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Abstract  

In modern on demand grid computing scenarios, services from different organisations will 

potentially run on the same web service engine of a grid node. Secure isolation of data and code 

of different service instances is a vital requirement in such an environment, since mutual trust 

cannot be assumed between all involved parties. For Java based Grid applications the Java 

virtual machine offers sandboxing facilities, however the common occurrence of native code 

(e.g. C/C++, Fortran) in business and scientific Grid applications leads to a number of security 

issues which are not handled by the basic Java security mechanisms. In this paper, we analyze 

the threat scenarios that emanate from native code in a service-oriented Grid scenario. A novel 

security architecture is presented, which enables a fine grained confinement of native 

components of Grid applications into a secure environment for protecting the hosting system as 

well as other service instances. Although our work focuses on Grid services, it is also relevant 

for any hosting scenario in which multiple web services using native code components are 

deployed in the same service container.  

 
 

1  Introduction 
The service-oriented architecture (SOA) and especially the web service paradigm have been 

adopted in various fields of distributed systems development. With the advent of the service-

oriented Grid computing paradigm (i.e. the Web Service Resource Framework - WSRF), the 
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web service standards have also been applied in the field of scientific and high performance 

computing, extending their adoption beyond the fields of enterprise application integration or 

general business computing.  

Java based web service containers have been widely accepted for the provisioning of web 

services. Services become small self-contained units in this scenario. They encapsulate the 

business logic represented in the web service, the services use the infrastructure services 

provided by the service container in which they are deployed.  

In previous work [1] the concept of an ad hoc Grid as a possible environment for on demand 

computing was introduced. A solution to the problem of hot service deployment, which is one 

of the basic requirements for such a flexible Grid computing environment [2] was presented. 

The fact that services can be deployed to a number of nodes and migrate freely between them 

during an applications lifecycle leads to a number of security issues that need to be dealt with. 

The security domain is divided in two parts related to pure Java implementations of Grid 

services and non-Java native code. 

Current work on security issues in WSRF focuses on the enforcement of access restrictions and 

protection of message exchanges in transit. Implementations of the WSRF specifications do not 

address issues concerning intra-engine service security, since providing such mechanisms is not 

enforced or encouraged. Therefore, it is possible for various service implementations to directly 

access each other through simple method calls, bypassing the service security mechanisms 

established for access control. Our work on hot service deployment raised some of the security 

issues and attack scenarios that we have addressed and solved for pure Java services [3].  

Apart from the Java based implementation of web service containers, the .NET environment 

offers the functionality to provide web services. For service-oriented Grid computing, the 

dominant middleware frameworks (e.g. Globus Toolkit 4 and Unicore GS) have chosen Java 

based implementations. Thus, in this paper we focus on a Java based solution. 

Many business and scientific applications in Grid computing are based on legacy code bases 

which cannot be ported to Java for cost and efficiency reasons. The existing legacy solutions are 

usually wrapped with Java Grid service implementations to make them available to the service-

oriented Grid environment. This creates a major security problem since the native code cannot 

be constrained by the standard Java security facilites.  

In this paper, we analyze the threat model induced to the service-oriented Grid by native legacy 

code and present a solution for imposing fine grained security enforcement on such native 
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service components. Our solution allows to host different Grid services containing native code 

in the same hosting environment while ensuring that integrity of the hosting environment cannot 

be damaged by individual services; the services are kept in ’compartments’, such that a service 

cannot attack another service. The proposed security mechanisms increase the resilience of the 

service hosting environment against both malicious attacks and erroneous code. Thus, our 

proposal paves the way for large scale hosting of Grid or web services in commercial scenarios. 

The paper is organized as follows. Section 2 presents the threats associated with native code in a 

Grid service environment. Section 3 discusses related work. Section 4 presents our approach to 

native code security. The changes required by our security approach to the development, 

deployment and execution of services are described in section 5. Section 6 presents the 

evaluation of our approach. Section 7 concludes the paper and outlines areas for future research. 

