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Abstract 

This research addresses the need for models that guide data quality design and resource 

allocation decisions. Broadly, our research problem is: Given an information system that utilizes 

a set of data sources for producing required information, how can we determine the gain in 

information accuracy and, subsequently, the economic return if the accuracy of a chosen data 

source is improved? An earlier paper by the author approaches this problem through a construct 

and a model. The construct, named damage, is defined as the change in information accuracy that 

results from improving the accuracy of a chosen data source. The model that is provided together 

with this construct enables its quantification as well as a simple ranking of inputs according to the 

damage that errors in each inflict. The model suits environments in which the data are applied 

mostly by satisficing, multi-criteria decisions, such as databases. This paper reports on a series of 

Monte Carlo Simulations that validate the ranking component of the model under conjunctive 

decisions, and, in addition, explore and characterize special conditions in which a predicted 

ranking is not assured to be correct. 

Keywords Information quality management, information accuracy, multi-criteria decisions, 
conjunctive decision rules, satisficing decisions, ranking, Monte Carlo simulation. 

 

Introduction  

The overall annual cost of poor data quality to businesses in the US has been estimated in the hundreds of billions of 
dollars (Eckerson 2002) and the overall cost to individual organizations is believed to be 10%-20% of their revenues 
(Redman 2004). However, these estimates are not impressive enough, apparently, to drive organizations to action. 
For instance, most organizations have no plans for improving data quality in the future (Eckerson 2002). In the face 
of this neglect, there is a mounting conviction among both practitioners and researchers that an understanding of the 
economic aspect of data quality can be crucial for convincing organizations to increase their efforts. An 
understanding of the economics of data quality can guide decisions on how much to invest in the quality of their 
information and how to allocate limited organizational resources (Wang and Strong 1996).  

This paper is a product of a research project that addresses the need for models that support resource allocation and 
design decisions that center on information quality. In particular, this research considers the accuracy dimension of 
information quality (Wang and Strong 1996). Broadly, the questions that are of interest in this research project 
include, for instance:  

(1) Assuming an information system that utilizes a specified set of input sources for producing required information, 
how can we identify the input sources that would yield the highest gain in information accuracy if their accuracy is 
improved?  How can we identify the input sources that would offer the highest economic return if their accuracy is 
improved?  

(2) How can we quantify the gain in information accuracy that would result from improving the accuracy of a 
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chosen data source, and the subsequent economic return?  

A model that provides answers to these questions can support design decisions on the accuracy of different data 
sources as well as resource allocation among the sources. Ultimately, both users and providers of the information 
system can benefit from such a model.  

An earlier paper (Askira Gelman, forthcoming) approached these questions by developing a construct and a model 
for estimating that construct (Hevner et al. 2004; March and Smith 1995). The perception that underlies the 
proposed construct, named damage, is that, all other things being equal, it would be beneficial to assign priority to 
the elimination of input errors that have a higher negative effect on output accuracy (i.e., generate more output 
errors) over input errors that have a lower negative effect. In practical settings where, often, not all other things are 
equal, an estimate of the damage should be weighed by, or combined with, values of other relevant factors, in order 
to yield a more comprehensive evaluation of an investment in the accuracy of a chosen input.  

Our model quantifies the damage in a popular class of applications and, in addition, enables a simple ranking of 
inputs of such applications according to the damage that errors in each inflict. Specifically, the model assumes an 
information system that employs dichotomous, multi-criteria satisficing decision rules. Instances of such systems 
include databases and expert systems that utilize domain knowledge in the form of multi-criteria satisficing decision 
rules.  The term “satisficing,” has been coined by Herbert Simon to denote problem-solving and decision-making 
that aims at satisfying a chosen aspiration level instead of an optimal solution (Simon 1957). Research indicates that 
satisficing rules agree with human choices and inferences in diverse situations involving complex problems, severe 
time constraints, or lack of information (e.g., Einhorn 1970; Einhorn 1971; Einhorn 1972; Lussier and Olshavsky 
1979; Mintz 2004; Park 1976; Payne 1976; Phipps 1983).   

An example that illustrates an information system in the class which is of interest here involves decisions on buying 
real estate properties. Nowadays, these decisions are often facilitated by an online real estate database like 
REALTOR.COM or REALESTATE.YAHOO.COM. Users formulate satisficing decision rules, primarily 
conjunctive rules, which express their needs. Suppose that, due to the high number of available properties, a 
conjunctive decision rule is employed for the initial screening of alternatives (e.g., Lussier and Olshavsky 1979; 
Payne 1976) or throughout the entire selection process. For instance, consider a decision maker that examines 
classic variables such as location, price, and number of bedrooms; let us say that he or she looks for a residential 
property in zip code 85719 that has 2 or 3 bedrooms and is priced at $375,000 or below. This decision-maker’s 
preference is expressed by the conjunctive decision rule:  zip code = 85719 and number of bedrooms = 2 or 3 and 
price ≤ $375,000. When the source of the data is a database, each decision variable corresponds to a suitable 
database attribute. A property is included in the resultant set of suitable properties if and only if the data about the 
property indicate that it satisfies the entire decision rule. Obviously, in agreement with the common experience, one 
may assume that the real estate data are not free of errors. These errors can lead to incorrect classifications of 
properties as fulfilling or not fulfilling a relevant decision criterion, which can result in incorrect property selection 
and exclusion decisions. A property that does not satisfy the specified criteria may thus be included in the short list 
of suitable properties (a false positive), while a property that has the desired attributes may be excluded from that list 
(a false negative).  

To the extent that the decision maker actually has influence over the accuracy of the data that they are using, they 
can benefit from a model that quantifies or ranks the relevant database attributes in terms of the damage that errors 
in each attribute bring on the accuracy of the property selection decision. For instance, if they can choose among 
competing real estate databases, then this model can affect their choice.  

