View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by AIS Electronic Library (AlSeL)

Association for Information Systems

AIS Electronic Library (AISeL)

Americas Conference on Information Systems

AMCIS 2001 Proceedings (AMCIS)

December 2001

An Examination of Empirical Research in Object-
Oriented Analysis and Design

Richard Johnson
Southwest Missouri State University

Follow this and additional works at: http://aisel.aisnet.org/amcis2001

Recommended Citation

Johnson, Richard, "An Examination of Empirical Research in Object-Oriented Analysis and Design" (2001). AMCIS 2001 Proceedings.
248.
http://aisel.aisnet.org/amcis2001/248

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2001 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact

elibrary@aisnet.org.


https://core.ac.uk/display/301345051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2001%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001?utm_source=aisel.aisnet.org%2Famcis2001%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2001%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2001%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001?utm_source=aisel.aisnet.org%2Famcis2001%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2001/248?utm_source=aisel.aisnet.org%2Famcis2001%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

AN EXAMINATION OF EMPIRICAL RESEARCH IN
OBJECT-ORIENTED ANALYSISAND DESIGN

Richard A. Johnson
Southwest Missouri State University
richardjohnson@smsu.edu

Abstract

Object-oriented systems development (OOSD) is viewed by many as the best available solution to the ongoing
"software crisis." However, some caution that OOSD may be so complex that it will never become a
mainstream methodology. Of particular importance to successful OOSD is object-oriented analysis and design
(OOAD), the cornerstone of any serious OO project. This paper reviews a wide range of empirical studies on
OOAD involving human subjects over the past decade. While OOSD is a vitally important approach to modern
systems development, it is not without its difficulties, as evidenced by often conflicting results within the
exercise of OOAD.

Introduction

Object and component technologies, rapidly maturing branches of information technology, are becoming pervasive elements of
systems development, especially the recently popular Internet applications. However, mainstream object-oriented systems
development (OOSD), consisting of object-oriented analysisand design (OOAD) and object-oriented programming (OOP), has
ahistory of difficulties (Pancake, 1995) and isstill struggling to gain widespread acceptance (Hapgood, 2000). Some believethat
“technology adoption ismostly the result of marketing forces, not scientific evidence” (Briand et a ., 1999, p. 388) and, as Smith
and McKeen (1996) have observed, object technology is"still long on hype and short onresults. . ." (p. 28). The gurus of OOSD
(Booch, 1994; Coad and Y ourdon, 1991; Coleman et al., 1994; Jacobson et a., 1995; Rumbaugh et al., 1991) continue to tout

its vast superiority over conventional systems development, even to the extent of developing a “unified software development
process’ (Jacobson et al., 1999).

The advocates of OOSD claim many advantages including easier modeling, increased code reuse, higher system quality, and
easier maintenance. However, some express serious concern about certain disadvantages of OOSD, such asitsdifficulty tolearn,
slower development time, and poorer run-time performance (Fichman and Kemerer, 1993). It iswell understood that analysisand
design are extremely critical aspects of successful systems devel opment (Partridge 1994, Brooks 1987), especially in the case of
O0SD. For example, analysis and design account for about 70% of the effort in devel oping OO systems, but only about 50%
of the effort in developing conventional systems (Meyer 1988). Asthe development of any successful information system must
begin with awell-conceived and implemented analysis and design, this study will focus on the most recent empirical evidence
on the pros and cons of OOAD.

Background

What Is OOAD?

The development of object-oriented systems became possible with the proliferation of object-based and object-oriented
programming languages in the early 1980s. Asisoften the case, programming languages are devel oped long before the theory
of how to use them effectively and efficiently (Tkach and Puttick 1994). While small systems may be developed successfully
without the aid of aformal system of analysis and design, larger, “industrial strength” (Booch 1994) projects require a more
systematic approach (Partridge 1994).