2  Analysis of the Native Code Threat Model 
For our threat analysis we consider a shared service hosting environment. The service-oriented 

ad hoc Grid is such an environment with the most demanding security requirements, since it 

allows the deployment of foreign services into a running service container. Threats may also 

arise in more statically configured Grid environments or even web service hosting scenarios. In 

both cases, a single service container can be used to host more than one service.  

The focus of our investigation are the security threats arising from the native code contained 

within Grid or web services that are deployed into a Java based web service hosting 

environment. Security threats in the shared hosting environment arise from direct access to the 

underlying system or direct access to other service instances running in the hosting 

environment, that cannot be limited by Java security managers or sandboxing.  

We distinguish between two types of attacks, the first focusing on data managed by the hosting 

environment or the other services, and the second one abusing other system resources, for 

instance network bandwith or CPU cycles. Examples for each of the resulting attack scenarios 

are presented in the following:  

• Data attack against hosting environment: A malicious native service may be used to extract 

or alter security critical data from the underlying operating system or hosting environment 

such as the system password files, certificate files or service container configuration. In a 

common Grid environment, the native part of a service is executed with the user rights of the 

hosting environment, enabling the malicious service to read the configuration of the hosting 
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container, and in many cases even allowing the alteration of configuration files (such as the 

container authorization lists).  

• Data attack against other services: A malicious native service may be used to read temporary 

data or results produced by other services as well as input data used by those other services. 

If, for example, a pharmaceutical company uses a Grid node for computations in the design 

phase of a new drug, a competitor may deploy a malicious service that extracts the 

experimental data used as input of the computation or the resulting outputs.  

• Resource attack against hosting environment: A malicious native service may implement a 

spam bot that is used to send unsolicited bulk emails from the Grid service hosting network 

node. A number of denial of service attacks also fall into this category. By using native code, 

an attacker can cause the underlying operating system or hosting environment to crash, 

evading type safety mechanisms and sandbox constraints of a pure Java environment, 

effectively performing an internal denial of service attack on the service host.  

• Resource attack against other services: A malicious native code may invoke methods from 

other services directly or use software licenses for 3rd party software that belongs to other 

service instances.  

• Both of the resource attacks can be subdivided into illegal access to resources and denial of 

service against the local system through excessive resource consumption. Note that 

participation in a distributed denial of service attack counts as illegal resource access since 

the host is only used to harm other systems by illegally using the network interface, whereas 

recursively starting new threads is a denial of service attack against the hosting system. 

3  Related Work 
Different mechanisms for the protection of UNIX like operating systems such as Linux or 

FreeBSD, OpenBSD and NetBSD with respect to untrusted applications have been proposed. A 

very popular mechanism is the virtualization of the entire hardware, allowing a guest operating 

system to run in a virtual machine environment created by the host operating systems. Such 

virtual machine systems include Usermode Linux [4] or Xen [5]. The latter system has seen a 

great increase in popularity for the small performance overhead caused by its virtualisation 

technology. 

Chroot confines file system access of a process run in the chroot environment to a different base 

in the file system. Some well known mechanisms exist for processes to break out of the chroot 
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environment and access files outside of this chroot jail. Those vulnerabilities have been 

addressed by the BSD implementation of the jail system call. Jails partition a BSD environment 

into isolation areas. A jail guarantees that every process placed in it will stay in the jail as well 

as all of its decendant processes. The ability to manipulate system resources and perform 

privileged operations is limited by the jail environment. The accessible file name space is 

confined in the style of chroot (i.e. access is restricted to a configurable new root for the file 

system in the jail). Each jail is bound to use a single IP address for outgoing and incoming 

connections, it is also possible to control what network services a process within a jail may 

offer. Certain network operations associated with privileged calls are disabled to circumvent IP 

spoofing or generation of disruptive traffic. The ability to interact with other processes is limited 

to other processes in the same jail.  

Systrace [6] has become a popular mechanism for call restriction as well as privilege elevation 

on a fine grained scale without the need for running entire processes in a privileged context 

namely in OpenBSD and NetBSD with ports being available for Linux and FreeBSD as well. It 

uses system call interposition to enforce security policies for processes run under the control of 

systrace. Systrace is implemented in two parts, an addition to the kernel that intercepts system 

calls, comparing them to a kernel level policy map, disabling the call if a negative entry or no 

entry at all is present. The kernel level implementation is assisted by a user-level part that reads 

and interpretes policy specifications to hand them to the kernel level policy map, report policy 

enforcement decisions to the user applications and even call GUI applications for interactive 

generation of policies.  