In the majority of practical settings, however, data are used over and over again in different ways—data usage is 
rarely limited to one scenario. In the case of the real estate database, database attribute subsets are used in a variety 
of satisficing decision rules, mainly, perhaps, in conjunctive decisions. Assuming this type of multi-purpose 
database, its providers can benefit from our model if the average damage on a collection of decisions can be 
estimated, rather than estimating the damage that errors bring on a single decision (Askira Gelman 2008).  

According to the emerging understanding about the fundamentals of good design research (Winter 2008; Hevner et 
al. 2004; March and Smith 1995; Nunamaker et al. 1991), the proposed construct and model must be evaluated. In 
agreement with that understanding, this paper reports on a set of empirical tests, implemented through Monte Carlo 
Simulations, of the model component that ranks decision inputs in terms of the damage that errors in each input 
inflict on a decision. Our simulations validate this model for conjunctive decisions, and, in addition, explore and 
characterize the special conditions in which the proposed model is not assured to predict the correct damage ranking.  
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The paper is organized as follows. The next section describes the primary assumptions of our model. A literature 
review is provided next, followed by an overview of the theory that serves as a foundation for the current, empirical 
study. A later section describes the research method. The results are detailed in a subsequent section. We conclude 
with a discussion of the implications of this work, its limitations, and future research directions.  

Assumptions  

This section exposes the major concepts and unique assumptions that underlie our work. To begin with, this paper 
typically uses the term data to describe the raw, unprocessed input of an information system; the term information 
mostly designates the output of an information system. Accuracy is defined as the degree to which the data or 
information are in conformance with the true values. On the output side, in particular, a decision error is registered 
whenever a decision based on the available inputs deviates from the outcome of the same decision based on error-
free inputs. (Note that, from the perspective of the effect on decision accuracy, there is no need to differentiate 
between an incorrect input value and a value which is out-of-date or based on a nonstandard unit such as a price that 
is given in a nonstandard currency, etc.) Data and information accuracy are measured by the probability of error 
occurrence. Despite the fact that the implementation of this measure can be costly, studies that use error probability 
or error rate, error magnitude, or various fusions of the former to measure accuracy are common in the research 
literature. A possible explanation of that popularity is the relative ease with which such measures can often be 
examined through the prevailing, broad analytical frameworks. Furthermore, there is a growing literature that offers 
practical solutions for deriving the measures (e.g, Ballou et al 2006; Motro and Rakov 1997; Parssian 2006; Hipp et 
al. 2001). We will briefly discuss the important question of the implementation of the model in the final section of 
this paper.  

Our approach for identifying the data sources that yield the highest gain when their accuracy is improved, and for 
quantifying this gain, utilizes the concept of damage. The damage that errors in an input inflict on output accuracy is 
defined in this work as the change in output error probability due to an increase in the error probability of that 

input. The idea that motivates our focus on this construct is that, all other things being equal, it would be beneficial 
to assign priority to the elimination of errors that have a higher negative effect on output accuracy over errors that 
have a less negative effect. For instance, suppose that, by decreasing the error rate in one of the inputs by 1%, we 
decrease the decision error rate by 0.5%, while a decrease in the error rate of a second input by 1% decreases the 
decision error rate by 0.05%. Obviously, all other things being equal, it would be more effective to decrease the 
error rate of the first input than the second. In practical settings where, often, not all other things are equal, an 
estimate of the damage has to be weighed by, or combined with, values of other relevant factors (e.g., associated 
costs) in order to yield a comprehensive assessment of an investment in the accuracy of a chosen input. Technically, 
we use a partial derivative to implement the concept of damage. A derivative is a measure of the change in the 
output of a function when its input changes.1 Therefore, by definition, it is consistent with the notion of damage as it 
is interpreted by this work. 

This paper tests and explores a mathematical-statistical model that has been proposed in (Askira Gelman, 
formthcoming) for ranking the inputs of a conjunctive decision rule according to the damage that errors in each 
input creates. An important advantage of this model is its relative simplicity. Mainly, regardless of the number of 
decision variables that a decision utilizes, the ranking of two variables is based exclusively on parameters of the two 
variables—there is no need to account for characteristics of the other inputs of the decision. Furthermore, as will be 
demonstrated in this paper, the ranking of a given variable pair may often be obtained using rough estimates of the 
relevant parameters, alleviating the need for costly measurements. Evidently, however, a major disadvantage of a 
ranking relative to a full fledged quantitative measure is that a ranking may not be compatible with a broad 
quantitative assessment, i.e., an assessment that accounts for the damage as well as other relevant factors (such as, 
again, accuracy improvement costs).  

                                                           

1
 A partial derivative is the derivative of a function of multiple variables when all but one variable of interest are held fixed. 
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Literature Review 

An implicit assumption of this research is that design decisions regarding the accuracy of data sources and resource 
allocation among these sources, take into account the intended use of the data. Contrary to an approach that does not 
differentiate between errors (e.g., Janson 1988; Parsaye and Chignell 1993), an approach that differentiates between 
errors based on the intended use of the data is compatible with the currently accepted definition of data quality as 
“fitness for use.” The concept of fitness for use emphasizes the context of the data, mainly the uses, users, and 
suppliers of the data (Juran 1988). Current methodologies (e.g., Lee et al. 2002; Pipino et al. 2002; Wang 1998) 
apply diverse tools for capturing users’ quality requirements and relating them to the actual state of data quality. 
Identified discrepancies between the actual and desired state assist in guiding the improvement efforts. Our research, 
however, introduces an additional, potentially relevant factor for design and resource allocation decisions, namely, 
the relationship between input quality and output quality.  