2001 — Seventh Americas Conference on Information Systems 1277



1S and S/W Design, Development, and Use

OOD methods emerged in the mid-1980s and OOA methodsinthelate 1980s. Noticethebackward migrationfrom OOPto OOD
and from OOD to OOA. An OOAD methodology consists of processes (methodsdescribing “ how to”), techniques (formalisms,
models, notation), and, possibly, tools (CA SE toolsto create models and enforce relationships) (Monarchi, Booch, Henderson-
Sellers, Jacobson, Mellor, Rumbaugh and Wirfs-Brock 1994). Some of the more significant published methods of OOAD
reviewed in the literature include those of Booch (1994), Wirfs-Brock et al. (1990), Coad and Y ourdon (1991), Rumbaugh et a.
(1991), Shlaer and Méellor (1992), Jacobson et al. (1992), and Coleman et al. (1994). In fact, the number of OOAD methods
exploded from fewer than 10 to more than 50 between 1989 and 1994. Thefield of OOAD has made particularly important strides
injust the past few yearswith the development of the unified modeling language (UML), the current standard graphical language
for OO analysis and design. UML started as a unification of the Booch and OMT methods at Rational Corporation in 1994 and
incorporated OOSE by 1996. The Object Management Group (OMG) accepted UML as a standard modeling language in
November 1997 after widespread contribution from industry (Booch, 1999).

OOA istheprocessof converting thereal-world probleminto amodel using objectsand classesasthe modeling constructs (Booch
1994). Theobjectsidentified from OOA are called semantic objects since they have meaning in the problem domain. An OOA
model should ideally be understandabl e by application experts who are not programmers. OOD isthe process of converting the
problem model (from OOA) into a solution model based on abjects. During OOD, new objects, not found in the OOA models,
are added for implementation purposes. The implementation details of semantic objects are also added (short of writing actual
code in the target OOPL). OOD is usualy viewed as adding more detail to OOA with a special focus on modeling the
implementation of the proposed system. OOD can be executed at different levels such as class design, system design, and
program design (de Champeaux 1992). According to Booch (1994), OOD *“encompasses the process of object-oriented
decomposition and a notation for depicting both logical and physical aswell as static and dynamic models of the system under
design” (p. 39). Thus, OOD produces models of the proposed information system (the solution) rather than models of the real-
world system (the problem).

Empirical Studies in OOAD

Early Studies on OOAD

Many early studies of OOAD (1992-1996) made direct comparison between OO and conventional methods. Boehm-Davis and
Ross(1992) compared the quality of designsand solutionsfor various projectsusing three different types of systemsdevel opment
methodologies: procedural, data-oriented (Jackson System Development, or JSD), and object-oriented. The eighteen subjects
were professional programmers divided into three groups of six, each group having received training and/or possessing previous
experience in one of the three different methodologies. The subjects were asked to provide designs and write pseudo-code for
three different systems. Data were collected on solution completeness, time to design and code, and solution complexity. The
findings reveal that the JSD and OO groups generated significantly more complete solutions, required significantly less
development time, and produced less complex solutions than the procedural group. The accomplishments of the OO group look
even more impressive when noting that the JISD group had three to four times more overall development experience and more
than twice the experience with its respective methodology compared to either the procedural or OO groups. Thus, one can
conclude that for professional developers, OO designs and solutions are of higher quality and take less time than procedural
designs and solutions. While the results look somewhat encouraging for OO, the experimental design of the research has some
serious limitations, primarily with the inability to control for the level of prior experience within the respective methodologies.

Vessey and Conger (1994) also compared the same three types of analysis methods: process-oriented (structured), data-oriented
(Jackson System Development), and object-oriented (Booch). A total of six software engineering students, inexperienced in any
analysis method, received the same training in all three methods during a university course. They were then assigned to one of
three groups (two students per group) and given equally complex analysis problems to solve using one of the three analysis
methods. The researchers performed aprotocol analysis and determined that novice analysts found OOA more difficult tolearn
and apply than data-oriented analysis and data-oriented analysis more difficult to learn and apply than process-oriented analysis.
Thisstudy seemingly contradictsthefinding of Boehm-Davis and Ross(1992) that OO iseasier to apply. Whilethe methods used
by developersin the Vessey and Conger (1994) study were almost identical to those in the Boehm-Davis and Ross (1992) study,
the former study used studentsinstead of experienced devel opers and used amuch smaller sample size (n=6 vs. n=18). Also, the
students were not randomly assigned to groups.

