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Abstract 

 

Many sites have recently begun to encourage user participation and provide consumers with a 

virtual community wherein the user can create an on-site identity, make friends, and interact with 

other consumers. 

We study the interplay between users’ functional and social behavior on media sites and their 

willingness to pay for premium services. We use data from Last.fm, a site offering both music 

consumption and social networking features. The basic use of Last.fm is free and premium services 

are provided for a fixed subscription fee. While the premium services mainly improve the content 

consumption experience, we find that willingness to pay for premium services is strongly 

associated with the level of social activity of the user, and specifically, the community activity of 

the user. Our results represent new evidence of the importance of introducing community and 

social activities as drivers for consumers' willingness to pay for online services. 

 

Keywords: economics of IS; electronic commerce; premium services; social media; social networks 
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Background and Overview 

 

According to a survey conducted by the Online Publishing Association, more than 40% of time spent online 

involves content consumption1. Some sites that offer online content, such as Flickr.com or YouTube.com, provide 

mostly user-generated content; other sites, such as MTV.com and NYTimes.com, present professionally generated 

content that is traditionally accessed through other media. However, sites in the latter group have recently begun to 

encourage user participation, for example, by allowing users to post comments to news stories (talkbacks). Many 

sites that enable users to contribute content also provide consumers with a virtual community, wherein the user can 

create an on-site identity (often by having a personal page), make online friends, attend virtual social events, build a 

reputation, and interact with other consumers. These ‘extras’ render the user’s consumption experience increasingly 

interactive and social.  

This interactive and social model of online content consumption brings with it new challenges for site owners and 

users. By encouraging users to contribute, site owners lose some of their control over the content that consumers 

experience, particularly in cases where owners cannot eliminate negative reviews or delete uninteresting or offensive 

posts. Correspondingly, the consumers themselves have greater influence on their fellow consumers’ consumption 

experience. Despite this, many site owners encourage user participation because it can add interesting content that 

other consumers find valuable.  

In this paper, we conjecture that there is a less obvious yet important effect of virtual socialization that is facilitated 

by offering user-generated content and developing a community on one’s site. It is likely that in addition to 

benefiting other consumers, the act of participation positively affects the experience of the contributing consumer. 

By contributing content and becoming active in the site’s social community, the consumer is likely to feel more 

involved with the site. This involvement might lead to increased brand loyalty, deceased churn, lower defection to 

competing sites, and more willingness to pay for (additional) premium services. 

We investigate the interplay between users’ functional behavior (content consumption) and their social behavior on 

media sites, as well their willingness to pay for premium services. We focus on websites that combine structured 

content (in this case, music tracks owned by commercial labels) with an open social arena in which users can add 

content such as comments, reviews, and ‘tags’.  

We divide consumers’ use of such sites into three groups of activities:  

• Functional use, which includes content consumption as well as all activities entailed in content 

organization. 

• Local social network activities, which include on-site interaction with one's friends. 

                                                           

1 Compared to 5% spent on search and 15% spent on commerce. http://www.online-publishers.org/. 
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• Community (or global social network) activities, which include publishing user-generated content 

that can be consumed by the entire site audience, memberships to discussion groups, or comment 

posting. 

Our research questions are as follows: 

1. Are consumers who use social networking features in media websites more likely to pay for premium services?  

2. If so, what is the marginal effect of local social network activities versus global (community wide) activities on 

the propensity to pay for those services? 

We use data from Last.fm, a media site that serves both as an online radio and as a social networking site. Similar to 

other media websites, Last.fm allows users to access a set of basic services for free, and provides additional 

premium services in exchange for a fixed monthly subscription fee. Even though the premium services mainly 

improve the content consumption experience (for example, by increasing bandwidth), we find that willingness to 

pay for premium services is strongly associated with the level of social activity of the user. Specifically, consumers 

who use global social network features (i.e., features that enable the user to publish content and to engage with the 

entire network) show a higher propensity to pay for premium services compared with users who do not use these 

features. Our results represent new evidence of the importance of introducing community and social activities as a 

means of driving consumers' willingness to pay for online services. To the best of our knowledge, this study is the 

first to examine the influence of social involvement on consumers’ decisions to purchase premium services.  

