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Abstract 
 
Recommender systems are applied widely in e-commerce and information access. They provide 
suggestions to users to prune unrelated information so that users are guided to those items that 
best meet their needs. A variety of techniques have been proposed for performing 
recommendation, including content-based, collaborative, knowledge-based and other techniques. 
However, hyperlink-structure based recommendation is neglected. This paper supplies the lack, 
and introduces a recommender system using the clustering and similarity of the hyperlink 
structure. 
 
Keywords: Recommender system, Hyperlink structure, E-commerce 
 
 
1. Introduction 
Recommender systems were originally defined as ones in which “people provide 
recommendations as inputs, which the system then aggregates and directs to appropriate 
recipients” (Resnick et al. 1997). The term now refers to any system that provides personalized 
recommendations as output or guides the user in an individualized way to interesting objects in a 
large space of possible options. In the hyperlink environment, recommender systems are 
obviously very useful, because the amount of on-line information exceeds any individual’s 
ability to handle it. A growing number of companies, including Amazon.com, CDNow.com and 
Levis.com, employ or provide recommender system solutions (Schafer et al. 1999).  
 
Many researchers have worked on recommender systems in the last few years. Collaborative 
recommendation is probably the most familiar, most widely implemented and most mature of the 
technologies. Collaborative recommender systems aggregate ratings or recommendations of 
objects, recognize commonalities between users on the basis of their ratings, and generate new 
recommendations based on inter-user comparisons (Burke 2002). Grundy (Rich 1979) studied 
demographic recommender systems, aiming to categorize the user based on personal attributes 
and make recommendations based on demographic classes. Belkin and Croft (Belkin et al. 1992) 
addressed content-based recommendation, which is an outgrowth and continuation of 
information filtering research. A content-based recommender learns a profile of the user’s 
interests based on the features present in objects the user has rated. Utility-based and 
knowledge-based recommenders do not attempt to build long-term generalizations about their 
users, but rather base their advice on an evaluation of the match between a user’s need and the 
set of options available. Utility-based recommenders make suggestions based on a computation 
of the utility of each object for the user (Guttman et al. 1998). Knowledge-based 
recommendation attempts to suggest objects based on inferences about a user’s needs and 
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preferences (Towle et al. 2000). 
 
The approaches above mainly attempt to achieve better recommendation; however, they have 
neglected a simple way, using hyperlink structure to make recommendation. Since the hyperlink 
structure is built up basing on certain logic, such as the relationship between products, it is 
rational to make recommendation based on it. In this paper, we will explore to build up such a 
hyperlink structure-based recommender system. In order to reflect the individualization of users, 
we will introduce a mechanism using a memory pool to store access history of a specific user. 
 
The remainder of this paper is organized as follows: section 2 describes the preliminary 
knowledge of the proposed recommendation technology, which includes the strongly connected 
components and the node similarity function; the proposed recommender system is addressed in 
section 3; section 4 gives out an example to show how the system functions; this paper concludes 
with summary and future directions. 
 
 
2. Preliminaries 
 
2.1 Index and Reference Nodes 
As the name implies, index nodes are nodes that can be used as an index or guide to many other 
nodes. For example, a hypertext document that points to all the other documents is an index. 
Formally, an index node is a node whose outdegree is greater than the mean outdegree of all 
nodes, plus a threshold value. 
 
Reference nodes usually are referred to by other nodes. For example, in a hypertext document 
about mobile phones, all CDMA mobile phones might link to an article about “CDMA”. 
Formally, a reference node is a node whose indegree is greater than the mean indegree of all 
nodes, plus a threshold value.  
 
In a more precise way, we can define index and reference nodes based on a function of their out 
and in-degrees (Rodrigo et al. 1991). 
Definitions 
• Let µ be the mean of the outdegrees of the nodes in the hypertext and let µ' be the mean of the 
indegrees of the nodes in the hypertext. Note that µ = µ' since every link that leaves a node has to 
reach another node. For this reason we will use µ for both means. 
• Let σ be the standard deviation of the outdegrees of the nodes. 
• Let σ’ be the standard deviation of the indegrees of the nodes. 
• Let τ be a threshold value. 
• An index node is a node whose outdegree is greater than µ + τ. 
• A reference node is a node whose indegree is greater than µ' + τ. 
 