Pennington et al. (1995) performed aprotocol analysison atotal of ten experienced, professional developers. Threewere expert
procedural developers, four were expert OO developers, and three were novice OO developers (who were, however, expert
procedural developers). All three groups were given a relatively simple swim meet scoring problem and asked to create a
complete design using their respective methods. Completed designs were judged in terms of quality while developers were

1278 2001 — Seventh Americas Conference on Information Systems



Johnson/Empirical Research in Object-Oriented Analysis and Design

evaluated on productivity. The results revealed that the designs of the OO experts were more complete but took more time
compared to the procedural experts. Even though they took more time, the OO experts were graded more efficient than the
procedural experts when overall design quality was considered. The study concludes that OO designs are of higher quality than
procedural designs and take less time to complete.

Hardgrave and Dalal (1995) performed alab study of 56 advanced undergraduate MISmajors, al enrolledinasenior-level DBM S
course, to compare two competing data modeling techniques: the extended entity-relationship (EER) model (McFadden and
Hoffer, 1991) and the Object Modeling Technique (OMT) of Rumbaugh et al. (1991). Theindependent variableswere modeling
technique (OMT or EER) and complexity of theresulting model. The studentswererandomly assigned to one of four groups, with
each group given a previously prepared, completed model to review (simple OMT, complex OMT, simple EER, and complex
EER). The studentsin each group, who had already received training in the techniques, were provided with two additional one-
hour lectures specifically on their respective models. They were then asked to take atest on their understanding of the models
and complete afollow-up questionnaire. The dependent variableswerelevel of understanding (measured by the score onthetest),
time to understand (measured by the time to complete the test), and perceived ease-of-use (measured by item scores on a
guestionnaire). Theresultsindicated that, for both simpleand complex systems, OM T model swere more quickly understood than
EER models. However, no significant difference was found for the depth of understanding and the perceived ease of use of the
two methods, regardless of task complexity. Thus, OO modeling techniques may be more quickly understood, but not more
completely understood, compared to data-oriented techniques. One possible shortcoming of thisstudy isthat it compares object-
oriented to data-oriented modeling techniques. These two methods are much more closely related than object-oriented and
process-oriented techniques, so differences in understanding or perceived ease of use may be difficult to detect, and even if
detected, less relevant to the concerns of many practitioners and researchers.

Wang (1996a) performed an experiment using thirty-two undergraduate students with no previous systems analysis training or
experience. Thesubjectswererandomly divided into two groups. One group wastrained for five hours on the data flow diagram
(DFD) method, while the other group was trained for five hours on an object-oriented analysis method. The subjects were then
presented with a mini-case in management information systems analysis. The OO group spent significantly less time on their
analyses of the problem and created solutions that were significantly more accurate. After completing the analysis, the subjects
responded to a questionnaire concerning their perceptions of the analysis method used. The OO group reported that the OOA
method was easier to learn and understand. The OOA method was also rated superior overall. This study confirms the results of
severa previoudly cited studies: OOA produces higher quality models more quickly than procedural analysis.

In aseparate study, Wang (1996b) again compared a structured method of analysis (DFD) with object-oriented analysis (OOA)
using two groups of inexperienced undergraduate M1S majors. Students were randomly assigned to two groups, 24 in the DFD
group and 20 in the OOA group. Each participant learned his respective analysis method and created analysis diagrams based on
information in amini-case study. The total time allowed for training and problem solving was 7.5 hours spanning several class
sessions. The two dependent variables were the syntactic and semantic accuracy (in conveying system requirements) of the
resulting analysis diagrams. Using ANOV A techniques, the resultsindicated that the syntactic accuracy for the DFD group was
significantly greater in the early sessions, but that syntactic accuracy for the OOA group was significantly greater in the last
session. However, there was no significant difference in semantic accuracy for the DFD and the OOA groups. Apparently
contradicting the results of this researcher’s previous study (Wang 1996a), this experiment concludes that OOA appears more
difficult to learn than DFD, and that OOA does not produce solutions of higher quality.