Our work adds to two branches of literature: that on willingness to pay for online services, and that on the economic 

effects of a brand community on online businesses.  

Academic scholars and practitioners have noted that digital media companies find it difficult to charge their users for 

access to content services2;3 (Clemons et al. 2003, Srinivasan et al. 2002, inter alia). Therefore, many media sites 

operate under a two-tiered business model, wherein basic services are provided for free, and premium services are 

offered for a fee (Picard 2000; Riggins 2003). This business model has received wide attention from the press ― 

including the coining of the term “freemium business model” by Fred Wilson 4― yet has drawn surprisingly little 

academic attention. The two-tiered business model has achieved success in social media sites in and multi-player 

role-playing sites5. Convincing users to switch to a for-pay service is the main challenge of the two-tiered business 

model. Naturally, providing better content or service encourages users to subscribe to premium services (Ye et al. 

                                                           

2 A similar business model is Pay Per Use, in which the user pays for use of the site’s services. This payment constitutes the 
company’s main income source. Although this model has seen some documented successes, one of them the Wall Street Journal 
online (Lopes and Galletta 2006), most attempts to apply it have ended in failure. 
3 Naturally, advertising is an additional potential source of income for sites. However, it is beyond the scope of this paper. 
4 http://www.avc.com/a_vc/2006/03/the_freemium_bu.html 

5 The NING social networking site, which enables the user to create a personal social network, has publicized that out of 500,000 
social networks in NING, 3% pay premium services subscriptions ($19.95 per month). Multi-player role-playing sites have 
published a higher rate of between 15% and 25% success in turning players into paying customers (http://news.cnet.com/8301-
13953_3-10049806-80.html?part=rss&subj=news&tag=2547-1001_3-0-5). 
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2004). However, a user’s choice might be influenced by his or her level of engagement in the site’s virtual 

community.   

Brand communities are defined as online communities built around commercialized products or shared services. 

Studies have shown that a user's participation in a community that is linked to a brand can increase strong and 

lasting bonds with that brand and promote brand loyalty, both in the offline and online context (Mael & Ashforth 

1992 in the context of offline communities;  McAlexander et al. 2002 and  Jang et al. 2008 in the context of online 

communities). 

One of the dimensions of brand loyalty is the consumer's willingness to repurchase (Aaker 1991). Loyal customers 

have lower price elasticities than do nonloyal customers, and they are willing to pay a premium to continue doing 

business with their preferred retailers (Reichheld and Sasser 1990). In the e-commerce context, Srinivasan et al. 

(2002) surveyed 1,211 online customers and identified the existence of an online community as one of eight factors 

significantly influencing brand loyalty and willingness to purchase in online stores. Our work adds to this literature 

by providing empirical evidence of the effect of social activity on consumers' willingness to pay for online services 

in media and content websites. 

More broadly, our work also adds to the growing literature surveying the effects of social networks on consumption 

patterns. Marketing literature has long acknowledged the importance of social networks on the diffusion and 

adoption of new products and services (see Nair et al. 2006 for a detailed survey of the literature on social effects in 

marketing). Researchers have also attempted to separate social effects from marketing effects, thus requiring the 

identification of differing social effects (Trusov et al. 2007; Goh et al. 2008). Recently, researchers have focused on 

separating between local and global network effects when examining the influence of social factors on the adoption 

decision (for example, see Tucker 2004 on the adoption of a video messaging system in an organization). However, 

those works study the diffusion of products for which network effects are an inherent characteristic, such as 

communication technologies. Our work adds to this literature by emphasizing the importance of introducing local 

and global social networking features even to websites that offer traditional (professionally generated) content.  

