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Abstract 

What type of knowledge, among domain, technology, and methodology knowledge, is most 

influential to the performance of software development? We answer to this question by empirically 

investigating the learning and forgetting curves in software development using an extensive 

archival data set of software development projects in an IT service company.  We find that prior 

experiences with the same methodology or technology have a stronger impact on software project 

performance than those in the same application domain.  Furthermore, our results show that 

methodology knowledge is more easily forgotten than domain or technology knowledge.  Our 

findings provide managerial implications not only to the development of knowledge and skills, but 

also to other organizational issues in software development such as project team staffing and 

career development.  

Keywords:  Learning curves, forgetting curves, software development, procedural knowledge,  

declarative knowledge, domain knowledge, technology knowledge, methodology knowledge 
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Introduction 

Developing organizational software (or software development) is a very complex activity because it must deal with 

people, organizations, technologies, and business processes (Brooks 1987).  For this reason, software project 

management has been considered as one of the most complex problem domains and has been extensively studied for 

decades.  However, recent statistics suggest that the software industry still suffers from high failure rates due to poor 

project management.  For example, a recent report by the Standish Group notes that in 2004, only 18% of software 

projects were considered successful, whereas 53% were challenged and 18% were considered failures, with average 

cost and schedule overruns of 56% and 84%, respectively.   

To better provide managerial guidance to software development practices, recent research has begun to adopt a 

knowledge-based perspective of software development by applying theories from the cognitive and organizational 

sciences to investigate various aspects of software development.  For example, cognitive theories of knowledge 

transfer have been used to investigate the transition from traditional data- and process-oriented development 

paradigms to object-oriented development (Armstrong and Hardgrave 2007); organizational theories of coordination 

have been used to investigate the role of transactive memory in software development performance (Faraj and 

Sproull 2000).  In essence, this new stream of research focuses on knowledge to provide theoretical explanations of 

and implications to software practices.  The main focus of the knowledge perspective is to understand how 

knowledge is acquired, shared, and coordinated; and, how this may impact software development practices at the 

individual, project and organizational levels.   

If knowledge plays a key role in software development, understanding how knowledge processes impact software 

development performance becomes very critical to software organizations.  Recent research has documented the 

existence of the learning curve in software development and maintenance (Boh, Slaughter, & Espinosa 2007; 

Huckman, Staats, & Upton 2009; Langer, Slaughter, & Mukhopadhyay 2008; Narayanan, Balasubramanian, & 

Swaminathan 2009).  In other words, these studies have shown that software teams (or individual developers) 

become more productive as they accumulate experiences on similar software projects.  Although the documentation 

of learning curve effects by these initial studies has important implications for software development practice, these 

studies have several limitations that deserve further research so as to provide more substantive managerial guidance 

to software practitioners.   

The core mechanism of learning curve theory is that performance gains materialize with repeated application of the 

same unit task.  However, the context of software development is more complex and frequently presents a number 

of situations where the assumptions of the learning curve may no longer apply.  First, in software development 

projects, the activities and tasks may be related and similar but are rarely the same across projects.  Fortunately, 

prior studies have shown that learning curve effects exist for repeated similar or related project experiences 

(Schilling, Vidal, Ployhart, & Marangoni 2003; Boh et al. 2007; and Narayanan et al. 2009), even if the projects are 

not exactly the same.   

Second, software projects are typically quite complex and require a variety of multidisciplinary knowledge and 

skills.  For instance, in order to develop an online banking (e-banking) system for a retail bank, the software team 

must understand the target bank’s business processes (i.e., knowledge of the domain), the platform technologies 

(e.g., programming languages, database management systems, network architectures, security, etc.) that will be used 

to implement the system (i.e., knowledge of technologies), and also the processes to design and build the target 

software (i.e., knowledge of software development methodologies).  Each individual software project (in a particular 

domain, using a particular set of technologies and development methodologies) requires a different set of knowledge 

and skills that fit the context at hand.  Whether learning curve effects exist for the different types of knowledge and 

skills is an important research question with substantial practical implications for project staffing and professional 

development for software practitioners.  For example, if (hypothetically) learning curve effects were to exist for 

domain knowledge but not for technology knowledge or methodology knowledge, then software organizations 

should nurture specialization in business domains but not in technologies or software development methodologies.  