Another important benefit claimed for OOAD isimproved communi cation among devel opment team members, aswell asbetween
users and developers (Garceau et al., 1993). The assumption isthat OO iseasier to understand, but it is not clear whether this

should lead to increased or decreased communication. No empirical research was found on improved communication between
users and developers, but one study focused on devel oper interaction during the design phase of OO projects (Herbsleb et al.,
1995). In thisresearch, several field studies were conducted using developers' time sheets, videotapes of meetings on design
activities, and semi-structured interviewswith devel opers. Resultsindicated that when OOD methodsare used, fewer spontaneous
episodes of clarification occur. Also, planned summaries and walk-throughs occur much more often when using OOD. More
attention wasgiven to the reasonsfor specific design choicesfor the OO projects. OOD seemsto encourage adeeper inquiry into
the reasons underlying design decisions but less inquiry into the requirements. The authors believe these findings indicate
improved communication in software devel opment teams, which leadsto greater understanding of requirements. However, there
may be alternative explanations. For example, fewer spontaneous episodes of clarification could occur if developers wish to
disguise alack of understanding. The increased number of planned summaries and walk-throughs could result if developers
perceivealack of understanding among peers. Thus, the study may indicate that OOD decreases one form of communication and
increases another ssimply because it is new or more difficult to understand, not because it is easier or more natural.

2001 — Seventh Americas Conference on Information Systems 1279



1S and S/W Design, Development, and Use

Supporters of OOAD claim that thinking in terms of interacting objects, rather than in terms of functions or procedures, should
be more natural to humans (Pancake, 1995). Davies et al. (1995) set out to test the claim that OO decomposition of the problem
domain is more natural to the ways of human cognition than functional decomposition. Twelve expert and twelve novice
programmers were presented with cards containing fragments of code from alarge C++ library for graphics applications. Their
task was to sort the cards according to any criteriathey felt appropriate. The purpose of the sort was to determine whether the
subjectswould perform functional or object-oriented decompositions of the problem domain. Subjects performed the sorting of
code fragments and reported the reasons for their sorting (categorized as either function-based or object-based). The results
showed that expert subjects seemed to focus more on the functional properties of the code while the novice subjects tended to
classify the code fragments according to important features of the OO paradigm (class membership, object similarity, or
inheritancerelations). According to theauthors, the* results appear to suggest fairly clearly that functional information isof much
greater importance to experts than is information about objects and their relations’ (p. 242). The implication is that OO
decompositionisnot more natural for expert devel opers, aswasexpected by theresearchers. Of course, an alternative explanation
isthat experts are simply more experienced with functional decomposition and tended to see the code fragments in that way.

Agarwal et al. (1996) performed a thorough experiment comparing the ability of novice analysts to correctly perform a
requirements analysis using either a process-oriented (PO) or an object-oriented (OO) analysis methodology. A total of 43
undergraduate students (with no prior training or experiencein any type of systems analysis) were randomly divided into two
groups. aPO group (n=24) and an OO group (n=19). Each group wastrained six hoursinitsrespectiveanalysismethodol ogy—the
DeMarco (1978) method for the PO group and the Coad and Y ourdon (1990) method for the OO group. Individualsineach group
werethen presented with two problemsto analyze—one problem was clearly more function-strong (PO) whilethe other wasmore
structure-strong (OO). According to thetheory of cognitivefit, the PO group should perform better on the PO problem, whilethe
OO0 group should perform better on the OO problem. The researchers found that the PO group had significantly better overall
performance than the OO group on the PO task, but that there was no difference in overall performance between the two groups
on the OO task. The researchers concluded that PO methodol ogies should be easier for novicesto |earn than OO methodologies,
possibly because people may have a greater tendency to reason procedurally.

More Recent Studies on OOAD

During the past five years (1996-2001), empirical studies of OOAD have shifted their focus from direct comparisons of OO and
conventional methods to an exploration of the characteristics of OOAD that contribute to the quality of completed OO systems.
This shift islikely due to the increased overall acceptance of OOSD, leading researchers away from comparisons to traditional
methods.

Briand, et. al (2000) discovered that the frequency of method invocations and the depth of inheritance hierarchies are the major
determinants of fault-proneness of resulting software classes. Eight three-person teamsof upper division undergraduate students,
with no previous OO experience, were taught OOAD. Each team developed amedium-sized MISfor a hypothetical video rental
business. The OMT analysis and design method (Rumbaugh et a.) was used with C++ as the implementation language.
Independent testers, consisting of experienced software professionals, evaluated the coded classes for faults. Existing measures
of coupling (classes using methods or attributes in other classes), cohesion (methods within a classes using common attributes
of the class) and inheritance (classes deriving methods from ancestor classes) defined at the classlevel were used asindependent
variables to predict the probability of fault-pronenessin class code (the classesinvestigated were either devel oped from scratch
or were extensive modifications of library classes). Univariate analysisrevealed that increased level sof coupling and inheritance
have a significant impact on fault-proneness of classes while cohesion does not. Multivariate analysis showed that models
involving coupling and inheritance measures could be developed to automatically detect faulty classes with an accuracy rate
approaching 90%.