The rest of this paper is organized as follows: Section 2 provides an overview of the data and methodology. Section 

3 presents the results and discussion; and section 4 concludes.  

Overview of Data 

We collected data from Last.fm, a social media site in which users can listen to music online and create personalized 

‘radio stations’, or playlists. Last.fm also offers its users a social community6.  A user page in the social network is 

shown in Figure 1. Currently, Last.fm has more than 30 million registered users based in more than 200 countries7. 

                                                           

6 Last.fm was purchased by CBS in May 2007 for $280 million. 
7 See Sinkkonen et al. (2007) for an analysis of Last.fm’s music social network topology. 
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While the site’s main goal is to provide music listening capabilities8, it also enables the user to create a personal user 

profile page, join groups (mostly based on musical taste), contribute to blogs (journals) by posting comments, or to 

take a lead role in those groups and journals. Users can also add tags to artists, albums, and tracks by using chosen 

keywords. 

Last.fm offers its users two levels of membership. The first is regular registration (free service), which enables the 

user to create a personal profile page, listen to online radio, and use other site’s functions. The second is the paid 

subscription, in which subscribers pay a monthly fee of €2.5 for a package of premium services that include the 

following: 

• Improved infrastructure, including removal of ads from the subscriber’s page and top-priority 

quality-of-service on web and radio servers. 

• Extended listening options, including the capacity to listen to unlimited personal playlists on 

shuffle mode, and to create a ‘Loved Tracks’ radio channel9. 

• Improved social status, including an icon added to a subscriber’s account and the ability to see 

who has visited one’s profile page. 

 

 

Figure 1 – Last.fm Screen Shot (User Page) 

 

                                                           

8 Last.fm provides a musical profile based on the user’s listening habits by connecting to his or her music file software. Last.fm 
also creates customized radio stations using a collaborative recommendation algorithm in which the user is given the opportunity 
to add songs that are often played by fellow users with similar musical tastes. 
9 This is a playlist created by the site based on a user’s tagging of songs as “Loved”. 
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Data Collection and Preparation 

We collected the following data on Last.fm users:  

• Demographic information such as age and gender. 

• Music consumption information such as number of tracks listened to; number of tracks tagged as 

‘Loved’; number of user-generated playlists; and time since last visit 

• Virtual community activity information such as number of friends; number of blog (journal) posts; 

number of group memberships; number of groups led; number of user postings to the site’s groups 

We collected these data using two specially programmed web crawlers. One web crawler gathered information 

about a random sample of 150,000 Last.fm users (subscribers and non-paying users). For this dataset, we omitted 

data on subscribers and used only data on non-paying users. A second web crawler collected information about new 

paying subscribers at the time that they purchased their subscriptions. We were able to access this set of users thanks 

to a continually updated list of recent subscribers that is featured on Last.fm. By limiting our analysis to new 

subscribers and omitting members with previously established subscriptions, we control for increased activity that 

might result from the membership benefits of the premium subscription. Thus far we have collected information on 

close to 10,000 new subscribers. 

Data collection was done over a period spanning 3 months starting in January 2009. In order to omit inactive users 

from our analysis, we removed data on users who had not visited the site during the 3 months prior to data 

collection. We also omitted users and subscribers who had in the past used a "Reset" option that reset the logs of 

their personal site usage. Our final dataset consisted of 39,397 non-paying users and 3,612 new subscribers. Some 

descriptive statistics about our data are presented in Table 1. 