The literature on the relationship between input accuracy and output accuracy is vast. This relationship has been 
investigated in countless problem domains. Some of these problem domains are information pooling and group 
accuracy (e.g., Condorcet 1785; Grofman et al. 1983; Ladha 1995), propagation of measurement errors (e.g., 
Bevington 1969), feature selection (e.g., Elashoff et al. 1967; Toussaint 1971; Cover 1974; Fang 1979), expert 
resolution (e.g., Clemen and Winkler 1985), internal accounting control (e.g., Cushing 1974; Hamlen 1980; Stratton 
1981; Yu and Neter 1973), ensemble learning (e.g., Ali and Pazzani 1996; Kuncheva et al. 2003), and multisensor 
fusion (Mitchell 2007). Naturally, the relationship between an information system’s input accuracy and its output 
accuracy has also received significant attention in the Data and Information Quality (DIQ) literature in MIS (e.g., 
Ballou and Pazer 1985; Ballou and Pazer 1990; Ballou et al. 1998; Shankaranarayan et al. 2003; Wang et al. 2001; 
Motro and Rakov 1997; Parssian et al. 2004; Parssian 2006; Avenali et al. 2008). A distinctive characteristic of DIQ, 
which has influenced the type of questions that researchers in this community ask, is the assumption that the 
accuracy of a data source can be improved. This assumption is rare. For instance, unlike DIQ, the problem of feature 
selection, which is reflected through its name, is how to select the feature subset that would lead to the lowest 
classification error (Jain et al. 2000).  In other words, the accuracy of the features is assumed to be fixed. 
Subsequently, the question of how to determine the gain in information accuracy that would result from improving 
the accuracy of a chosen input does not attract direct research in the feature selection and other relevant problem 
domains. Yet, from a DIQ perspective, this question is interesting.  

In the DIQ literature, various frameworks for assessing the relationship between the quality of the raw data and the 
quality of query outputs have been proposed in the context of relational databases. These frameworks have 
sometimes been labeled data quality algebra. Reddy and Wang (Wang et al. 2001) assessed the relationship 
between the accuracy of the data and the accuracy of the output of a database query. Parssian et al. (2004) and 
Parssian (2006) investigated accuracy and completeness, and Ballou et al. (2006) targeted a broader set of data 
quality dimensions. Other relevant studies include (Motro and Rakov 1997) and (Avenali et al. 2008). A scenario 
that is partly similar to this work has also been addressed by Ballou and Pazer (1990), who proposed a framework 
for assessing the effect of input errors on the accuracy of dichotomous decisions. Ballou and Pazer considered 
decisions that are implemented by integrating multiple decision criteria through a conjunctive rule. Nonetheless, 
DIQ studies that investigated the relationship between input accuracy and output accuracy highlighted the aggregate 
effect of input errors, rather than the effect of errors in individual inputs, on the accuracy of the output of the 
information system.   

An earlier paper by the author (Askira Gelman, forthcoming) approaches the problem by proposing the concept of 
damage and by developing a model that quantifies the damage in a popular class of applications and, in addition, 
enables a simple ranking of inputs of these applications according to the damage that errors in each inflict. A unique 
contribution of this paper that goes beyond the author’s previous work on this topic is the empirical validation of the 
ranking component, and the clarification of specific conditions in which a prediction of the ranking model is not 
guaranteed to be correct.  

Damage Ranking Model  

In this section we introduce the mathematical-statistical damage ranking theory that underlies this paper. We 
describe the notation, model, and associated theory.  
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Variables and Notation 

Consider a conjunctive decision rule that accounts for N decision variables, , 1, 2, .. 
i

V i = ,N (e.g., 1V represents the 

zip code of a property, 2V represents the number of bedrooms, and 3V  represents the price). Specifically, iV  

describes the ideal, error-free data. In this paper, the implementation of a conjunctive decision is assumed to be as 

follows. Initially, for every i, the value of iV is tested against the matching decision criterion. The outcome of this 

test (zero for “false” or one for “true”) is captured by a matching, dichotomous variable iI . In the real estate 

decision, for instance, 1V is tested against 85719 to derive the value of 1I  (e.g., if 1V =85718 then 1I =0, and if 

1V =85719 then 1I =1); 2V is tested against 2 and 3 to produce the value of 2I , and 3V  is tested against $375,000 to 

produce the value of 3I . The values of , 1, 2, .., iI i N=  that are determined in this way are combined iteratively 

through a sequence of logical conjunction operations to generate the outcome of the decision. A decision can be 

either zero (“false” or “reject”) or one (“true” or “accept”). We will use the symbol iO  to denote the outcome of 

applying the iterative process on 1I ,.., iI , ( 1O ≡ 1I ). In the first iteration, the value of 1I  (or, equivalently, the value 

of
1

O ) is combined with the value of 2I  through logical conjunction, and the output is given by 2O . In the second 

iteration, the values of 2O and 3I are similarly combined, and the output is given by 3O , and so on. In the final 

iteration, the values of 1NO − and NI  are combined through logical conjunction, and the output is registered by NO .  

It is easy to see that NO  registers the outcome of a conjunctive decision that accounts for all the decision variables.  

 

Table 1. Notation 

Symbol Meaning 

iV  
decision variable (random variable); describes the correct 

data 

iI  
informs us whether iV  passes the decision criterion or not  

(dichotomous random variable) 

iO  
the output of a decision based on  1V ,.., iV ,  (dichotomous 

random variable) 

V
iF  

informs us whether the recorded value of
i

V  is correct or 

not  (dichotomous random variable) 

I
iF  

informs us whether the recorded value of iI  is correct or 

not  (dichotomous random variable) 

O
iF  

informs us whether the recorded value of iO  is correct or 

not  (dichotomous random variable) 

I
ip , IF

ip , VF
ip , O

ip , OF
ip  expected (mean) values  

 

While the former variables refer to error-free data, such data are rare in reality. The symbol V
iF identifies a variable 

that informs us about the occurrence of a fault, or error, in the observed (recorded) value of iV . Namely, V
iF =1 if 

the recorded value of iV  is incorrect, and V
iF =0 if that value is correct. Similarly, I

iF  refers to the occurrence of an 

error in the observed value of iI , and O
iF  identifies the occurrence of an error in the value of iO . Note that I

iF =1 

implies that V
iF =1, i.e., an error in the recorded value of the dichotomous variable is always due to an error in the 
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corresponding decision variable. However, V
iF =1 does not necessarily imply I

iF =1, since not every error in the 

observed value of the decision variable generates an error in the dichotomous variable.   