A similar study by El Emam, et al. (2001) focused only on those metrics that are available at the design stage. The measures
involved two characteristics of OO design classes, coupling and inheritance (briefly explained above). The applicationsinvolved
in the study were two consecutive releases of a commercial word processing program written in Java. Data were collected on
faults reported by users of both versions so that classes could be identified as either faulty or not. Design metrics were applied
to al classesin both versions to find the relationships between measures of coupling and inheritance and fault-proneness of the
classes. A multivariate model including classsize (number of attributes and methods), export coupling (number of timesaclass's
methods are used by other classes), and inheritance depth (the number of levels of inheritance for aclass) measures resulted in
an R-sguared value of .24, with export coupling having the predominant influence on fault-proneness.

A study by Laitenberger et a. (2000) took adifferent approach to investigating characteristics of OO designs, specifically design
documents utilizing the Unified Modeling Language (UML). The independent variable in this study is the type of reading

1280 2001 — Seventh Americas Conference on Information Systems



Johnson/Empirical Research in Object-Oriented Analysis and Design

technique used by individuals to detect defects in UML design documents for OO systems. The idea is for knowledgeable
individuals to read design documents to detect defects prior to implementation of the designs. Eighteen students (many of who
wereexperienced practitioners) were used to examinethe design documentation for two simple systems, aWeb-based quiz system
and a point of sales system. The two reading techniques investigated in this study are checklist-based reading (CBR) and
perspective-based reading (PBR). The CBR approach focuses on adefined set of questions addressing both “Whereto look” and
“How to detect” problems. On the other hand, PBR is a scenario-based technique that goes beyond a fixed set of questionsto

provide guidance to theinspectors on how to proceed based on the perspectives of the stakehol ders of the system. Resultsindicate
that PBR is much more effective and efficient for UML documents of OO systems than CBR. This study contrasts a manual,
human approach to defect detection at an early stage of design to an automated approach using metrics at alate stage of design.

Discussion

General Conclusions About OOAD

A total of twelve empirical studies, representing some of the best availablein thefield of OOAD, have been presented. In nearly
every instance where studies were favorable to OOAD, higher quality and productivity were cited as primary benefits. On the
other hand, nearly every negative result focused on the difficulty of learning OOAD or the inherent complexity of OO designs.
Theseresultsare consi stent with theanecdotal OO literature. In any event, theresultssuggest that while OOAD may be somewhat
more difficult to learn than conventional methods, the effort spent in education and training may ultimately pay off inincreased
quality and productivity.

Some studies discussed above present mixed resultson other important OOAD issues. For example, the OO paradigm wasfound
to be more natural for developers (Davies et al., 1995), although thelogical derivation of this conclusion from the datais highly
suspect. The conclusion that OOAD enhances communication (Herbsleb et al., 1995) may actually highlight a potential
disadvantage of OOAD, i.e., that OOSD may be more confusing, thus causing an increased level of communication.

Nearly al studies where only negative results were obtained stemmed from the use of inexperienced students as subjects. This
suggests that learning can play atremendous role in the effectiveness of OOAD. Students given only afew hours or weeks of
training in OOAD should not be expected to perform OO tasks particul arly well, especially given that OOAD may be somewhat
difficult to learn. The conventional wisdom is that proficiency in OOAD may require six to eighteen months of full-time
experience (Fayad et al., 1996). Thus, many of the negative results could be attributed to the types of subjects chosen and the
amount of training provided.

Methodological Issues

The results of thisreview also point to several possible methodological weaknesses in empirical studies of OOAD. First, many
empirica studiesin OOAD use a small sample size and otherwise poor experimental design. Sample sizes of one or two per
treatment are very susceptible to validity problems. Also, studies may not be able to detect significant differences between
procedural and OO methodsdueto alack of statistical power. Additionally, poor experimental designsthat fail torandomly assign
subjects to treatments or otherwise fail to control for devel oper experience call results into question.