Table 1 – Descriptive Statistics 

Non paying user Subscribers Type Of Membership: 

Mean Median Variance Mean Median Variance 

Age 23.08 21 39.156 29.43 27 88.415 

Gender (1= Male, 2= Female) 1.34 1 0.223 1.29 1 0.204 

Tracks listened to 17,616.99 11,265.00 477,622,677.54 21,688.83 11,039.50 998,060,194.11 

Playlists created 0.77 1 0.47 1.29 1 7.15 

‘Loved’ tracks tagged 65.97 11 41,872.72 210.34 83 314,062.36 

Tags created 9 1 1,400.19 21.27 2 5,298.45 

No. of friends 14.56 9 640.923 21.19 10 1,196.87 

Posts published 9.12 0 7,596.37 27.31 0 75,401.53 

Groups joined 5.27 2 168.69 8.98 3 463.08 

Groups led 0.07 0 0.165 0.17 0 0.452 

Journal entries published 0.42 0 2.244 0.89 0 5.623 
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Data Analysis and Results 

The descriptive statistics clearly suggest that the usage pattern of subscribers is quite different from that of regular 

users. Table 2 and Figure 2 summarize the average activity levels of the consumers in our sample, which we divided 

into (paying) subscribers and (non-paying) users. For each type of activity, the third column of Table 2 shows the 

ratio between subscriber activity level and user activity level. To test whether the activity levels of the two 

populations are sufficiently distinct, a t-test would normally be in order. However in this case, the populations are 

not normally distributed and as such do not obey the assumption of the independent samples t-test. Therefore we 

used the Mann-Whitney U-test, where P < 0.05 shows that the two populations’ medians and means are distinct.  

We observe that subscribers consume 23% more music than do their non-paying peers; this difference is not 

statistically significant, however (Mann-Whitney with P = 0.427). Interestingly, subscribers invest significantly 

more in organizing their pages. On average, subscribers create 67% more playlists on their sites; they choose to tag 

218% more tracks as ‘Loved’; and create 140% more tags (P < 0.01). Since the tags and playlists are available on 

one’s page, it is not clear whether these activities are motivated by the increased level of music consumption, or 

should be treated as social activities.  

Moreover, we observed differences when we compared the social activity levels of subscribers with those of non-

paying users. Our measure of local social network activity is the number of friends listed on one’s page. In Table 2, 

one can see that while regular users have an average of 14 friends, subscribers have an average of 21 friends, i.e., 

subscribers have on average 45% more friends (P < 0.01). 

Most intriguingly, subscribers are substantially more involved in the site’s virtual social community: compared with 

nonpaying users, paying subscribers post 199% more posts on the site’s forums, join 70% more groups, lead on 

average 142% more groups, and publish 111% more blog entries (P < 0.01).  

A possible explanation for the evident differences in activity levels might be demographic differences between 

subscribers and non-paying users. The two demographic variables we obtained were gender and age. We did not 

observe a significant difference in activity levels or in propensity to subscribe based on gender. We did, however, 

find that subscribers are on average 6 years older than non-paying users (see Table 1).  
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Figure 2 – Box Plot Graphs 

Figure A presents the statistical distribution differences between the non paying users (on the right) and subscribers 

(on the left) for the 'music tracks listened to" variable. Similarly, Figure B presents the distribution of the variable 

'User’s number of friends'; Figure C the distribution of the user’s age; Figure D the distribution of the number of 

groups joined by the user; Figure E the distribution of the number of tracks that were tagged as “loved"; Figure F the 

distribution of tags created; and Figure G the distribution of the number of posts published to user groups.    

 

 

 

A B C 

D E F 

G 
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Table 2 – Comparing Subscribers to Non-paying Users 

U-test P Value Ratio User mean Subscriber mean   

0.427 1.23 17,616.99 21,688.83 No. of tracks listened to 

0.00*** 1.45 14.56 21.19 No. of friends 

0.00*** 1.67 0.77 1.29 No. of playlists 

0.00*** 3.18 65.97 210.34 No. of Loved tracks 

0.00*** 2.40 9 21.27 No. of tags created 

0.00*** 2.11 0.42 0.89 No. of journals / blog entries 

0.00*** 2.99 9.12 27.31 No. of posts 

0.00*** 1.70 5.27 8.98 No. of group memberships 

0.00*** 2.42 0.07 0.17 No. of groups led 

0.00*** 1.27 23.08 29.43 Users’ age 

0.00*** 1.10 720.53 652.08 Days of use 

*** - Significant at the 0.01 level 

 