Janus [7] is one of the first system call interception tools. It uses the ptrace and /proc 

mechanisms which are claimed not to be a suitable interface for system call interception, since 

for example race conditions in the interface allow an adversary to completely escape the 

sandbox [8]. Janus has evolved to use a hybrid approach similar to systrace to get direct control 

of system call processing in the operating system [9]. 

The ability to set the effective user id of CGI programs to another user than the user id the 

calling web server runs under was introduced as the suEXEC capability in Apache 1.2 [10]. Our 

approach also offers the possibility of using setuid on the native processes, in addition other 

more fine grained access restriction methods may be used in a mixed Java and native code 

environment. 

Emerging proposals for isolation of different Java threads in the same JVM address security 
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threats arising from the sharing of a single JVM between different applications [11]. An 

approach to implement such a shared JVM is actively pursued by Sun microsystems in the form 

of the multitasking virtual machine (MVM) [12]. While MVM offers mapping of isolated Java 

threads to operating system processes, only a prototypical implementation for Sparc Solaris has 

recently been published and would require the availability of the MVM for the hosting system 

and a switch to this new JVM. Porting a service hosting environment like the Globus Toolkit 

and Tomcat to the new VM requires substantial efforts to changes those systems [13].  

The possiblity to decouple native processes from the process space of the Java virtual machine 

has been investigated in [14] in order to achieve better robustness of Java applications relying on 

native methods, not to enhance security of a shared Java environment or the underlying 

operating system. Systems like the Entropia Virtual Machine for Desktop Grids [15] or GridBox 

[16] propose the application of virtualisation and sandboxing technologies to achieve security 

for native Grid applications. They can only isolate entire native applications. Applied to the 

scenario of Java Grid services relying on native components, they cannot provide isolation of 

different services inside a single JVM. 

4  An Approach to Native Code Security 
Our security architecture addresses countermeasures for attacks stemming from native code 

used in Grid or web services, that fall into the different classes described in section 2. The 

technique used is process separation and confinement into secure sandboxes in order to allow 

for a flexible and fine grained definition of execution policies in an open multiple service 

environment. Our requirement does not require multiple instantiation of the JVM for isolation 

of different services, it is also independent of the JVM implementation allowing any JVM to be 

used to run the Grid or web service hosting environment. 

The sandbox for Java classes within the JVM is defined by a security manager. Based on a 

given policy, the security manager controls access of Java classes to certain resources such as 

the file system or network interfaces. The Java security manager can block file system access 

for pure Java classes that must use the File classes of the Java IO packages for file system 

access. From an operating system perspective, all file accesses from the JVM is performed with 

the user rights of the owner of the JVM process. Child processes for native code also inherit the 

user ID of the JVM process. While a fine-grained and policy based restriction of resource access 

is possible for pure Java code by means of a custom security manager, this restriction of rights 

is impossible for native parts of a service. The JVM cannot keep the code from opening file 

handles with the permissions inherited from the JVM process. 
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Java offers two possible ways of using native code. The first is the creation of a new child 

process using Runtime.exec or ProcessBuilder.start, the second is the direct invocation of native 

method implementations through the Java Native Interface (JNI) [17]. The only means of 

protection against malicious native code in the standard Java language is the use of a security 

manager and a policy that prohibits execution of native code as a child process or loading of 

shared libraries (System.load, System.loadLibrary). This is not desirable in an environment like 

the service-oriented Grid, where reliance on native implementations can be expected to occur 

frequently. 

4.1  Confinement of JNI Bound Implementations 
The Java Native Interface specification defines the interface between the JVM and native 

methods implemented in C/C++. It enables invocation of native method implementations from 

Java classes and callbacks to Java methods from the native code. The JNI specifies a mapping 

from names of Java methods declared as native to C/C++ method names as well as mappings 

between Java types and native types. A sample method native int intTest(int i); in the class 

test.A would be mapped to the native method: Java_test_A_intTest. The first two arguments of 

this method are used to pass pointers to the JNI interface and the objects self-reference (this) to 

the native implementation. Followed by other parameters defined in the Java class for the native 

method. 

