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ABSTRACT 

The Learning Classifier System (LCS) and its descendant, XCS, are promising paradigms for adaptive agent construction. 
Whereas LCS allows classifier payoff predictions to guide system performance, XCS focuses on payoff-prediction accuracy 
instead, allowing it to evolve “optimal” classifier sets in particular applications requiring rational thought. We examine 
LCS/XCS performance in artificial situations with broad social/commercial parallels, created using the non-Markov Iterated 
Prisoner’s Dilemma (IPD) game-playing scenario, where the setting is sometimes asymmetric and where irrationality 
sometimes pays. We systematically perturb a “conventional” IPD-playing LCS-based agent until it results in a full-fledged 
XCS-based agent, contrasting the simulated behavior of each LCS variant with the XCS agent in terms of a number of 
performance measures. Our intent is to examine the XCS paradigm to understand how it better copes with a given situation 
(if it does) than the LCS perturbations studied. 
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INTRODUCTION 

The Learning Classifier System (LCS) is an early paradigm for evolutionary computation (Booker, Goldberg and Holland, 
1989). An LCS uses limited-vocabulary, fixed-length rules (classifiers), does not require associated utility/fitness values to be 
pre-specified or remain stationary, accommodates parallel rule firing, and can autonomously spawn syntactically-correct 
potentially-more-useful rules from existing ones using an embedded genetic algorithm (GA). The model has seen wide 
application including data monitoring, mining, and aircraft maneuvering (Bonelli, Parodi, Sen and Wilson, 1990, Browne, 
Holford, Moore and Bullock, 2000, Flockhart and Radcliffe, 1996, Holmes, Durbin and Winston, 2000, Saxon and Barry, 
1999, Smith, Dike, Mehra, Ravichandran and El-Fallah, 2000) with variable success. Further scrutiny identified several 
drawbacks arising from using a classifier’s fitness to measure both its genetic utility and its payoff prediction/firing 
likelihood (Wilson, 1995):  

--Classifiers operating in higher-payoff problem-space niches could dominate by growing disproportionately fitter over time.  
--To mitigate the above, some implementations share reward with all fireable classifiers that advocate the same action as the 
firing classifier. Each classifier’s (relatively lower) fitness becomes a poorer predictor of its payoff. 
--Early rules in a chain appear less fit over time, even with reward back-propagation. A solution is to use “niche GAs” (that 
operate in population niches) as opposed to panmictic GAs (that operate on the entire population). Even so, two problems 
remain … 
--The LCS is unable to distinguish between more specific and more general (having more # symbols) classifiers having a 
certain payoff expectation. The general versions match more environmental states and tend to proliferate. 
--LCS’s have no mechanism to ensure accurate (low payoff-prediction-error rate) generalizations. 
The most promising refinement of LCS, called XCS (Wilson, 1995), uses fitnesses only for rule generation, while payoff 
prediction and prediction error are used to control firing. In principle, XCS’s strengths include its ability to generate 
“maximally general” classifiers (further generalizations without accuracy losses are impossible) and state-action-payoff 
mappings that are “complete” (each state-action pair is represented), “accurate” (each classifier maps to a single payoff), 
“non-overlapping” (no classifier is duplicated), and “minimal” (only classifiers meeting the preceding conditions are present). 
Consequently, XCS’s knowledge base is more comprehensible, more compact, and is potentially more useful in solving 
problem perturbations.  
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LITERATURE REVIEW 

XCS-based systems that are more effective than LCS-based ones have been created for the Boolean multiplexer, maze 
navigation, gaming, and data mining problems (Bernadó-Mansilla and Garrell-Guiu, 2003, Butz, Sastry and Goldberg, 2002, 
Falke and Ross, 2003, Kovacs, 1997, Kovacs and Kerber, 2001, Lanzi, 1997, Wilson, 1995). However, particular LCS-based 
systems perform surprisingly well (Smith et al., 2000). Thus, the LCS is not entirely without merit; nor can one regard the 
XCS as a panacea. Further, such prior LCS/XCS investigations involve systems capable of rational thought. 