Model Estimation  

To better understand the interplay between music consumption, local social activity, social involvement in the site’s 

social community, and willingness to pay for a subscription, we estimate a logistic (binary) choice equation, 

predicting the probability of paying for a subscription10. Formally, we estimated the model: 

JournalCntntGroupLeadCGroupCntFriendsCnt

sCntLovedTracktPlayListCnhousandTracksDivTAge

Subscribe

Subscribe

* + *+ *+ *

****

)Pr(1

)Pr(
log

8765

43210

αααα

ααααα

+

++++

=
−

 

Note that by controlling for the music consumption characteristics of the user, we are able to measure and quantify 

the marginal contribution of the social activity levels to the propensity to pay for premium services.Estimating this 

model presented us with two econometric challenges: 

First, we wanted to control for increased use of the site due to the actual subscription decision. It is possible that 

after subscribing to premium services, consumers tend to use the site more because of the benefits a subscription 

provides. For that reason, we limited our analysis to non-paying users and to new subscribers whose data had been 

collected immediately at the time of subscription, that is, before their usage could be influenced by the subscription 

                                                           

10 Since premium services are offered for a fixed monthly fee, we use a logistic regression model with a binary 
dependant variable. 
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itself. We therefore merged two sets of data: one consisting of randomly chosen non-paying users, and one 

consisting of users who had just purchased a subscription. 

Second, when we looked at the random set of users on whom we collected information, we noticed that subscribers 

made up only 0.89% of the site population. If we used this correct ratio in composing our dataset, the occurrence of 

ones in our dependent variable (Subscribe) would be a rare event. The biases that rare events create in estimating 

logit models have been discussed in the literature (Ben-Akiva and Lerman 1985). In a nutshell, this poses a problem 

when estimating a logit model in that the model would predict that everyone would be a regular, non-subscribing 

user while still obtaining a 99% level of accuracy. To overcome the problem of misclassification, one should re-

estimate the model while deliberately under-sampling the non-paying users, so that a more balanced sample of ones 

and zeros in the dependent variable is obtained. This sampling technique is called choice-based sampling (Ben-

Akiva and Lerman 1985). To this end, we used our collected set of 3,612 new subscribers and only 5,000 non-

paying users. However, using choice-based sampling leads to inconsistent intercept estimation when traditional 

maximum likelihood methods are used. Two alternative solutions have been suggested in the literature: Manski and 

Lerman (1977) developed a weighted endogenous sampling maximum likelihood (WESML) estimator, which 

accounts for the different weights in the zeros and ones from the population of interest. However, this estimator has 

the undesirable property of increasing the standard errors of the estimates (Manski and Lerman 1977; Greene 2000). 

A second approach, which we follow, is to adjust the estimated intercepts for each alternative by subtracting from 

the exogenous maximum likelihood estimates of the intercept the constant Ln(Si/Pi), where Si is the percentage of 

observations for alternative i in the sample, and Pi is the percentage of observations for alternative i in the 

population (Manski and Lerman 1977; see Villanueva et al. 2008 for a similar implementation).  

The correlation matrix is presented in Table 3 and the estimation results using the choice-based sample are reported 

in Table 411. The odds of a user subscription decision are positively associated with the number of (thousands) of 

tracks the user listens to (Odds Ratio = 1.003). We also find that content organizing activities, such as creating a 

playlist and tagging music tracks as ‘Loved’, are positively correlated with the subscription behavior (Odds Ratio 

=1.245 for PlaylistCnt and Odds Ratio = 1.002 for LovedTracksCnt). However, this is understandable given that a 

premium service subscription gives users extra playlist listening capabilities and the possibility to listen to “loved 

tracks” as if they were a “radio station”. It is therefore natural to assume that heavy users of those features will be 

more inclined to pay for premium services. 