The JNI interface is organized like a C++ virtual function table. It is passed by reference to the 

native implementation and managed by the JVM per thread (i.e. a native method may be 

invoked from different threads and therefore receive different JNI interface pointers, 

invocations from the same thread are guaranteed to pass along the same pointer). The structure 

itself contains a reference to an array of function pointers to implementations of the JNI 

interface methods. Besides passing an invocation result with return, the native method must use 

those JNI interface functions for access to any method or field in Java classes and objects 

managed by the JVM. The native methods are compiled into shared libraries and Java code 

using native implementations loads those shared libraries using System.loadLibrary. Native 

code is then executed in the process space of the JVM which leads to the serious threats 

described before. The native code cannot be further constrained on a fine grained per-service 

level, only confinenment based on the JVM process owner is possible. Figure 1 shows the 

relationship and confinement area using a standard approach for interfacing with the native code 

through the JNI. 
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Figure 1:  Standard access to native code through the JNI interface. 

 

As a solution to this problem we propose the decoupling of the process spaces by use of an 

automatically generated transparent proxy intercepting all calls to the native implementation 

shown in figure 2. The native component of the service is replaced by a generated proxy that 

exposes exactly the interface of the original component. This proxy now receives all the calls to 

the native methods from the JVM. Such a call is passed on to the original native implementation 

that is instantiated in a different process than the JVM and managed by a process server. We 

refer to the wrapped and sandboxed native process as the I-Process. Creation of the I-Processes 

for the Java based Grid service hosting environment is managed by a custom process manager.  

The process server acts like the JVM to the native method implementations, it passes a 

reference to an altered JNI interface implementation to the original native code. Every reference 

to the JVM from the original native code is thereby intercepted by the custom JNI interface 

implementation. The transparent proxy and the process server communicate by means of 

standard IPC or RPC mechanisms, depending on the security and functionality requirements. 
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Figure 2:  Decoupled process spaces for JNI attached native code, enabling secure isolation of native code. 

4.2  Confinement of Execute Requests 
In the previous section, native code was called via the JNI interface. A second possibility to 

execute native code from Java is to use the Java Runtime class to create a new shell 

environment where the native code is then run. The Runtime class uses the ProcessBuilder to 

create a new shell. The ProcessBuilder itself uses a statically linked JNI native create method to 

create the operating system shell. Unfortunately the proxy approach cannot be utilized in this 

case since the create method is integrated into the JVM. It is, however, possible to offer a 

custom ProcessBuilder which can sandbox a newly created shell on behalf of a service. This 

feature is currently not implemented in our proof-of-concept solution. To deal with this security 

issue in the meantime, we use the Java SecurityManager to forbid the ProcessBuilder to create 

new shells, thus restricting native code to be run via JNI. 

4.3  Policy and Process Instance Management 
In previous work [3], we have proposed a solution to intra-engine service security confining 

services or groups of services by use of a dedicated Java class loader. We extend this grouping 

scheme to the native parts of services, allowing the creation of sandboxes for I-Processes per 

service (or group). The hosting provider can attach a security policy to the service (group) that 

restricts resource access to the underlying operating system for all I-Processes created by 

services within this group. All processes started for services within the same service group also 

share the native sandbox. To be able to securely group different services, our solution to 

grouping Java services already provides an access control mechanism. A public-private-key pair 

is generated for a each newly created group. This key is obtained by the group owner (i.e. the 

creator of the group) who uses the private key to sign service archives containing the service 
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implementation (GAR files for the Globus environment). If the service implementation is 

signed using the correct private key, it is admitted to join the service group. 

When a Java thread requests access to a native method, the transparent proxy implementation of 

this method will first of all check whether an I-Process has already been created for the Java 

thread. If a new I-Process has to be created for the current invocation, the group ID of the 

service is determined from the service class loader or its parent group class loader. This 

information can then be used to obtain the security policy that was specified for the service 

group by the hosting provider from the policy manager. This policy is passed along with the 

thread ID to the process manager that in turn creates either a new sandbox and an I-Process for 

the Java thread or only a new I-Process within an existing sandbox for the service group. 