We usually define τ as been equal to 3 * σ (σ’). The motivation for this choice is as follows: if 
the number of links follow a normal distribution, then the probability that a node has in or 
out-degree exceeding three standard deviations is less than one percent. 
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2.2 Biconnected Components and Strongly Connected Components 
Definitions: 
• Articulation point: If a node breaks the graph into more than one component when removed 
then it is called as articulation point As shown in fig. 1, node 2,6,7 and 9 are articulation points.  
• Biconnected components: In a graph in a selected component, if you can go from one of the 
nodes to all other nodes by an alternative path then the component is called biconnected 
component. Articulation points separate the graph into biconnected components. In fig. 2, there 
are five biconnected components: {1,7,8}, {2,5,7,9}, {3}, {6} and {4}. 
• Strongly connected components: Two nodes “a” and “b” are in the same strongly connected 
component if there is a path from node “a” to node “b” and a path from node “b” to node “a” 
(Rodrigo et al. 1991). As shown in fig.3, {1,7,8} is a strongly connected component. 

 
Fig.1 Articulation point             Fig.2 Biconnected components   

 
Fig.3 Strongly connected components 
 
Biconnected components in a graph have the property that there are at least two paths between 
any two nodes in this component. Finding biconnected components is a quite simple task and can 
be implemented in O (V+E) (Robert 1983). Since at least two paths exist between two nodes in a 
biconnected component, it is likely that biconnected components will be semantic clusters of the 
hypertext. Strongly connected components further enhanced the clustering of nodes. 
 
Using the notions described above, a clustering algorithm by interrelation of nodes can be 
developed: 
Step 1) Find the index and reference nodes in the hypertext. If none exist and the algorithm has 
run at least once go to step 6. 
Step 2) Remove outgoing edges from index nodes and incoming edges from reference nodes. 
Step 3) Treating the graph G as undirected, find the biconnected components. 
Step 4) Build the reduced graph G’ from G. 
Step 5) For each of the biconnected components go back to step 1. 
Step 6) For each biconnected components left, decompose it into strongly connected 
components. 
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Some important features of this algorithm should be observed. First, the algorithm is recursive 
(step 5). This implies that every bicomponent found will be treated as an independent graph 
(with fewer nodes than the original graph) and consequently it will be possible to find new index 
and reference nodes. Finding those nodes and removing their links will allow for a more precise 
clustering of the hypertext with the intrinsic relationship between nodes assuming an important 
role. 
 
The second important property of this algorithm lies in step 4. The reduced graph G' of G is a 
tree. This simplifies enormously the structure of the hypertext that goes from a complex graph to 
a very simple tree structure.  
 
This clustering algorithm will be used to split the hyperlink structure into a set of strongly 
connected components. Then this set of strongly components and the following node similarity 
function will generate the final recommendation set.  
 
2.3 Node similarity function 
We use S ij  to describe the similarity between two nodes (Dhyani et al. 2002). It reflects three 
important notions about certain hyperlink structures that imply semantic relations: a path 
between two nodes, the number of ancestor nodes that refer to both nodes, and the number of 
descendant nodes that both nodes refer to (Ron Weiss et al. 1996).  
 
For our discussion, we use the following definitions: 
sp ij : length of a shortest path between node i and node j  

sp k
ij : length of a shortest path between node i and node j not traversing node k 

 
Shortest Paths  
It is rational to hypothesize that the similarity between two nodes varies inversely with the length 
of the shortest path (Kilfoil et al. 2003) between the two nodes. Because the hypertext links are 
directional, we consider the shortest path both from node i to node j and from node j to node i. If 
there is no path between node i and node j, we do not add any weight to the similarity function 
for this component. We use S sp

ij  to describe the shortest path component of the node similarity 
function. It can be obtained through equation 1: 

S sp
ij  = )(2

1
ijsp + )(2

1
jisp                            (1) 

The denominator ensures that as shortest paths increase in length, the similarity between the 
nodes decreases. 
 
Common Ancestors 
We hypothesize that the similarity between two nodes is proportional to the number of ancestors 
that the two nodes have in common. We use S an

ij  to describe the common ancestors component 
of the node similarity function. It can be obtained through equation 2: 

S an
ij  = ∑

∈
+

ancesters
commonk

spsp i
kj

j
ki )(2

1                              (2) 
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S an
ij  considers the length of the shortest path between a common ancestor and both node i and 

node j. As the shortest paths increase in length, the similarity decreases. Also, the more common 
ancestors, the higher the similarity. 
The computation normalizes S an

ij  to lie between 0 and 1 before it is included in S ij . The weight 
contribution from each ancestor k is divided by the number of ancestors in the same “level” as k. 
The level of k with respect to node i and node j is the minimum distance from either node i or 
node j. 
A common ancestor a does not contribute to S an

ij  when the only path that reaches node j from a is 
through node i. If node i is an ancestor of node j, then all ancestors of node i are automatically 
ancestors of node j. A path between node i and node j is already considered in the similarity 
measurement with the S sp

ij  component. Therefore, S an
ij  does not include ancestors that are not 

proper common ancestors.  
 