 

                                                           

11 The equation includes only the coefficients in the regression that are statistically significant. The Tags (TagsCnt) 
and Postings (PostsCnt) are not found to be significant predictors of a user’s subscription decision.  
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Interestingly, we find that after controlling for content consumption and the use of content organization features (the 

activities that are most enhanced by premium services), the number of friends the user has listed on his or her page 

(i.e., the user’s level of local social network activity) is positively associated with the user's propensity to pay for 

premium services (Odds Ratio = 1.002). 

Within the community-wide activities, writing a blog (journal) entry is positively associated with the subscription 

decision. Similarly, joining a group or leading a group are associated with significant increases in the odds of 

subscribing to premium services (Odds Ratio = 1.047 for JournalCnt; Odds Ratio = 1.004 for GroupCnt and Odds 

Ratio = 1.432 for GroupLeadspCnt). These results are especially interesting, given that the premium services 

provided to subscribers generally relate to music consumption and not to other forms of interaction on the site.   

 

 

 

Table 3 – Correlation Matrix  

 

Gender Age 

Number 

Of 

Friends 

Tracks 

Listened 

To 

Playlist 

Created 

Loved 

Tracks 

Tagged 

Posts 

Published 

Groups 

Joined 

Groups 

Led 

Journal 

Entries 

Written 

Tags 

Created 

Gender 1.000 -.181** .053** -.097** .023** .005 -.015** -.025** -.051** .000 -.035** 

Age -.181** 1.000 -.067** -.057** .101** .097** .004 -.057** -.008 .019** .041** 

Number Of Friends .053** -.067** 1.000 .289** .094** .194** .111** .310** .184** .219** .126** 

Tracks Listened To -.097** -.057** .289** 1.000 .042** .130** .127** .216** .164** .212** .119** 

Playlist Created .023** .101** .094** .042** 1.000 .269** .014** .066** .025** .069** .100** 

Loved Tracks Tagged .005 .097** .194** .130** .269** 1.000 .070** .183** .064** .123** .209** 

Posts Published -.015** .004 .111** .127** .014** .070** 1.000 .195** .194** .159** .102** 

Groups Joined -.025** -.057** .310** .216** .066** .183** .195** 1.000 .370** .233** .219** 

Groups Led -.051** -.008 .184** .164** .025** .064** .194** .370** 1.000 .223** .166** 

Journal Entries Written .000 .019** .219** .212** .069** .123** .159** .233** .223** 1.000 .180** 

Tags Created -.035** .041** .126** .119** .100** .209** .102** .219** .166** .180** 1.000 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 4 – Binary Logistic Regression Model for Subscribing Decision 

 B S.E. Wald df Sig. Exp(B) 

Age 0.112 0.004 877.053 1 0.000*** 1.118 

TracksDiv1000 0.003 0.001 7.824 1 0.005*** 1.003 

PlaylistCnt 0.219 0.029 56.185 1 0.000*** 1.245 

LovedTracksCnt 0.002 0.000 177.530 1 0.000*** 1.002 

TagsCnt 0.000 0.001 0.177 1 0.674 1.000 

FriendsCnt 0.002 0.001 5.897 1 0.015** 1.002 

PostsCnt 0.000 0.000 2.017 1 0.156*** 1.000 

GroupCnt 0.004 0.002 5.048 1 0.025** 1.004 

GroupLeadsCnt 0.359 0.067 28.682 1 0.000*** 1.432 

JournalCnt 0.046 0.015 9.524 1 0.002*** 1.047 

Constant -3.820 0.106 1,301.040 1 0.000*** 0.022 

Revised Constant -8.20 After estimated intercept adjustment 

N (non-paying users) = 5,000, N (subscribers) = 3,612 

Overall Model Estimation: chi-square = 2,108.086. df = 10, p = 0.00 

 -2 Log likelihood = 9,605.997, Cox & Snell R Square = 0.217, Nagelkerke R Square = 0.292 

**- significant at the 0.05 level ; ***- significant at the 0.01 level 

 

Our findings seem to indicate that social activity has an important role in subscription behavior. This can also be 

seen from Table 5: the model correctly predicts 67.4% of the non-paying users and 75.9% of the subscribers.  