Creation of the sandbox environment is delegated to a sandbox connector. This component 

allows our isolation environment to be implemented for different underlying operating systems 

or different sandboxing techniques. It handles initial setup of the sandbox, inclusion of all 

necessary dependencies for a native library, installation and possible mediation of policies. The 

process manager also uses the sandbox connector for creation of new I-Processes as child 

processes of the sandbox connector, when such a new I-Process is requested by a Java thread 

calling into the transparent proxy. The hosting provider can specify the sandbox connector to 

use along with an access policy for a service group. Attachment of a security and sandbox 

policy to a service group may happen based on the user ID of the user that initially created the 

service group. Users may also be grouped allowing the application of a default policy to all 

service groups created by deployment of services by unknown users. 

The Web Service Resource Framework introduces the notion of a so called Web Service 

Resource (WS-Resource) into the web service framework. A WS-Resource is the combination 

of a stateless web service and a state capturing Resource Property Document. A client receives a 

resource address upon creation of a WS-Resource for later reference in subsequent interactions 

with the WS-Resource. Service instances may attach to the resource property document in order 

to change the state data starting off from the current state of the WS-Resource. Isolation of the 

native service components connected to individual WS-Resource instances from each other 

would require the transparent proxy to identify the WS-Resource corresponding to the Java 

instance emitting the native call to the transparent proxy. There are many cases that prohibit the 

identification of the corresponding WS-Resource from the native side if no special precaution 

has been taken in the original library wrapper.  
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Such a fine granularity of confinement is only needed if the service implementation is untrusted 

and there is real concern that the service implementation could be used to exchange data 

between resource instances created for different users. A solution to this problem is the use of 

distinct service groups (and the corresponding class loaders) for different instances of the 

service. In this case, our proposal automatically isolates the I-Processes corresponding to 

different WS-Resources since they originate from different class loaders. 

Our proposed solution can so far protect the hosting environment and other services against data 

attacks as well as illegal resource access. Depending on the sandbox capabilities, it is also 

possible for our process manager to monitor resource utilization and constrain e.g. CPU time as 

well as disk space or network bandwidth used by individual sandboxes. This still allows 

services to perform denial of service attacks against other service instances running in the same 

sandbox but leaves the option of shutting down entire sandboxes when they show behaviour 

that can cause harm to the hosting environment. A problem still remains in effective resource 

management in the JVM. No widespread solution to the problem of monitoring and managing 

resource consumption of individual Java threads (belonging to a service instance) is currently 

available. 

4.4  Secure Process Spaces 
A number of different options for the secure execution of native code (i.e. enforcement of 

access restrictions to the host operating system and isolation of processes against each other) 

can be used in our architecture. Those approaches have been introduced in section 3. A 

balanced decision needs to be made between the cost (i.e. instance creation time, computational 

overhead, increased resource consumption) incurred on the original Java service hosting 

environment and the strength of security offered by the chosen method. We will now discuss 

some of the implications of using the different techniques for native code isolation, with the cost 

and complexity imposed by such systems and the security provided by them. 

Dedicated or Virtual Hosts can be used to achieve a very high level of confinement since they 

add a layer of abstraction for the entire hardware. Instantiation of the native process requires the 

shared object file to be present in the file system accessible by the new operating system 

instance that runs the I-Process. While startup times for the guest operating system instances of 

a virtual host environment can be somewhat leveled by pre-loading a number of guest operating 

systems that are used on demand, the memory consumption of this method is very high. We 

therefore favor a more fine grained and lightweight approach to resource virtualization or 
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compartmentalization of the I-Processes. 

Changing the effective user ID of the I-Process provides security based on standard file and 

resource access control of the operating system. While this method requires no preparation of 

the sandbox and imposes virtually no performance overhead, it offers only very limited security 

against exploitable weaknesses in the operating system. A downside of this approach is the need 

for a pool of user accounts that I-Processes are mapped to by the sandbox manager.  