Asdiscussed earlier, studies often use inexperienced students as subjects. Such practices may be acceptable when the purpose
of the research is to explore the difficulty of learning OOAD, but not when research questions focus on the quality and
productivity of models or completed systems. Also, the question of learning OOAD may be even more critical to experienced

procedural developers who may be forced by management to make the transition to OO, but no studies were found that
specifically address this group.

Another potential problem exists with studies that attempt to quickly train novice studentsin OOAD. Instructors at universities
where such studies are conducted are likely to be significantly less experienced in the new OO methodologies than the more
established procedural methodologies. Thiscondition could result in lessthan optimum conditionsfor effectively and efficiently
transferring complex OO knowledge, making it even more difficult for students to adequately learn OO.

2001 — Seventh Americas Conference on Information Systems 1281



1S and S/W Design, Development, and Use

Future Research

Clearly, more research of higher quality is needed to determine with greater certainty how OOAD compares to conventional
methods. L aboratory experiments could be designed to determine how well subjects, especially students, are able to learn and
apply OOAD. Field studies and survey research on experienced developers could explore thetransition to OOAD inindustry and
the effectiveness of OOAD on complex projects. Researchers could also investigate whether learning OOAD is more difficult
for novice or experienced devel opers. Longitudinal studiesshould be conducted to determineif those who found OOAD difficult
tolearn eventually mastered the techniques and whether those who found OOAD lessdifficult to learn were any more successful
at applying the methodology.

Oneproblem with conducting future research on OOAD involvesclearly defining astrategy to address specific research questions.
Thefollowing list presents several dimensions that empirical researchers should consider in the design of future experiments or
field studies on the pros and cons of OOAD:

Types of methodol ogies to be compared: process-oriented, data-oriented, object-oriented
Types of applications to be developed: function-intensive, data-intensive, hybrid
Complexity of applications to be developed: simple classroom vs. complex industrial
Level of previous OO development experience: novice vs. experienced

Type of previous experience: process-oriented, data-oriented, object-oriented

Type of experiment: laboratory vs. field (including survey research)

Sample size: small vs. large

Time frame of research: cross-sectional vs. longitudinal

Asis apparent from the list above, the choices for empirical investigation of OOSD are many. An idea situation would be to
collect detailed dataon experienced individual devel opersor devel opment teamswho createidentical completereal-world systems
(perhaps of varying complexity) using both conventional and OO methods.

Regardlessof theparticular research question involved, better experimental designswithtighter controlsand larger samplescould
enhance validity. The obvious dilemma in this type of research is obtaining the cooperation of sufficiently large numbers of
qualified subjectsfor laboratory or field studies. However, without adequate experimental designs, aquick resolution to the OO
controversy will remain elusive.

References

Agarwal, R, Sinha, A.P., and Tanniru, M. (1996). Cognitive fit in requirements modeling: a study of object and process
methodologies. Journal of Management Information Systems, 13:2 (Fall), 137-162.

Boehm-Davis, D. and Ross, L. (1992). Program design methodol ogies and the software development process. International
Journal of Man-machine Studies , 36, 1-19.

Booch, G. (1994). Object-oriented analysis and design with applications, 2nd ed. Benjamin/Cummings (Redwood City, CA).

Briand, L., Arisholm, E., Counsell, S., Houdek, F., and Thevenod-Fosse, P. (1999). Empirical studiesof object-oriented artifacts,
methods, and processes: state of the art and future directions. Empirical Sofiware Engineering: An International Journal,
4:4 (December), 387-404.

Briand, L., Wust, J., Daly, J., and Porter, D. (2000). Exploring relationships between design measures and software quality in
object-oriented systems. The Journal of Systems and Software, 51, 245-273.

Brooks, F.P. (1987). No silver bullet: essence and accidents of software engineering. [EEE Computer, 20:4 (April), 10-19.

Coad, P. and Yourdon, E. (1991). Object-oriented analysis, 2nd ed. Y ourdon Press (Englewood Cliffs, NJ).

Coleman, D., Arnold, P., Bodoff, S., Dallin, C., Gilchrist, H., Hayes, F. and Jeremaes, P. (1994). Object-oriented development:
the fusion method. Prentice-Hall (Englewood Cliffs, NJ).