Table 5 – Predicted Values of Logit Model 

Predicted by Membership Type 

Observed Non-paying Subscribers % correct 

Non-paying 3,370 1,630 67.4 Membership type 

Subscribers 872 2,740 75.9 

 Overall %   70.9 
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Propensity Score Matching  

 

Although the preceding econometric analysis provides support for a positive and statistically significant association 

between social online activity and propensity to purchase a premium services subscription, the nature of 

observational data raises concerns about the causal interpretation of our findings. As mentioned above, through our 

sampling technique, we control for possible post-subscription increases in site usage. However, we do not control 

for the bias caused by self-selection. That is, since we did not randomly assign users to treatment groups (for 

example, increased community activity), we are unable to control for observed and unobserved variables that drive 

users to self-select themselves into a particular treatment group. It is easy to think of variables that might influence 

users’ social activity level and simultaneously increase their propensity to pay for premium services, hence creating 

a self-selection bias.  

A statistical solution to the self-selection bias is to use a proportional outcome approach. Selection bias due to 

correlation between the observed characteristics of a user and the user’s level of social activity (her “treatment” 

level) can be addressed by using a matching technique based on propensity scores (Rosenbaum and Rubin 1983; for 

a recent use of propensity score in the IS literature, see Mithas and Krishnan 2008). In a nutshell, propensity 

matching techniques enable us to investigate heterogeneous treatment effects in non-experimental data, based on 

observed variables12. The fundamental problem in identifying treatment effects is one of incomplete information. 

Though we observe whether the treatment occurs and whether the outcome is conditional on the treatment 

assignment, the counterfactual is not observed. 

Let yi1 denote the outcome of observation i, if the treatment occurs (given by Ti=1), and yi,o denote the outcome if the 

treatment does not occur (Ti=0). If both states of the world were observed, the average treatment effect, τ, would 

equal y1-y0, where the former (latter) average represents the mean outcome for the treatment (control) group. 

However, given that only y1 or y0 is observed for each observation, unless assignment into the treatment group is 

random, generally, τ ≠y1-y0.  

Propensity score matching attempts to overcome this problem by finding a vector of covariance, Z, such that 

,, 01 ZTyy ⊥ ),1,0()1( ∈= ZTpr  Where ┴ denotes independence. Yet, if one is interested in estimating the 

average treatment effect, only the weaker condition [ ] ],[],0[,1 000 ZyEEZTyEZTyE ====  

),1,0()1( ∈= ZTpr is required.  

To implement the matching technique, we define the treatment group as the set of people who participated in 

community activity. Since most propensity score matching techniques use a binary treatment, we grouped user 

                                                           

12 In contrast, selection bias stemming from correlation between unobserved variables and the user’s social activity 
level is a more difficult problem. Previous literature has often used the strong ignitability assumption (Rosenbaum 
and Rubin 1983). 
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participation in community activities into three distinct binary treatments and repeated the following exercise for 

each treatment separately: 

• GroupLead_binary, which is equal to one if the user has ever led a group 

• JournalPost_binary, which is equal to one if the user has ever posted an entry to a blog 

• GroupMember_binary, which is equal to one if the user has ever joined a group 

Consequently, one should observe identical values for all covariates in Z. Since this is often untenable, Rosenbaum 

and Rubin (1983) prove that conditioning on p(Z) is equivalent to conditioning on Z, where p(Z)=pr(T=1|Z) is the 

propensity score. p(Z) is estimated using a logit model. One of the advantages of propensity score methods is that 

they easily accommodate a large number of control variables. In our context, we are able to identify a number of 

observed variables that might influence a consumer's propensity to engage in social activity. We therefore estimate 

the propensity to participate in a community (global) social activity based on demographic information (including 

gender and age), music consumption patterns (including the number of tracks listened to, and the number of days in 

the Last.fm site), and the local social activity (including the number of friends listed on the user's page).  