The variables in { iI , I
iF , V

iF , iO , O
iF :  1, 2, ..i = ,N} are random variables that accept the values zero and one. For 

each of the variables in { iI , I
iF , V

iF , iO , O
iF :  1, 2, ..i = ,N}, we will mark the corresponding mean values with the 

symbol p  and a combination of subscripts and superscripts that distinguishes the individual random variable, e.g., 
IF

ip  matches I
iF  (see Table 1). The mean of a random variable that informs us about the occurrence of an error is 

the same as the probability of error occurrence in that variable. This equivalence holds true since the value of such a 
variable is either zero or one.   

Model 

The damage ranking model that forms the foundation of this paper is introduced next (for more details, see Askira 
Gelman, forthcoming). The model and associated theory address a scenario in which one wants to rank the damage 
of errors in two decision variables that are combined by a conjunctive decision rule. Apart from these two variables, 
the conjunctive decision rule that combines them may join any number of decision variables.  

Initially, we define the term damage: 

Definition 1 (damage): Assume a decision NO  which is derived from 1{ , .., }NV V  through conjunction. Let 

1{ , .., }m NV V V∈ . The damage that errors in the recorded values of 
m

V  inflict on the recorded values of NO  is 

defined as the partial derivative /N
O VF F

mp p∂ ∂ .  

A second concept, damage type II, which focuses on 1{ , .., }NI I rather than 1{ , .., }NV V , simplifies the ensuing 

presentation, and, as an example in the last section indicates, can sometimes be used independently of the concept of 
damage.  

Definition 2 (damage type II): Assume a decision NO  which is derived from 1{ , .., }NI I  through conjunction. Let 

1{ , .., }m NI I I∈ . The damage that errors in the recorded values of mI  inflict on the recorded values of NO  is defined 

as the partial derivative /N
O IF F

mp p∂ ∂ . 

Unlike Definition 1, Definition 2 interprets input errors as errors in the classification of input data values as 
satisfying or not satisfying the decision criterion (i.e., false negatives or false positives).  

In this paper our concern is to verify and study a fundamental ranking model that presupposes a single decision or 
decision rule. The model is based on certain statistical independence assumptions. Fortunately, our theory does not 
impose any statistical independence assumptions on two variables as long as these variables do not describe any of 
the two decision variables that are being ranked in relation to one another. However, the independence assumptions 

on the latter are that none of the variables or products of variables in { 1I , 2I , 1
IF , 2

IF } is dependent on any other 

variable or product of other variables in { iI , I
iF :  1, 2, ..i = ,N}..  

Assumption: None of the variables or products of variables in { 1I , 2I , 1
IF , 2

IF } is statistically dependent on any 

other variable or product of other variables in { iI , I
iF :  1, 2, ..i = ,N}. 

Admittedly, these independence requirements are frequently violated in practical settings. For example, situations in 
which the probability of a false positive is different from the probability of a false negative are known to be 

common. Technically, 1I  and 1
IF  (or 2I  and 2

IF ) are not statistically independent. Likewise, we often encounter 

situations in which two decision variables are not independent, such that the matching dichotomous variables are not 
independent either, e.g., the number of bedrooms in a property may be statistically dependent on its location such 
that the respective dichotomous variables may not be statistically independent either. However, in fact, the ranking 
that our model provides is valid under a range of statistical dependencies. In addition, our theoretical work indicates 
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that we can maintain the simplicity of our model while relaxing these assumptions if the data are assumed to be used 
by multiple decision rules, and, accordingly, if what is of interest is the average damage rather than the damage to a 
single decision (Askira Gelman 2008).  

Ranking (damage type II): A ranking of the damage which errors in the recorded values of 1I  and 2I  inflict on the 

recorded values of 2O  is determined using equations (1)-(2):  

     2 1 2 2 1 2 1 2(1 2( ))/O I IF F I F I I I Ip p p p p p p p−∂ ∂ = + ⋅ + −    (1) 

      2 2 1 1 1 2 1 2(1 2( ))/O I IF F I F I I I Ip p p p p p p p∂ ∂ = + ⋅ − + −    (2) 

Equation (1) quantifies the damage that errors in the recorded values of 1I  inflict on the recorded values of 2O . 

Similarly, (2) quantifies the damage of errors in the recorded values of 2I  to the recorded values of 2O . 

Interestingly, (1) implies that the damage that errors in the recorded values of 1I  produce does not depend on the 

error rate in that variable, 1
IFp . A similar observation applies to 

2
I . In other words, everything else being equal, 

when we lower the error rate in an input (i.e., 1I  or 2I ), the damage to the decision does not change (linearity).  