Davies, S.P., Gilmore, D.J. and Green, T.R.G. (1995). Are objects that important? Effects of expertise and familiarity on
classification of object-oriented code. Human-Computer Interaction, 10, 227-248.

DeMarco, T. (1978). Structured analysis and system specification. Prentice-Hall (Englewood Cliffs, NJ).

El Emam, K., Melo, W., Machado, J. (2001). The prediction of faulty classes using object-oriented design metrics. The Journal
of Systems and Software, 56, 63-75.

Fayad, M., Tsai, W. and Fulghum, M. (1996). Transition to object-oriented softwaredevelopment. Communications of the ACM,
39:2 (February), 108-121.

Fichman, R.G. and Kemerer, C.F. (1992). Object-oriented and conventional analysisand design methodol ogies: comparisonand
critique. IEEE Computer, 25:10 (October), 22-39.

1282 2001 — Seventh Americas Conference on Information Systems



Johnson/Empirical Research in Object-Oriented Analysis and Design

Fichman, R.G. and Kemerer, C.F. (1993). Adoption of software engineering processinnovations: the case of object orientation.
Sloan Management Review, 34:2 (Winter), 7-22.

Garceau, L., Jancura, E., and Kneiss, J. (1993). Object-oriented analysis and design: a new approach to systems devel opment.
Journal of systems management, 441 (January), 25-33.

Hardgrave, B. and Dalal, N. (1995). Comparing object-oriented and extended-entity-relationship data models. Journal of
Database Management, 6:3 (Summer), 15-21.

Herbdeb, J.,Klein, H., Olson, G., Brunner, H., Olson, J., and Harding, J. (1995). Object-oriented analysisand designin software
project teams. Human-Computer Interaction, 10, 249-292.

Jacabson, ., Booch, G., and Rumbaugh, J. (1999). The unified software development process, Reading, MA: Addison-Wesley.

Jacaobson, |., Christerson, M., Jonsson, P., and Overgaard, G. (1995). Object-oriented software engineering: a use case driven
approach, 2™ ed. Addison-Wesley (Wokingham, England).

Laitenberger, O., Atkinson, C., Schlich, M., and El Emam, K.. (2000). An experimental comparison of reading techniques for
defect detection in UML design documents. The Journal of Systems and Software, 53, 183-204.

McFadden, F. and Hoffer, J. (1991). Database Management, 3" ed. Benjamin/Cummings (Redwood City, CA).

Pancake, C.M. (1995). The promise and the cost of object technology: afive-year forecast. Communications of the ACM, 38:10
(October), 33-49.

Pennington, N., Lee, A.Y., and Rehder, B. (1995). Cognitive activities and levels of abstraction in procedural and object-
oriented design. Human-Computer Interaction, 10, 171-226.

Rumbaugh, J., Booch, G., and Jacobson, I. (1998). The unified modeling language reference manual, Reading, MA: Addison-
Wesley.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-oriented modeling and design. Prentice
Hall (Englewood Cliffs, NJ).

Shlaer, S. and Méllor, S. (1989). Object lifecycles: modeling the world in states. Prentice-Hall (Englewood Cliffs, NJ).

Smith, H.A. and McKeen, J.D. (1996). Object-oriented technology: getting beyond the hype. The DATA BASE for Advances in
Information Systems, 27:2 (Spring), 20-29.

Vessey, |. and Conger, S. (1994). Requirements specification: Learning object, process, and data methodologies.
Communications of the ACM, 37:5 (May), 102-113.

Wang, S. (1996a). Toward formalized object-oriented management information system analysis. Journal of Management
Information Systems, 12:4 (Spring), 117-141.

Wang, S. (1996b). Two MIS analysis methods: an experimental comparison. Journal of Education for Business, 71:3 (Jan/Feb),
136-142.

Wirfs-Brock, R. and Johnson, R. (1990). Surveying current research in object-oriented design. Communications of the ACM,
33:9 (Sep.), 105-124.

2001 — Seventh Americas Conference on Information Systems 1283



	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2001

	An Examination of Empirical Research in Object-Oriented Analysis and Design
	Richard Johnson
	Recommended Citation


	tmp.1219181181.pdf.fpRJV