Such considerations prompt us to contrast the two paradigms using a common test-bed – the Iterated Prisoner’s Dilemma 
(IPD) game-playing scenario. This setting is inherently non-Markov, sometimes asymmetric, and one where irrationality 
sometimes outperforms rationality -- characteristics that make it particularly challenging to an artificial player. The IPD game 
is also one with broader commercial/social parallels than prior settings explored. Although it has received sustained research 
scrutiny since the fifties, research momentum exploded after Axelrod’s (1984) pioneering efforts in applying evolutionary 
systems to outwit humans. The impetus continues; the Engineering and Physical Sciences Research Council, U.K., is 
currently co-sponsoring a follow-up to Axelrod’s IPD competitions. To us, the IPD game is a very useful test-bed for 
studying adaptive agent behavior. By “adaptive agent” we mean a special purpose, intelligent software entity that seeks to 
autonomously evolve its knowledge state over time to better cope with a situation. We believe that the LCS/XCS models are 
deserving of continued research scrutiny as feasible means of constructing adaptive agents. Prior research (e.g., ref. 5 and 6) 
documents the design and functioning of agents for a variety of tasks. Four features distinguish our work: we consider agents 
with possible interest conflicts; we assume agent strategies are not common knowledge; agent behavior is learned; learning is 
autonomous. Consider a home buyer and broker (Meng and Pakath, 2001). The buyer may not be up-front with the broker in 
regards to his/her expectations and intent/ability to purchase. The broker may not favor the buyer’s best interests as the 
commission is paid entirely by a seller. Both may harbor other such biases. A buyer-broker pair learns more about one 
another’s operational strategies through mutual interaction. This scenario extends to web-based transactions where buyers, 
brokers, and sellers deploy adaptive agents that must discern one another’s strategies through interaction. Because any 
"opponent" is an "unknown," canning an effective buyer/broker/seller agent beforehand becomes difficult/impractical. The 
situation becomes more complex when an agent must deal with several others as when a buyer agent must deal with several 
brokers, each representing several sellers and multiple commodities. Where canning effective strategies is impractical for any 
reason, one may attempt creating agents that autonomously adapt strategies. 

In the Prisoner's Dilemma (PD), two players can mutually cooperate (C) or defect (D). If both cooperate or defect, each 
receives a reward of R2 or R3, respectively. If one defects while the other cooperates, the latter gets a sucker’s payoff of R4 
while the former gets R1. Here, R1>R2>R3>R4 and (R1+R4)/2<R2. Thus, while mutual cooperation is preferred to mutual 
defection (R2>R3), individual defection is tempting (R1>R2; R3>R4), and, repeated cooperation is more lucrative than each 
alternately playing sucker. The dilemma: Must a player cooperate or defect? In an Iterated PD (IPD), players repeatedly play 
one another and could exploit prior experience. An IPD "tournament" consists of a series of IPD games against a single or 
multiple opponents. The IPD scenario is an excellent LCS/XCS-based adaptive agent test bed because:  

--A variety of “opponent” strategies ranging from consistent cooperation/defection (CCC/DDD) to completely 
random/chaotic behavior (RAND) can be defined; the LCS/XCS must discern such strategies.   

--In some instances, irrational behavior nets greater rewards, a characteristic shared by many business/social contexts. E.g., 
with TFT (Tit-for-Tat) who mirrors an agent’s current play in the next encounter, repeated cooperation is best. 

--IPD is inherently non-Markov; more-informed action choices call for agent memory enabling us to test various memory 
architecture (size and content) designs.  

--Some situations result in asymmetric knowledge base updates because of unequal coverage of the input domain by detected 
stimuli, potentially negatively impacting agent learning/performance. E.g., a DDD opponent (consistent defector) never 
exposes the agent to cooperation. 

--We can create both immediate reward and various deferred reward situations. E.g., a TFT opponent results in a single one 
step-delayed feedback while TTFT (Two-Tit-for-Tat) results in two consecutive feedbacks after a one-step delay.   

--We could introduce noise. E.g., HTFT is TFT-like but occasionally turns “hostile” and defects when TFT recommends 
cooperation.  

--We can simulate multiple, confounding stimuli; diverse opponents may simultaneously interact with an agent.   