The prior literature unfortunately has not scrutinized the learning effects for different types of software development 

knowledge and skills.   

Third, software developers may accumulate experience by doing similar or related projects over time (which would 

lead to performance gains if learning curve effects exist). However, this cumulative experience does not persist but 

depreciates over time. Moreover, due to the huge variety of software projects, typically developers are engaged in 
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unrelated projects and exposed to various software development knowledge and skills, which may facilitate this 

depreciation.  In other words, current practices for project staffing have much room and potential for interference 

and subsequent knowledge degradation (i.e., forgetting), which may ultimately hinder organizational productivity.   

In this paper, we apply the cognitive theory of learning and forgetting to investigate whether different types of 

software development knowledge and skills (i.e., domain vs. technology vs. methodology knowledge) exhibit 

differential learning curves as well as differential forgetting curves.  Since learning and forgetting effects are 

evidenced as performance improvements and degradation, understanding learning and forgetting effects has direct 

implications for enhancing software productivity.  In addition to these direct benefits to software productivity, our 

study has implications for other important practical considerations such as short-term project staffing and long-term 

career development paths for software professionals.   

The remainder of the paper is organized as follows.  In the next section, we present our theoretical background and 

develop our research hypotheses.  Next we outline the research methodology, which includes details of the dataset, 

measures, and analytical approach.  This is followed by our analyses and results.  Finally, we conclude with a 

discussion of the results, limitations, managerial implications, and suggestions for future research. 

Theory and Hypotheses 

Software Development Knowledge  

As discussed earlier, developing software requires a variety of knowledge and skills.  A number of authors have 

classified the different types of knowledge and skills.  For example, Lee et al. (1995) categorized critical knowledge 

and skills for IS professionals into technical specialty, technology management, business functional knowledge, and 

interpersonal and management skills.  Abraham et al. (2006), Goles et al. (2008), and Simon et al. (2007) classified 

the IT workforce skills into project management, business domain, technical skills, and general management skills.  

Chan et al. (2008) classified the knowledge and skills required in IS development into application domain and 

development methods skills.  Lastly, Langer et al. (2008) defined hard skills as technological knowledge, domain 

knowledge, and experience.  Although some inconsistencies exist in the terminology used (see Table 1), the 

different knowledge and skills required to develop software can be categorized into three types – 1) knowledge of 

the business domain (i.e., domain knowledge), 2) knowledge of the technology used to implement the software (i.e., 

technology knowledge), and 3) knowledge related to the process of conducting a software project (i.e., methodology 

knowledge).   

Table 1.  Taxonomies of Software Development Knowledge 

Reference Domain Knowledge Technology Knowledge Methodology Knowledge 

Lee et al. (1995) Business functional 

knowledge 

Technical specialty and 

technology management 

Interpersonal and 

management skills 

Abraham et al. (2006), 

Simon et al. (2007), 

Goles et al. (2008) 

Business domain Technical skills Project management 

Chan et al. (2008) Application domain Development methods and skills 

Langer et al. (2008) Domain knowledge Technological knowledge Experience 

First, domain knowledge refers to the knowledge about the target application domain of the software to be built and 

the context in which that software will be used.  For example, developing a production planning system for a 

manufacturing company requires developers to understand how to create and manage production plans and how the 

production plan fits into the overall production process.  Similarly, developing an application for the financial 

services industry requires knowledge of financial instruments, pricing models, etc.  As such, domain knowledge 

plays a critical role in software development – without domain knowledge, one would not know what to build into 

the software system.   

Ultimately, software systems must be implemented with technology.  Technology knowledge relates to knowledge 

on what various technologies are, how they work, and how to implement them.  As with domain knowledge, each 

software project uses a variety of technologies in terms of technical architectures (e.g., mainframe, client-server, 



Innovations in IT Project and Program Management 

4 Thirtieth International Conference on Information Systems, Phoenix 2009  

Web-based, mobile etc.), programming languages (e.g., procedural languages such as COBOL, Pascal, and C, 

object-oriented languages such as Java, C++, and C#), database technologies (e.g., file systems such as ISAM, 

relational and object-relational databases, object-oriented databases etc.), among others.   