A critical component of this theory is the understanding that, given a conjunctive decision rule that employs 

additional decision variables apart from 1V  and  2V , a ranking of the damage type II that is determined through 

computation of (1) and (2) is guaranteed to be preserved in the entire decision rule under broad conditions. In 
particular:  

Proposition 1 (damage type II):  Suppose that 2 1 2 2/ /O I O IF F F Fp p p p∂ ∂ ≥ ∂ ∂ . Then, 1 2/ /O I O IF F F F
N Np p p p∂ ∂ ≥ ∂ ∂ for 

any 2N ≥  if either of (3) or (4) is satisfied: 

2 1 0I IF Fp p− ≥        (3) 

                                               2 1 1 2 1 2 1 2( )(1 2( 2 ))I II I F F I I I Ip p p p p p p p− ≥ − − + −                                       (4) 

 

In fact, Proposition 1 and equations (1)-(2) imply a simple ranking rule:  

1 2 2 1| |I IF F I Ip p p p− ≤ − ⇒ 1 2/ /O I O IF F F F
N Np p p p∂ ∂ ≥ ∂ ∂      (5) 

In words, regardless of the number of decision variables that a decision accounts for, the damage type II of errors in 

the recorded values of 1I  is higher than the damage type II of errors in the recorded values of 2I  if the 

difference 2 1
I Ip p−  is higher than the absolute value of the difference 1 2

I IF Fp p− . 

As a later example demonstrates, rule (5) alleviates the need to obtain precise estimates of the parameters ( 1
Ip , 

2
Ip ,.., N

Ip ) for the purpose of ranking.  

Since the concept of damage is more consistent with common perceptions than the concept of damage type II, a 
ranking of damage may be preferred over a ranking of damage type II. Proposition 2 handles the ranking of damage. 
Proposition 2 suggests that a ranking of the damage is derived from a ranking of the respective damage type II and 

an additional factor. Clearly, a ranking of damage involves additional effort. Let 1α  denote the change in the 

probability of error in the recorded value of 1I  due to an increase in the probability of error in the recorded value of 

1V . Let 2α  denote the change in the probability of error in the recorded value of 2I  due to an increase in the 

probability of error in the recorded value of 2V . Proposition 2 stipulates that the damage of errors in the recorded 

values of 1V  has a higher ranking than the damage of errors in the recorded values of 2V  if  the damage type II of 
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errors in the recorded values of 1I  has a higher ranking than the damage type II of errors in the recorded values of  

2I and, in addition, 1 2α α≥ . 

Proposition 2 (damage): Suppose that 1 1( )I VF Fp f p= and 2 2( )I VF Fp g p= , and let 1 1 1/I VF Fp pα = ∂ ∂ , 

2 2 2/I VF Fp pα = ∂ ∂ .  If 1 2/ /O I O IF F F F
N Np p p p∂ ∂ ≥ ∂ ∂ and 1 2α α≥  then 1 2/ /O V O VF F F F

N Np p p p∂ ∂ ≥ ∂ ∂ . 

Unfortunately, the additional requirement that 1 2α α≥  means that when 2 1 2 2/ /O I O IF F F Fp p p p∂ ∂ ≥ ∂ ∂ and 1 2α α< , 

the ranking of the damage is undefined. This limitation of the ranking of damage may increase the attractiveness of a 
ranking of damage type II. 

Example: Suppose that a ranking of the damage of errors in the recorded zip code (denoted next 1V ) versus the 

damage of errors in the recorded number of bedrooms ( 2V ) is of interest. Assume, in particular, a database that 

covers a broad geographic area. In this case, the percentage of properties in a given zip code is probably low, while 
the percentage of properties that have 2-3 bedrooms may be much higher since such properties are common. For 

instance, one may find out by consulting a data analyst that 1
Ip ≤ 0.05 and 2 0.5Ip ≥ . Suppose that the data analyst 

also estimates that the error rates in this database are not extremely high, e.g., 1
VFp , 2 0.1VFp ≤ .  Given that the 

independence assumptions of this theory hold true, the premise of (5) is easily satisfied, since, by definition, 

1
IFp ≤ 1

VFp and 2
IFp ≤ 2

VFp , and, therefore, 1 2| 0.1|I IF Fp p− ≤  . Clearly, there is no need to obtain precise 

measurements of the specified parameters in order to determine that the damage type II associated with the zip code 
data is higher. In other words, errors in the classification of the recorded zip codes as equal or not equal to 85719 are 
more damaging than errors in the corresponding classification of the recorded bedroom values. In general, (5) 
suggests that, if the data are combined through conjunction, then classification errors in the input that is less likely 

to satisfy the decision criterion are more detrimental to decision accuracy.  

An estimate of 1α   (the increase in the error rate of the classification of zip codes as equal or not equal to 85716 that 

results from an increase in the error rate of the zip code data) may be produced based on an estimate of the ratio 

1
IFp : 1

VFp . If the estimates of 1α  and 2α  indicate that 1α  is not lower than 2α , then errors in the zip code data are 

more damaging to the real estate decision than errors in the bedrooms data.  

In the following sections we test the validity of our ranking theory. We validate that a ranking of damage based on 
(1)-(2) is correct when the condition of Proposition 1 is satisfied. In addition, since this condition is a sufficient 
conditions but it is not a necessary condition, a ranking based on (1) and (2) may be valid even when Proposition 1 
does not guarantee that the ranking is valid. Therefore, our simulations explore the conditions in which a ranking of 
damage type II based on equations (1) and (2) is, indeed, incorrect.  

Monte Carlo Simulation 

The method employed by this study is Monte Carlo simulation. Monte Carlo simulation is a method for iteratively 
evaluating a deterministic model using sets of random numbers as inputs. The inputs are generated pseudo-randomly 
from selected probability distributions to simulate the process of sampling from an actual population. The model is 
evaluated for each simulated input set, and the result is taken as an average over the number of data points in the 
sample (Fishman 1995). The elements that comprise our simulation method are described below.  

Instantiation of the Variables  

The simulations examine conjunctive decision rules with up to ten decision variables, 1, .., NV V , where 2 10N≤ ≤ . 