Common Descendants 
The similarity between two nodes is also proportional to the number of descendants that the two 
nodes have in common. We use S de

ij  to describe the common descendants component of the node 
similarity function. It can be obtained through equation 3: 

S de
ij  = ∑

∈
+

sdescendant
commonk

spsp i
jk

j
ik )(2

1                              (3) 

The computation normalizes S de
ij  to lie between 0 and 1 before it is included in S ij  in the same 

manner as the normalization for S an
ij . 

 
Complete Node Similarity  
The complete node similarity function between two hyperlink nodes i and j, S ij , is a linear 
combination of the above three components: 
S ij  = W s * S sp

ij + W a * S an
ij  + W d * S de

ij      (4) 
Here W s , W a  and W d  represent the weights of the three components. They can be determined 
through expertise or through experimental data.  
 
The node similarity function above is a bit complex. It’s time complexity is O (n 3 ). But since it 
is used to generate the background data, it can be calculated offline. So it is relatively fast for 
examining a graph. 
 
 
3. Proposed Recommender System 
Specifically, recommender systems have (i) background data, the information that the system has 
before the recommendation process begins, (ii) input data, the information that user must 
communicate to the system in order to generate a recommendation, and (iii) an algorithm that 
combines background and input data to arrive at its suggestions (Burke 2002).  
 
In our proposed recommender system, we will use the strongly connected components and the 
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node similarity function to generate background data. First the hyperlink structure is treated as a 
directed graph. Then we use the clustering algorithm introduced in section 2.2 to split the graph 
into a set of strongly connected components, that is also a set of semantic clusters of the 
hyperlink structure. Let scc1 , scc 2 …scc m  be the generated clusters and SCC is a set of them. 
Suppose a user accessed a node in scc1 , then we can recommend other nodes in this cluster to 
this user. In order to get a more precise recommendation, we have to calculate the similarity S ij  
between any two nodes in the hyperlink structure. This can be done using the node similarity 
function mentioned in section 2.3. For each node, we can use S ij  to generate a set of high 
similarity nodes by setting a threshold t. For node i, if S ij > t, then node j belongs to the high 
similarity set of node i. Here the threshold t can be obtained through historical data or from 
expertise. Let hss1 , hss 2 … hss n  be the generated high similarity sets and HSS is a set of them. 
Then we can use HSS to provide recommendation. For example, if a user accesses node i, then 
the nodes in hss i  can be recommended to this user. So far, the background data, SCC and HSS, 
is ready for further processing. 
 
The recommendation process begins when a user enters the hyperlink structure by accessing any 
one of the nodes. Based on the first node the user accessed, we find two corresponding sets in 
SCC and HSS. All the nodes in these two sets are recommended to the user. For example, if a 
user first accessed node i, then we find sets hss i and scc j  to which node i belongs. The union of 
these two sets is recommended to the user. When the user moves to another node, we can repeat 
the same procedures to make recommendation. It must be mentioned here that it is not necessary 
to use the union of hss i and scc j . If the number of links is very large, then the intersection of 
hss i and scc j will be a better choice.  
 
When exploring nodes, different users have different accessing orders. This difference reflects 
users’ preference of nodes to a certain extent. So we added a memory pool to our system, storing 
the last recommendation set. This memory pool can be viewed as a window. A proper length l is 
assigned to the memory pool to avoid the case that all nodes stay in it. When the user moves 
from the current node to another node, put all the nodes in the current recommendation set into 
the memory pool. If the number of nodes in current recommendation set is greater than l, select 
the nodes with the largest S ij  values into the memory pool. And the former nodes in the memory 
pool are pulled out. 
 
The memory pool, together with the union of hss i and scc j  make up the final recommendation 
set for the current node. Certainly, the existing links of the current node should be excluded. 
 
Having described the details of our recommender system, we now summarize the system. We 
call it the HSB (for hyperlink structure-based) recommendation system. The following is a list of 
notations used in the system: 
 
n           total number of nodes in the hyperlink structure 
m          total number of strongly connected components 
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SCC        set of strongly connected components   
scc j         the j-th strongly connected component in SCC 
S ij          similarity between node i and node j  
t           threshold for determine high similarity set   
HSS        set of every node’s high similarity set 
hss i         high similarity set of node i 
mp         memory pool nodes set 
l           length of the memory pool 
C          existing links of current node  
R          final recommendation set 
 
 
Background data generation 
(1) Use the algorithm proposed in section 2.2 to split all nodes into strongly connected 

components SCC = {scc1 , scc 2 …scc m } 
(2) Compute the similarity S ij  between any two nodes in the hyperlink structure 
(3) If S ij > t, put j into hss i  and i into hss j  to form the HSS = { hss1 , hss 2 … hss n } 
 
Recommendation process 
(4) User accesses node i 
(5) Find the strongly connected component scc j to which the current node i belongs 
(6) Calculate R = scc j ∪ hss i ∪ mp – C 
(7) If the number of nodes in R is less than l, set mp = R, or else select the nodes with the 

largest S ij  values into mp. Go back to step 4. 
 
