advantages from the
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conceptual modelling point of view. First, dimensions are structurally visible in
the schema. Second, different fact tables are explicitly assigned to those
dimensions, which are for given facts relevant. This is important, e.g. in cases
when some facts are associated with days in the time dimension and facts from
other fact table are associated with moths (i.e. with days they do not make of
sense). We use here a definition developed in (Pokorny 1998a).

 A constellation schema with explicit dimension hierarchies is a <D,F,H,CC>,
where D is a set of dimension table schemes Di with attributes Ai, i=1,…,n, F is a
set of fact table schemes, H (dimension hierarchies) is a subset D x D, and CC is
a set of cardinality constraints.

• Dimension tables are structured into dimension hierarchies. A dimension
hierarchy is a sequence {Dil,…,Dik}, k>1, where (Dij, Dii(j+1))∈ H, j=1,…,k-1,
or {D}, D ∈ D, such that four conditions hold:
(a) all dimension table schemes in the sequence are different.

(b) there are no two dimension tables schemes D´and D´´, such that (D’,
Dil) and (Dik, D’’) are in H,

(c) if (Dj, Dk) ∈ H, KDk is the key of Dk, then KDk is also an attribute of
Dj,

(d) each element of D and H participates at least in one dimension
hierarchy,

(e) if {D} is dimension hierarchy, then D is not a member an any couple
from H.

• For each fact table F from F, there are subsets DF ⊆ D and CCk ⊆⊆ CC, such
that <DF, F, CCF> is a star schema.

• The set CC is the union of two sets of integrity constraints ICD and ICF where
(f) ICD is the set of cardinality constraints CCij defined for cach pair (Di,

Dj) in H.

(g) ICF =∪F∈F CCF.

A multidimensional database over a constellation scheme with explicit
hierarchies S is a set of dimensional and fact tables that satisfy all cardinality
constraints from CC.

We can observe from the condition (c) that again, KDi in Di is a foreign key in
the same sense as there is a connection of a dimension table to a fact table. The
condition (a) in the dimension hierarchy definition implies its acyclicity, the
condition (b) guarantees its maximum length. With (d) we can model ”isolated”
single dimensions.

This general definition supports most of meaningful situation in
multidimensional conceptual modelling. Facts can be modelled on the lowest
level of aggregation and any aggregates requiring other fact tables may be given
explicitly or, alternatively, via view in the same way as in the SQL language.
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District

Office

Figure 12: A dimension and its database

Fig. 12 shows a database and its scheme containing a hierarchy of dimensions.
However, our definition allows to use very general dimensions. For example, a
non-empty intersection of two dimensions is allowed. Fig. 13 shows four
dimension hierarchies: {A, B, C, E, F}, {A, B, D, E, F}, {H, G, F}, and {H, I}.

A B

C

D

E F

G

H I

Figure 13: Dimension hierarchies

Sometimes we need subtler distinguishing properties of dimension hierarchies. In
all our examples, extensions of dimension hierarchies have been unbalanced, i.e.
some elements of members in higher levels of the hierarchy had no associated
element on the previous level of the hierarchy. For example, elements Montana
and Texas are the case in Fig. 12. We will call these dimension hierarchies
incomplete. Dimension hierarchies that are not incomplete will be called
complete. We can observe that simple star schemes can represent only complete
hierarchies. The reason for it is easy. For example, the denormalized table
SALES ORGANIZATION in Fig. 9 is not able to represent information about
regions without empty primary keys. Always it is necessary to have at least one
office and one district to represent a region. On the other hand, our constellation
schemes approach this problem in a natural way. Tables representing a
dimension hierarchy are independent down to the lowest level. It follows from a
general concept of the cardinality constraint defined in Section 5.1. The
relationships to E-R modelling and representation of the schemes in a relational
environment are solved in (Pokorny, 1998a).
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6 Conclusions

With the implementation of the data warehouse, an intuitive analysis is possible.
The waiting period for the results of inquiries made of the data warehouse is
reduced to a minimum. With the OLAP tools available on the market, it is not
only possible to produce a presentation in the form of tables, but also a clear
graphical presentation of the data.

We have proposed in this paper some fundamentals of multidimensional
modelling. We have shown different approaches based on notions of fact table,
dimension table, constellation schema. The formalism developed offer how to
describe a wide class of conceptual multidimensional schemes and how to prove
some of their properties.

In order to meet the ever increasing competitive pressure on the market,
information is required from the most varied of areas. For example, it may be of
great interest to compare the development on the market in another country with
one’s own country. The World Wide Web offers an almost bottomless pool of
data. On the Internet one can find all possible data which can be taken into
consideration in analyses without any problem whatsoever.

The future research could be focused on questions how to integrate
multidimensional schemes, what query languages are possible to design. It seems
that e.g. SQL is not too beneficial for these purposes. The other question is how
to prove an information capacity of multidimensional schemes with aggregate
data. A special range of questions appears in connection with various
methodologies associated with different approaches to multidimensional
modelling.
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