We have implemented the decision variables as dichotomous variables that accept the values zero and one, i.e., 

iV =0 or iV =1. Notably, when the decision variables are dichotomous, 1 2α α= =1, i.e., a data error always translates 

into a false negative or false positive when the chosen decision criterion is verified against the recorded data value. 
By utilizing this simple relationship we focus our tests on a critical element of this theory, namely, Proposition 1.  
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The values of 1V ,.., NV are generated pseudo-randomly according to pre-determined distributions. In particular, these 

values are generated from distributions that are determined separately for each simulation. V
ip , the expected value 

of iV , is chosen randomly in each simulation such that 0 1V
ip< <  (note that ( ) Pr( 1)V

i i ip E V V= = = ). The values 

of V
iF , which inform us of the occurrence of errors in the recorded, possibly incorrect version of iV , are generated 

from distributions that, again, are determined individually for each simulation. VF
i

p , the expected value of V
iF , is 

chosen randomly such that two value ranges are explored. In one simulation set that includes 9,500 simulations, 

0< VF
i

p <0.10, and in a second simulation set, which includes, again, 9,500 simulations, 0< VF
i

p <0.20. Table 1 

summarizes the simulation parameters.  

 

Table 1. Implemented parameter values and number of simulations 

N                                    

(# of decision 
variables) 

V
ip  (i=1,2,..,N) 

VF
i

p  

(i=1,2,..,N) 

M  
(Sample 

size) 
Total # of simulations 

9 simulation sets: 

N =2,3,4,5,6,7,8,9,10 

 

random value in 
the interval 

(0,1) 

2 simulation 
sets: 

0< VF
i

p <0.10 

0< VF
i

p <0.20 

9
5 10⋅  9 2 1, 000 18, 000⋅ ⋅ =  

 

10 

 

random value in 
the interval 

(0,1) 

2 simulation 
sets: 

0< VF
i

p <0.10 

0< VF
i

p <0.20 

 

12
5 10⋅  

 

 

  2 500 1, 000⋅ =  

Altogether, 19,000 simulations of conjunctive decisions were carried out. The simulations were conducted using 
MATLAB, a programming language and interactive environment that enables us to perform computationally 
intensive tasks.  

Sample size: Each of 18,000 simulations produces M= 95 10⋅  input instances of each variable, while in the 

remaining 1,000 simulations each simulation produces M= 125 10⋅ input instances of each variable. 

Simulation Outputs 

For calculating the actual damage ranking, each simulation computes a base decision error rate, o
bf , which is 

calculated from input samples that exhibit the randomly selected error rates VF
i

p  ( i =1,2,..,N). In addition, a 

simulation computes a set of decision error rates, o
if ( i =1,2,..,N), one for each decision variable. In these 

computations, all the input error rates are the same as in the base except for the error rate of the chosen decision 

variable, which is 0.01 higher than the randomly selected rate. The damage that errors in the recorded values of iV  

inflict on the recorded values of NO , denoted by i∆ , is estimated as: 

          i∆ = o
if - o

bf       (6) 

The value of o
bf  and the value of o

if are each estimated through a suitable implementation of (7) 
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,

1

1
Pr( 1)

O O

N N

M

j
j

F F
M =

= = ∑                (7) 

For each pair of decision variables, iV  and jV , the actual damage ranking based on i∆ and j∆ is compared to the 

damage ranking that is predicted by (1) and (2).  

 Simulation Model  

The simulation model implements the conjunction of 1, .., NV V  and, analogously, the conjunction of 1 , ..,R R
NV V  (the 

observed, possibly incorrect versions of iV ). In the first step, iV  is mapped to iI . Precisely, the value of iI  is set 

equal to the value of iV :  

      i iI V=       (8) 

Equation (8) forms an inconsequential simplification of a “correct” simulation model in which, in some simulations 

that are selected randomly, iI  is determined to be equal to iV , while in the remaining simulations, iI is set equal to 

1- iV . Next, since the possible values of iV  are limited to zero and one, every error in the recorded value of 

iV produces an error in the classification of the value as satisfying or not satisfying a decision criterion. Therefore: 

      VI
i iF F=      (9) 

The value of
R

i
I , the recorded, possibly incorrect portrayal of iI , is derived from iI  and I

iF  using (10):   

     (1 ) (1 )R I I
i i i i iI I F F I= ⋅ − + ⋅ −            (10)   

If the value of I
iF  is zero, that is, if this variable indicates that no error has occurred, then (10) is reduced to R

iI = iI .  

However, if the value of I
iF  indicates the occurrence of an error, then (10) assigns a value of one to R

iI  if iI  is zero 

and a value of zero if iI  is one.  

The variables in each of { iI } and { R
iI } are joined iteratively through a sequence of logical conjunction operations. 

The algorithm treats the output of one binary operation as an input of a subsequent binary operation. For instance, 

the output of combining the values of 1I  and 2I , which we have denoted by 2O , is treated as one of the inputs of a 

binary operation whose second input is 3I . The ideal conjunction output—where inputs are error-free—is computed 

using (11):  

      1i i iO O I−= ⋅         (11) 

The consistency of (11) with the definition of logical conjunction can be quickly verified through a systematic 

evaluation of iO  for each possible combination of the values of 1iO −  and iI . Analogously, the observed decision is 

derived through:  

        1

R R R

i i i
O O I

−
= ⋅      (12) 

R
iO designates the output of a decision that joins the first i  observed, possibly incorrect inputs ( 1 1

R RO I≡ ). Finally, 

for calculating the occurrence of a decision error O
iF  the simulations use equation (13): 

     (1 (1) )R O O

i i i i i
O F O O F= − ⋅ + − ⋅           (13)  

The logic of (13) is comparable to the logic of (10). 
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Results 

Table 2 and Figure 1-Figure 4 summarize the results of the simulations. Table 2 portrays the inconsistency rates that 
have been registered for the ranking based on equations (1) and (2) versus the simulation results. It also shows the 
percentage of the former inconsistencies which were inconsistent with Proposition 1 as well, i.e., when Proposition 1 
implied that the ranking based on (1)-(2) was correct. In the simulations that generated smaller input samples 

(M= 95 10⋅ ), the average rate of inconsistency with (1)-(2) is 1.2% when the input error rates are lower ( VF
i

p <0.1), 

and 2.3% when the input error rates are higher ( VF
i

p <0.2). Rates increase with the number of decision variables. 