Fig.4. HSB recommender system 
 
 
4. An Example 
In this section, we will give out a simple example to illustrate how the HSB recommender 
system functions. The example hyperlink structure consists of 10 nodes and 18 links as in Fig.5: 
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Mean + Standard deviation 2.4 2.78 

 
Fig.6 Value characteristics of the example 

 
Fig.5 Example hyperlink structure 
 
Here the threshold value for identifying articulation points is (µ + σ) instead of (µ+3*σ). This is 
because the number of nodes and links in this simple example is very small. When handling 
actual hyperlink structure, (µ+3*σ) will be better. Follow the algorithm presented in section 2.2, 
first we identified the index node h and reference node a. In Fig.8 we removed the outgoing 
edges of node h and incoming edges of node a. Using the algorithm of Robert Sedgewick, we 
separated the graph into four biconnected components in Fig.9. And in Fig.10, the graph was 
further split into six strongly connected components.  

 In-degrees Out-degrees 
a 3 2 
b 2 2 
c 2 1 
d 2 0 
e 2 2 
f 1 2 
g 2 2 
h 1 4 
i 2 2 
j 1 1 
Mean(µ) 1.8 1.8 
Standard deviation(σ) 0.6 0.98 
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Fig.7 Find index and reference nodes       Fig.8 Remove edges 

            
Fig.9 Find biconnected components        Fig.10 Find strongly connected components 
 
Thus SCC = {(a, h); (c); (b, e, g, i); (f); (d); (j)}  
To calculate the similarity between any two nodes, we use the following equation: 
S ij  = 1/3* S sp

ij + 1/3* S an
ij  + 1/3* S de

ij  
For convenience’s sake, the weights of the three components all equal 1/3. And the threshold 
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value for identifying high similarity nodes is set to 0.25. In actual environment, the weights and 
the threshold value must be obtained from historical data or from expertise. The final calculation 
results are summarized in Fig.11: 
 a b c d e f g h i j 
a  0.406 0.380 0.078 0.425 0.135 0.452 0.507 0.445 0.073 
b 0.406  0.297 0.083 0.357 0.167 0.365 0.370 0.411 0.125 
c 0.380 0.297  0.060 0.405 0.099 0.403 0.445 0.384 0.063 
d 0.078 0.083 0.060  0.076 0.167 0.095 0.051 0.092 0.286 
e 0.425 0.357 0.405 0.076  0.184 0.469 0.513 0.505 0.113 
f 0.135 0.167 0.099 0.167 0.184  0.180 0.102 0.184 0.250 
g 0.452 0.365 0.403 0.095 0.469 0.180  0.539 0.458 0.105 
h 0.507 0.370 0.445 0.051 0.513 0.102 0.539  0.521 0.061 
i 0.445 0.411 0.384 0.092 0.505 0.184 0.458 0.521  0.113 
j 0.073 0.125 0.063 0.286 0.113 0.250 0.105 0.061 0.113  
Fig.11 Similarity between any two nodes 
  
Thus hss a  = (b, c, e , g, h, i) 
hss b  = (a, c, e, g, h, i) 
hss c  = (a, b, e, g, h, i) 
hss d  = (j) 
hss e  = (a, b, c, g, h, i) 
hss f  = (j) 
hss g  = (a, b, c, e, h, i) 
hss h  = (a, b, c, e, g, i) 
hss i  = (a, b, c, e, g, h) 
hss j  = (d, f) 
 
Then begins the recommendation process. The memory pool length is set to 4 here. Suppose the 
user explores the hyperlink structure in this order: a→c→i, then the HSB recommendation 
system functions as Fig. 12 shows: 
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Fig.12 Recommendation process 
 
 
5. Conclusion 
In this paper, a system is addressed to make recommendations based on hyperlink structure. The 
following issues need to be solved for further research: 
1) Experiments with actual websites should be carried out to validate the efficiency of the 

recommender system. 
2) Parameters l, t, W s , W a  and W d  need to be determined through analysis of historical data. 
3) The impact analysis of number of nodes on the recommender system. 
 
The long-term goal of the research is to develop a system that can automatically generates the 
final recommendation set. This may help the web site manager to grasp more insight about the 
hyperlink structure to improve the recommendation process. And based on this insight, 
optimization of the hyperlink structure could be carried out. 
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