Finally, software development is a complex endeavor that necessitates effective management of the development 

process.  Consequently, knowledge of how to conduct and manage the various development activities, which we 

refer to as methodology knowledge, is also essential for software projects.  Like technologies, there are many 

different methodologies currently used in practice and each methodology requires a different set of knowledge and 

skills.  For instance, traditional waterfall-based methodologies such as Information Engineering (Martin, 1989) are 

quite different from iteration based methodologies like the Rational Unified Process (RUP) or the more recently 

proposed agile methodologies.   

Learning Curves 

Learning, which is the accumulation of knowledge and skills, typically occurs through repeated experiences (or 

trials).  The theory of learning curves aptly portrays the relationship between amount of experience and performance 

gains.  The existence of learning curves means that cumulative experiences lead to increased performance.  

Therefore, learning curves can be equated with learning from experience (i.e., learning by doing).  Ever since the 

first documentation of organizational learning curves in aircraft production (Wright 1936), learning curves have 

been found in a wide variety of industries (see Yelle (1979), Dutton et al. (1984), and Argote and Epple (1990) for 

reviews).   

Despite the aforementioned characteristics of the software development context (e.g., similar but different tasks, 

various knowledge and skills, potential for interference of unrelated tasks between trials, etc.) that make it 

unfavorable for efficient learning, several recent studies have documented learning curve effects in software 

development.  Boh et al. (2007) were the first to document learning curve effects in software maintenance; Huckman 

et al. (2009) further showed that role experience amplified the learning effect; Narayanan et al. (2009) reported 

individual learning effects in software maintenance environment.  While these studies have successfully documented 

the existence of learning curve effects in software development, they offer limited managerial implications as 

knowledge and experiences were classified at the project level (e.g., related projects vs. unrelated projects) or were 

not classified at all (i.e., all projects are same).  Given that software development requires a diverse set of knowledge 

and skills – domain knowledge, technology knowledge and methodology knowledge, and in practice, project 

staffing typically considers prior experiences in at the component knowledge level (rather than at the project level), 

it is important to ascertain whether learning curve effects exist independently for different components of software 

development knowledge and skills.  We first hypothesize:  

H1a: A software project team’s performance on a current project is positively affected by the amount of prior 

experience in working in the same domain. 

H1b: A software project team’s performance on a current project is positively affected by the amount of prior 

experience in working with the same technology. 

H1c: A software project team’s performance on a current project is positively affected by the amount of prior 

experience in working with the same methodology. 

Differential Learning Curves in Software Development:  Procedural vs. Declarative Knowledge 

Since the underlying mechanism of the learning curve is learning, it is possible to observe differential learning 

curves for different learning rates.  Several studies have explained why different learning curves exist even in the 

same context.  Pisano et al. (2001) argued that learning curves may vary by characteristics of organization whereas 

Reagans et al. (2005) showed that a firm’s learning rate is affected by individual workers’ task proficiency, the 

manager’s ability to leverage workers’ knowledge, and the organization’s capacity to coordinate work activities.  

Schilling et al. (2003) and Wiersma (2007) found that related experiences produce faster learning rates (or steeper 

learning curves) than unrelated experience that are overly generalized and the same experience that are overly 

specialized for the task at hand.   Wiersma (2007) further argued that learning effects can be enhanced with slack in 

resources.  As can be seen from this brief review of the differential learning curve literature, past research has 

focused primarily on factors relating to who learns (i.e., the individual workers (or groups) and the relationship 

between individuals), and how they learn (i.e., the structure of work practices).  Interestingly, little attention has 
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been devoted to the actual contents of what is learned.  Given that software development involves a variety of 

knowledge and skills (i.e., knowledge of domain, technology and methodology), we focus our attention on the 

characteristics of knowledge itself, which may affect learning rates.   

Some knowledge and skills are learned faster by doing.  For example, learning the capitals of nations is quite 

different from learning to drive a car.  Driving a car requires real-world practice and hands-on experiences whereas 

memorizing the capitals does not.  Knowledge can be categorized as either procedural or declarative (Anderson 

1982; Gagne, Yekovich, & Yekovich 1985; McCormick 1997).  Procedural knowledge, frequently referred to as 

“know how”, is the knowledge about how to perform a task.  Performance capabilities such as the ability to write, 

read, or solve the algebra problems fall into this category.  Procedural knowledge is usually acquired by (repeatedly) 

exercising the task.  On the other hand, declarative knowledge, also called “know what”, is the knowledge about that 

something is the case.  Declarative knowledge is, by its very nature, expressed in declarative sentences or indicative 

propositions and is exemplified by organized collections of facts and concepts (Anderson 1983; Jones and Idol 

1990).   