The maximal inconsistency rates, 3.2% ( VF
i

p <0.1) and 3.7% ( VF
i

p <0.2), were demonstrated in simulations of 

decisions that join 10 decision variables.  

Many of the instances that exhibited inconsistency with a ranking based on (1)-(2) also disagreed with Proposition 1. 
However, the proportion of this “dual disagreement” varied dramatically depending on the sample size that the 
simulation generated. One possible explanation of the inconsistency with Proposition 1 is that the ranking theory is 
invalid. However, a second explanation that attributes this inconsistency to the limitations of simulation seems to fit 
the results better. Primarily, since the size of the input set that a simulation generates is not infinite, random 
variations can affect the result of the simulation. However, results are swayed more when the sample size is smaller, 
or when the numbers that the simulation calculates are smaller. Therefore, the finding that the proportion of dual 
disagreement falls dramatically in the simulations that generate a larger sample size is very much in line with the 
explanation that the inconsistencies are due to the limitations of simulation. Most importantly, in the simulations 

with the larger sample size (M= 125 10⋅ ) the disagreement with Proposition 1 is negligible.  

 

Table 2. Inconsistency rates (model vs. simulations) 

VF
i

p  
M 

(Sample 
size) 

N  (# of 
decision 

variables)  

Inconsistency 
with 

equations 
(1)-(2) 

(average over 
all the values 

of N) 

Inconsistency 
with 

equations 
(1)-(2)   
N=10 

Inconsistency 
with  

Proposition 1 
(average over 
all the values 

of N) 

Inconsistency 
with  

Proposition 1 
 N=10 

VF
i

p <0.10 9
5 10⋅  2-10 1.2% 3.2% 

28%  of the 
inconsistencies 

with (1)-(2) 

65%   of the  
inconsistencies 

with (1)-(2) 

VF
i

p <0.10 12
5 10⋅  10 ---- 1.1% ---- 

3%   of the  
inconsistencies 

with (1)-(2) 

VF
i

p <0.20 9
5 10⋅  2-10 2.3% 3.7% 

10%  of the 
inconsistencies 

with (1)-(2) 

25%   of the  
inconsistencies 

with (1)-(2) 

VF
i

p <0.20 12
5 10⋅  10 ---- 2.8% ---- 

4%   of the  
inconsistencies 

with (1)-(2) 

 

On the other hand, numbers are smaller when the parameter values are lower, for instance. Therefore, if the 
explanation that links the dual disagreements with limitations of simulation is correct, then, everything else being 

equal, simulations with VF
i

p <0.1 should demonstrate a higher discrepancy with Proposition 1 than those with 

VF
i

p <0.2. The simulations indeed demonstrate that pattern. When VF
i

p <0.1 the rate of dual disagreement is 28%, 
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2

I
p

2

I
p

1

I
p

1

I
p

and when VF
i

p <0.2 it is only 10%. In addition, numbers are smaller when the number of decision variables grows. 

Therefore, everything else being equal, the discrepancy when taking the average over all the decision rules should be 
lower than the discrepancy when N=10. The results of the simulations agree with this perception as well.  

In conclusion, the simulations validate our ranking theory. They also reveal that, under the conditions of this study, 
the proposed ranking model predicts the ranking correctly in an overwhelming majority of the cases.  

 

 

 

 

 

 

 

 

    

                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                        

 

 

Figure 1.  Distribution of Ranking  

Failures   ( 0.1VF
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Figure 2.  Distribution of Ranking  
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Figure 3.  Distribution of Ranking  

Failures   ( 0.1VF
i

p < ) 

 

 

Figure 4.  Distribution of Ranking  

Failures   ( 0.2VF
i

p < ) 

 

 

We turn next to a study of the conditions in which the ranking model fails to predict the correct ranking. These 
conditions are captured by Figure 1-Figure 4. Figure 1-Figure 4 are exclusively based on the simulations with the 
larger samples. In these simulations, the inconsistencies that have been recorded between the ranking model and the 

1 2

I I
p p−1 2

I I
p p−

1 2

I IF F
p p−1 2

I IF F
p p−
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simulations have systematically been in line with Proposition 1. Subsequently, we assume that these inconsistencies 
actually reflect failures of the ranking model, i.e., instances in which equations (1)-(2) do not provide the correct 
ranking.  

One noticeable pattern in Figure 1 and Figure 2 is the accumulation of ranking failures in decision variable pairs 
where the probability of satisfying the criterion in one variable is similar to the probability of satisfying the criterion 
in the second variable. Namely, ranking failures are characterized by decision variable pairs whose values have a 

similar probability of satisfying the respective decision criteria ( 1 2
I Ip p≈ ). This pattern is coherent with (5), which 

implies that the ranking model is valid when the difference 2 1
I Ip p−  is higher than the absolute value of the 

difference 1 2
I IF Fp p− . If the difference 2 1

I Ip p− is high, as was the case in the earlier described ranking example 

involving the zip code attribute and the number of bedrooms attribute, the validity of the ranking model is typically 
ensured.  

A careful observation of Figure 1 and Figure 2 reveals a second pattern. The ranking failures are largely 

concentrated among higher values of 1
Ip  and 2

Ip . When the probabilities of satisfying the decision criteria are low, 

our ranking model is reliable. In the property decision ranking example, 1
Ip ≤ 0.05. Therefore, a ranking failure is 

unlikely.  