BSD Jails are a way to partition a BSD environment into isolation areas. The jail system call has 

been developed to explicitly counter well known techniques to escape a similar chroot 

environment. The overhead created by running a process in a jail is very low. Jailed processes 

are tagged to belong to a certain jail, the system enforces security by identifying this tag for 

certain privileged operations, resulting in a very small overhead for only those calls limited by 

the jail environment. 

Systrace offers even more fine grained policy enforcement over processes running under control 

of systrace. It has become a very popular tool for privilege control for a number of BSD 

variants. We experienced acceptable performance overhead with a Linux port of systrace. For a 

first prototypical implementation of the system, we employ a combination of chroot and an 

extended implementation of systrace as they offer the best balance between overhead and 

gained level of security. Shared objects and libraries they depend on are either copied mapped 

by hard linking into the system and can be protected by using systrace to intercept write 

attempts on the libraries. The (small) memory overhead is limited to the process and sandbox 

management components. 

5  Development, Deployment and Execution 
In this section, we discuss changes that are required by our security approach to the 

development and deployment process as well as special concerns during the execution of 

services. 

5.1  Development 
Using our system does not strictly require changes to the development process of the service 

containing native components. There is, however, added benefit for service developers and 

service users in taking a post-development step: specifiying a requirement profile for their 

service. Such a requirement profile can also be derived automatically at deploy time, but 

specifying the profile beforehand helps the platform to compare requirements against the 

security policy and determine mismatches that lead to failure of service instantiation or 
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execution. 

The requirement policy can either be specified manually or automatically generated in the 

following way: Our addition to the hosting environment supports a trace mode that can be used 

by the developer to install, instantiate and use the newly developed service. The process 

manager advises the sandbox manager to create the sandbox environment in trace mode that 

records any resource access of the service instance running inside this sandbox. Since we can 

assume the developer to trust his or her service implementation, no restrictions are enforced on 

the service instance. The recorded requirements stemming from a trace run can then be 

transformed into a generalized requirement profile to be used in the deployment descriptor of 

the service package. This consolidated policy contains generalizations of libraries that the 

service depends on, files that the service accessed and network addresses the service connected 

to. The consolidation operation is used to sort out typical calls that stem from the generated 

wrappers and standard library handling methods, in order to make the process of customization 

easy for the developer. Again, the requirement policy does not affect security but performance 

when searching for a compatible node that can be used to deploy and run the service. 

5.2  Deployment 
Deployment of a service containing native code consists of the following steps: 

• Compare the service requirement policy with the security policy specified by the hosting 

provider (optional)  

• Generate a custom transparent proxy for the native components of the service  

• Create or join a service group and bind the security policy to the group  

• Pre-load secure sandboxes (optional)  

 

These steps must be executed on the target machine since the generated code runs in the 

privileged hosting environment and as such must not be supplied by the service.  

The first step during deployment checks whether the environment into which the service is to be 

deployed offers sufficient access rights to successfully run the service. Since creating 

requirement specifications and publishing security policies creates additional costs and is not 

always required, this step is optional although it is recommended. This allows manual decisions 

to be made about which machines are suitable. If a service does not specify what requirements it 
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has, it can be deployed onto any machine, but will fail to execute if any operation is attempted 

that is not permitted by the secure hosting environment.  

Next, for all shared objects a transparent proxy is generated by introspectively analyzing the 

shared objects to discover which methods contained therein are JNI compliant. Based on this 

information, the Java classes can be reflectively analyzed to retrieve the method signature since 

it is not contained in the shared object. From that, a proxy capable of accepting all pre-defined 

native calls in place of the original shared object is generated. The proxies are registered with 

the hosting environment to enable run-time monitoring of the sandbox integrity (see section 

5.3). This step also includes resolution of dependencies (i.e. identification of other shared 

objects the service requires to run). These dependencies are recorded and attached as a sandbox 

descriptor to the transparent proxy. 

If it is necessary that different services containing native code interact directly (i.e. not via their 

Grid service interfaces), the services must be deployed into the same group so they are not 

separated by a sandbox. The first service creates a group and the hosting environment binds a 

policy file to the group based on the user id of the service deployer. The service deployer also 

gets a public/private key pair with which all other services which should be permitted to enter 

the group are signed. Only properly signed services may enter the group.  