Although individuals can learn both procedural and declarative knowledge from experience, the effectiveness of 

experiential learning (i.e., learning by doing) is not the same due to the intrinsic differences between the two 

knowledge types.  Procedural knowledge is about how to perform a given task, and so learning from experience is 

typically the more effective way to acquire this type of knowledge.  On the other hand, declarative knowledge is the 

knowledge about what something is.  Therefore, logical reasoning or in-class instruction can be more appropriate for 

learning declarative knowledge than learning by doing (Gagne et al. 1985).  In summary, although both procedural 

and declarative knowledge can be acquired by learning by doing; procedural knowledge is expected to have a 

steeper learning curve than declarative knowledge.   

Given the differential experiential learning rates for procedural and declarative knowledge, the question becomes 

which among domain, technology and methodology knowledge, can be categorized as procedural or declarative.  

Methodology knowledge consists of the processes involved in building a software system and knowledge about how 

to conduct each of the processes.  Domain knowledge, on the other hand, consists of business entities, functions, and 

processes and the relationships among them.  Consequently, since domain knowledge represents what to develop 

(i.e., a collection of fact and concepts about the business domain) and methodology knowledge represents how to 

develop the software, it follows that methodology knowledge can be conceptualized as being closest to procedural 

knowledge and domain knowledge as closest to declarative knowledge.  Bassellier and Benbasat (2004) used a 

similar conceptualization wherein business domain knowledge was characterized as declarative knowledge and 

know-how and skills as procedural knowledge in IS development. 

Classifying technology knowledge is a little trickier as technology knowledge contains characteristics of both 

procedural and declarative knowledge.  Vincenti (1984) and Herschbach (1995) classified software development 

knowledge into three types – descriptive, prescriptive, and tacit
1
 knowledge – and argued that technology has 

characteristics of all three knowledge types.  Here, descriptive knowledge is synonymous to declarative knowledge, 

whereas prescriptive knowledge is synonymous to procedural knowledge.  Lee et al. (1995) defined two types of 

technical knowledge required for IS professionals – technical specialties and technical management.  Technical 

specialties are concerned with the technologies themselves, whereas technical management refers to the knowledge 

and skills concerned with where and how to deploy technologies effectively to meet project objectives.  It seems that 

technology cannot be simply classified as belonging to either declarative or procedural knowledge; rather 

technology knowledge contains characteristics of both types.   

That being said, technologies contain more declarative aspects than methodologies, which can be evidenced by the 

fact that specifications for technology (i.e., what is it and how it needs to used and when, etc) are more extensive, 

more complex, and more explicitly documented than those for methodologies.  Technology knowledge, however, 

contains more procedural knowledge than domain knowledge.  For example, although programming languages has 

explicit syntax and rules (i.e., declarative aspects of programming languages), real-world experience is typically 

required to effectively and efficiently use them in practice (i.e., procedural aspects of programming languages).  It 

                                                           

1 The term “tacit” as used in Vincenti (1984) and Herschbach (1995) actually refers to procedural knowledge or “know how”.  

This should not be confused with the term “tacit” used frequently in the knowledge management literature to reflect the difficulty 

in externalization and codification of knowledge (Polanyi 1967; Nonaka 1991). 
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can be argued that technology knowledge resides in between domain knowledge and methodology knowledge along 

the declarative – procedural knowledge continuum.
2
   

Given that procedural knowledge is acquired through experience more efficiently than declarative knowledge, and 

that methodology knowledge can be characterized as procedural knowledge, domain knowledge as declarative 

knowledge, and technology knowledge as a hybrid form composed of both procedural and declarative knowledge, 

we hypothesize that the learning curve effects related to prior experiences with the same methodology will be 

stronger than those for experiences with the same technology, which will in turn be stronger for those for 

experiences with the same domain.  In other words, we expect learning curves to be steepest for methodology 

knowledge, then technology knowledge and finally domain knowledge.  More formally, we hypothesize:  

H2a: The positive impact of the amount of prior experience working with the same methodology is stronger than the 

impact of the amount of prior experience working in the same domain.   