Thus, a single game-playing setting allows us to assess our adaptive agent paradigms in a variety of real world-relevant ways.  
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METHODOLOGY 

We compare and contrast LCS and XCS under specific IPD tournament settings to: (a) better understand their adaptive 
behavior and (b) determine to what extents the virtues of XCS hold in more complex settings as exemplified by the IPD.   

Using simulation experiments, we repeatedly compare learning and steady-state behavior characteristics of a modern IPD-
playing XCS-based adaptive agent (XCS) with that of a series of LCS-based agents beginning with a “traditional” model (T-
LCS) and systematically perturbing T-LCS, bringing it closer in features and functions to XCS, until it coincides with XCS. 
In each comparison, both agents play against the same IPD opponent(s). Our approach draws on key architectural differences 
between XCS and T-LCS. 

Characteristic T-LCS XCS 
Classifier Fitness 
Determinant 

Prediction Magnitude Prediction Accuracy 

Initial Population 
Generation 

Random  Through Covering 

Population Size Constant, N ≤ N 
Genetic Algorithm Panmictic Niche 
Parent Selection Fitness Proportional Tournament 
Classifier Deletion 
Criteria 

Classifier Fitness Classifier Fitness and 
Resource Balancing 

Action Selection Fitness Proportional Biased Exploration 
Classifier Fitness 
Updates 

Firing Classifier  All Matching Classifiers 
advocating the same Action 

Table 1. Key Architectural Differences 

 

The impacts of individual perturbations to T-LCS on performance may be sensitive to the ordering of perturbations. We 
introduce perturbations one at a time initially, observe the impacts of each, and then create appropriate perturbation 
combinations and sequences from the results.  

Performance Measures 

Each agent goes through a “learning phase” and a “steady-state/performance phase.” We use the following specific measures: 

Performance: The proportion of correct agent responses given the last x inputs (Wilson, 1995).  

Learning Rate: Number of iterations to achieve y% of steady-state performance normalized by the latter to yield a 
“buck/bang” learning ratio (Holmes, 1998, Wilson, 1995). 

Problem Difficulty: The proportion of the “optimal” (i.e., accurate, minimal, non-overlapping, and complete) population  for 
a problem, in the knowledge base (Kovacs and Kerber, 2001).  

Evolutionary Path Traces: Trace a classifier’s history since inception (Wilson, 1995). 

Relative Earnings: The relative total reward accumulated by an agent vis-à-vis its opponent(s) (Meng and Pakath, 2001).  

Statistical Measures: Given multiple IID simulation run replications, we use parametric and/or non-parametric multivariate 
statistical techniques to compare a vector of multiple performance measures at a given epoch for XCS with that /those for 
an/several LCS variant(s). (The prevalent approach is to graph relative performances for individual measures.) 

Hypotheses 

Test hypotheses are based on our expectations regarding an LCS variant’s relative performance vis-à-vis XCS against a 
particular opponent. The extents to which XCS and LCS could accurately generalize depend on the opponents involved; we 
expect XCS to perform significantly better in situations that do permit accurate generalizations. For a given opponent, we 
expect the performance differential between XCS and LCS to narrow as their architectural differences narrow. We explore 
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relative performance against RAND, CCC, DDD, TFT, TTFT, and HTFT. With RAND, prior knowledge should offer no 
future insights. Both CCC and DDD should cause an agent to consistently defect but for different reasons. TFT should propel 
an agent toward mutual cooperation. TTFT should do the same but at a faster rate. HTFT’s behavior is a function of its 
defection probability, p (e.g., HTFT=TFT if p=0; HTFT=DDD if p=100). We hope to extend such explorations in other 
meaningful ways in the longer term. 

RESULTS AND CONCLUSION 

We provided a brief overview of a simulation study seeking to contrast two adaptive agent paradigms – the LCS and the 
XCS. We draw upon extant research to make a case for more exhaustive testing of both models and argue why the IPD is an 
ideal test bed with high business/social relevance. We then described our experimental purpose and methodology. Our 
Research-in-Progress presentation will encompass the above issues, provide further experiment operationalization details, 
and present and discuss simulation results and hypotheses test findings. We hope the finished work will help us better 
understand specific features of LCS and XCS that are particularly valuable in the generic IPD setting and that our efforts will 
add to the growing body of knowledge on adaptive systems in general and the LCS and XCS paradigms in particular. 
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