Upon estimation of the propensity score, a matching algorithm is defined in order to match the treated and untreated 

cases. We used the kernel matching estimator matching technique (Heckman 1997). We divide the treated and 

untreated cases into four equally sized bins according to their propensity scores. Due to space limitations, we only 

present the estimated mean differences for group-leadership between treatment and control groups (see Table 5). 

The estimations of the other treatment groups are available upon request.  

Our results clearly indicate that after controlling for self-selection bias based on demographics, music consumption 

as well as local social activities, we observe a significant difference between the treated and untreated conditions in 

the mean percentage of users who subscribe to premium services. That is, we show that users who use the global 

community features, such as group leading, group membership and journal writing, have a higher propensity to 

subscribe to premium services13. Moreover, one could consider leading a group to be a variable that represents a 

higher level of engagement with the site's community (compared to group membership or journal postings), and 

indeed, both in our logistic regression estimation and in our propensity score analysis we see a strong correlation 

between group leading and subscription behavior. 

Note, that these results were obtained using choice-based sampling. As explained above, because the treatment was 

a rare event, it was not possible to compute the propensity score using the full sample, and choice-based sampling 

was required. Since choice-based sampling creates a bias in the intercept alone, it does not change the relative 

propensity and therefore does not bias our grouping of the cases into bins. However, this sampling technique clearly 

 

                                                           

13 We observe significant differences for all strata but the first one. 
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Table 5 – Propensity Score Stratification for Group Leading 

%Subscribers of 

group leaders 

%Subscribers of 

non group leaders 

Group leaders Non group 

leaders 

Stratum 

53.5% 49.9% 28 2125 1 

47.2% 39.9% 55 2098 2 

46.4% 28.8% 125 2028 3 

65.6% 43.6% 413 1740 4 

 

provides us with unrealistic percentages of treated users. For example, looking at Table 5, it seems that nearly half 

the population are group leaders, whereas in reality, about 5% of non-paying users and 10% of the subscribers are 

group leaders. Therefore, the results in Tables 5–7 should not be read as representing the occurrence of the treatment 

in the population. Those results simply provide us with evidence that after controlling for the treatment assignment, 

the effect of each examined social activity on subscription behavior is significant, and the mean subscription rates in 

the treatment and control groups are significantly different14.  

Concluding Remarks 

 

Our paper emphasizes an important and yet somewhat overlooked role of social activity on websites that provide 

traditional content. We show an association between community activity and the propensity to pay for premium 

services. We show that after accounting for content consumption and demographics, both the use of local social 

network activity features and the use of global network (community wide) activity features are associated with a 

substantial increase in the probability of paying for premium services. 

We extend those results by using propensity score matching, which has been shown to estimate treatment effects 

from non-experimental data. Through these matching techniques, we provide additional support to our findings. 

Although we do not control for unobserved heterogeneity in treatment assignment, propensity score matching allows 

us to control for self-selection bias based on consumption patterns, demographics, and social activity levels and to 

show that the use of global network features increases users’ willingness to pay for premium services. 

This study makes an important contribution to the literature of virtual communities and social networks and their 

influence on electronic commerce. It also provides researchers as well as practitioners with insights into the 

importance of adding social activities and building virtual communities as part of the media website 

                                                           

14 Repeating these estimations with the full dataset and without choice-based sampling produced similar results and 
those are available upon request. 
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