Figure 3 and Figure 4 suggest a third pattern of the ranking failures. Ranking failures are more common when 

1 2
I Ip p−  and 1 2

I IF Fp p− have the same sign. That is, one decision variable must show consistently low parameter 

values relative to the other decision variable. In the ranking example, again, since 1
Ip ≤  0.05 and 1 0.5Ip ≥ , such that 

2 1
I Ip p> , if there is good reason to believe that the rate of error in the classification of the zip code of properties as 

equal or not equal to 85719 is higher than the corresponding error rate in the number of bedrooms, then a ranking 
failure is unlikely.  

 

Table 3. Parameter values that produced ranking 

failures 

1
Ip  2

Ip  1
IFp  2

IFp  

0.977 0.931 0.070 0.021 

0.931 0.997 0.021 0.090 

0.602 0.603 0.018 0.062 

0.749 0.738 0.052 0.035 

0.847 0.784 0.077 0.007 

0.547 0.520 0.097 0.025 

0.983 0.967 0.098 0.052 

0.805 0.833 0.025 0.072 

0.648 0.659 0.063 0.078 

0.635 0.655 0.004 0.039 

0.664 0.623 0.091 0.022 

 

Table 3 shows a small, arbitrary subset of the parameter value combinations that produced ranking failures. This 

subset has been taken from the simulations that created a large sample size and 0.1VF
i

p < . It is easy to see that, in 
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all of these parameter value combinations, the values of  1
Ip  and 2

Ip  are not far apart from each other; they are 

relatively high, and whenever 1
Ip  is greater than 2

Ip , 1
IFp is greater than 2

IFp and vice versa.  

Concluding Remarks  

The simulations validate the ranking theory. They also uncover the fact that, under the conditions of this study, the 
proposed ranking model predicts the ranking correctly in an overwhelming majority of the cases. We have studied 
the rare instances in which the ranking model has offered incorrect predictions of the ranking and pointed to failure 
patterns that can guide assessments of specific parameter combinations.  

Despite the fact that the ranking that our model produces is valid under a range of statistical dependencies, the 
statistical independence assumptions that underlie this model are an important limitation. Another limitation of this 
model is its focus on a single decision rule. Our forthcoming theoretical work addresses ranking when the data are 
used by multiple, diverse decision rules, and, accordingly, the average damage is of interest instead of the damage to 
a single decision. That work shows that many of the statistical independence assumptions can be relaxed under this 
more realistic scenario.  

Evidently, a ranking which refers to errors in the recorded data that match the decision variables is more in line with 
common perceptions than the alternative ranking that this paper implies (“damage type II”). However, such a 

preference complicates the ranking, as it requires an estimate of 1α  and 2α , and may also produce inconclusive 

results while the alternative ranking would be clear. There are many scenarios in which the additional effort that is 

required for evaluating 1α  and 2α   is unjustifiable. A ranking based on damage type II, which does not require 

estimates of 1α  and 2α , can be just as useful. Suppose, for example, that, in addition to damage, the cost of 

cleaning the data is an important factor. Take, for instance, the property data ranking problem that we have 
examined earlier. From a damage perspective, that example indicated that the damage (type II) of errors in the zip 
code data is higher than the damage (type II) of respective errors that originate in records of the number of 
bedrooms. Furthermore, the discussion of the ranking model (equations (1)-(2)) implies that, if nothing else changes, 
then the damage (type II) of the errors in the zip code will have same magnitude as we keep improving the accuracy 
of this data set. The same is true for errors in the data on the number of bedrooms: if nothing else changes, then the 
damage (type II) will have the same magnitude as we keep improving the accuracy of this data set. As for costs, 
suppose that a preliminary study of alternative methods of cleaning the data has shown that, while the cost of 
cleaning the bedroom data would be quite high, the zip code errors can be treated effectively using an inexpensive 
method (an automated program that verifies the zip code based on a combination of street address, subdivision, and 
related data, i.e., such data are used for extracting the correct zip code from a reliable information source). In 
conclusion, a study of the damage type II and the relevant costs leads, in this scenario, to an unequivocal 
recommendation to treat the zip code data first. Mainly, since the goal of the treatment is to effectively clean the 

data source of all errors, the values of 1α  and 2α  are irrelevant.  

Obviously, a ranking of the damage based on the proposed model may not always provide an answer—this model 
offers only partial ranking. Our model can also quantify the damage rather than rank it. While such a model is higher 
in its input requirements and is more complex, it can be useful in circumstances in which a more light-weight 
ranking model fails. It also has the advantage that a quantitative estimate of the damage can be more compatible 
with a broad quantitative assessment that analyzes various factors apart from damage.  

Another direction that is currently under study is a ranking that distinguishes between decision error type 1 (false 
positive), e.g., when a property that does not satisfy the criteria is included in the short list of suitable properties, and 
decision error type 2 (false negative), e.g., when a property that has the desired attributes is excluded from that list. 
This distinction is motivated by the understanding that, in real world settings, the implications of a false negative 
can differ greatly from the implications of a false positive.  

A major concern for the application of the ranking model is the need to obtain parameter estimates. While data 
quality measurement methods are outside the scope of this work, a growing number of studies explore this issue 
(Naumann and Rolker, 2000). For example, (Ballou et al 2006; Motro and Rakov 1997; Parssian 2006) refer to the 
use of high quality data samples, while (Hipp et al. 2001) study a less costly data quality assessment through data 
mining. This approach detects errors through associations between different data. Specifically, deviations from such 
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patterns are perceived to be errors. Other common methods which are usually not too costly include user and expert 
evaluations (Naumann and Rolker, 2000). As hinted in the discussion of the property data ranking example and 
elsewhere, we believe that such methods can also be useful for the purpose of implementing this ranking theory. 
However, future research should include an investigation of real world cases that can instruct us about practical 
parameter assessment methods, and, in general, shed light on implementation issues as well as the overall usefulness 
of this model.  
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