The last step of the deployment process prepares the sandbox for operation. This can include the 

booting of a virtual hosting environment or making certain files accessible inside the sandbox 

(e.g. include copies or hardlinks of required shared objects in a chroot environment). This step 

is optional since it uses up system resources and should only be executed if the service requires 

quick first response times. 

The steps required in the development and deployment process are visually summarized in 

figure 3. 
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Figure 3:  Steps in the development and deployment process. (The service bundle is signed with the group private 

key for deployment into an existing group.) 

5.3  Execution 
For most services containing native code, the environment is now fully configured and the 

service is sandboxed. As mentioned above, the proxies responsible for the sandboxing are 

created through code introspection. This creates the following security risk: If a service contains 

a shared object in an obfuscated form or generates code on the fly, the introspection process 

used during deployment will not be able to generate the sandboxing proxies and thus the 

sandbox would not be safe. To combat this, the Java SecurityManager is extended to check at 

runtime whether libraries which are to be loaded were processed during deployment and thus 

the needed proxies were generated. If there is no registered proxy for a given library, it is 

generated at run-time and substituted for the original shared object. Since only very few 

legitimate applications require the dynamic generation of code, a warning is sent to the hosting 

environment informing the administrator that code is being run in the sandbox which did not 

enter through the deployment process. This code is sandboxed but it should nevertheless be 

checked by the administrator. 

6  Evaluation 
 
Two main factors govern the performance of the presented security solution for individual calls 

to native methods: The overhead imposed by the native sandbox of the operating system and the 
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overhead imposed by the process dislocation technique that requires local inter process 

communication.  

The cost analysis for native code sandboxing is subject to evaluation by the creators of the 

various techniques offering a solution in this area and is not covered by the scope of this paper.  

 

In order to obtain an initial result on the performance of the presented solution, the following 

experiment was conducted to assess the overhead of transparent process dislocation for native 

code used in a Java service implementation through the JNI. A Java test class was created that 

uses a native method implemented using C. The absolute time before and after an invocation of 

the native method in the Java class was measured in a loop of 500 invocations. In the first case, 

the original native library compiled using gcc 4.0.1 was used. Then, the native library was 

replaced by a transparent proxy library that used RPC communication to perform method 

invocation on the original library in a process separate from the JVM. Again, the runtime of the 

native method invocation in the Java class was measured.  

 

The regular call took 3 microseconds on the average while the call using separate process 

spaces took 566 microseconds. This increase in time required to perform a native call by a 

factor of 182 is only acceptable if relatively few native calls are required from the Java code 

into native libraries. Forutantly this is the normal situtation when a Grid service implementation 

provides a front end to functionality provided by native business or scientific libraries. In this 

case methods provided by the library are used on a macroscopic level and the service will 

typically spend substantial amounts of its runtime in the native code alone instead of requiring 

many native method invocations in the Java implementation. 

 

A benefit of the micro jailing technology lies in the small memory overhead created by the 

solution. The native process manager and all RPC related components require less than 1 

megabyte of main memory. This is a small overhead compared to process isolation by use of 

dedicated Grid service container instances for different services and users. Using these 

dedicated Grid service containers, a complete JVM must be instantiated, requiring at least 20 

megabytes of memory. 

7  Conclusions 
In this paper, we have analyzed the threat scenarios that emanate from native code in a service-
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oriented ad hoc Grid environment and categorized them into four distinct types: data attack 

against the hosting environment, data attack against other services, resource attack against the 

hosting environment and resource attack against other services. To counter those threats, a 

novel security architecture was presented, which enables confinement of native components of 

Grid applications into a secure environment. The security framework is based on dynamically 

created JNI proxies which create a pipe between the secure Java environment and the secure 

native environment. The security solution is capable of protecting the hosting system as well as 

services from each other. While our work is focused on the Grid environment, our security 

solution also offers benefits in a regular shared web service hosting environment. 

Future work includes the extension of the policy generation and matching mechanism and 

further usability tools. A custom ProcessBuilder will be provided to extend the sandboxing 

capabilities of the system to include Runtime.exec() commands as well as JNI calls.  
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