H2b: The positive impact of the amount of prior experience working with the same technology is stronger than the 

impact of the amount of prior experience working in the same domain.   

H2c: The positive impact of the amount of prior experience working with the same methodology is stronger than the 

impact of the amount of prior experience working with the same technology.   

Forgetting Curves 

Although learning reflects an accumulation of knowledge and skills, knowledge depreciates over time.  Forgetting 

refers to such depreciation of knowledge and typically occurs when the task is not performed for a prolonged period 

of time.  Similar to learning curves, forgetting curves models the relationship between the lapse in time between task 

repetitions and performance losses.  In other words, as the lapse between task trials increases, performance degrades.  

Ebbinghaus (1931) was first to document forgetting curves at the individual level.  Similar to learning curves, 

forgetting curves have been examined at the organizational level and were observed in a variety of manufacturing 

industries such as aircraft production (Benkard 2000), automotive assembly (Epple, Argote, & Murphy 1996), 

assembly of electronic appliances (Shafer, Nembhard, & Uzumeri 2001), shipbuilding (Argote, Beckman, & Epple 

1990), and textile manufacturing (Nembhard 2000), as well as service industries such as franchise restaurants (Darr, 

Argote, & Epple 1995). 

The prior literature has also documented differential forgetting curves in different organizations and industries.  

Argote and Epple (1990) identify employee turnover, changes in product designs or production processes, and the 

loss of organizational data or routines as causes of organizational forgetting that may lead to differential forgetting 

rates across organizations.  In a similar vein, Darr et al. (1995) argued that the characteristics of individuals and 

organizations, the level of task specialization, employees’ motivation levels, stability of employment, sophistication 

/ complexity of product technology, and demand rates may determine how fast an organization forgets.  In addition 

to organizational and individual characteristics, characteristics related to the task or to the type of knowledge have 

also been found to influence forgetting rates.  Arzi and Shtub (1997) found that cognitive tasks are more prone to 

forgetting than mechanical (manual) labor.  Schendel and Hagman (1982) found procedural skills are highly 

susceptible to forgetting.  Similarly, in an experimental study, Bailey (1989) found that procedural tasks, which 

consist of discrete responses, are more subject to being forgotten than continuous control tasks, which involve 

repetitious movements.  Nembhard (2000) showed that task complexity influences learning rates as well as 

forgetting rates.    

Software practitioners typically deal with a variety of knowledge and skills.  Each software project may require 

knowledge in a number of business domains, technologies, and software development methodologies.  Furthermore, 

                                                           

2 The categories of declarative and procedural knowledge are not necessarily pure dichotomies but can be viewed as two ends of 

a continuum.  No knowledge in software development is purely declarative or procedural.  For instance, systems development 

methodologies contain concepts which can be perceived as declarative (e.g., concepts of costs and quality, critical paths, risk, use 

cases, objects, etc.), but much of the important skills relate to how to apply various concepts and techniques in conducting and 

managing software projects.  Similarly, technologies such as relational databases comprise of both declarative aspects (e.g., 

tuples, relations, and functional dependencies), which are based on sound mathematical foundations of set theory and predicate 

logic) as well as procedural aspects (e.g., conceptual modeling, debugging codes, and performance tuning), which are skills that 

are better acquired through experience.   
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given the transient nature of software projects, software developers must frequently transition to new projects that 

require knowledge in a number of new domains, technologies and methodologies.  Such practices reduce the 

likelihood of repeating experiences with same or related knowledge, and consequently exploiting the benefits of the 

learning curve becomes difficult.  Even if similar projects are repeated, the compound nature of projects may 

interfere with learning and cause forgetting (Narayanan et al. 2009).
3
  

Thus, the intrinsic characteristics of software development naturally lead us to expect that forgetting curves should 

also exist.  Since forgetting is invariant to cognitive tasks, we propose that forgetting will exist for all three types of 

knowledge and skills (i.e., domain, methodology, and technology knowledge).  

H3a: A software project team’s performance on a current project is negatively affected by the average time interval 

between the current project and the prior projects in which team members experienced the same domain. 

H3b: A software project team’s performance on a current project is negatively affected by the average time interval 

between the current project and the prior projects in which team members experienced the same methodology. 

H3c: A software project team’s performance on a current project is negatively affected by the average time interval 

between the current project and the prior projects in which team members experienced the same technology. 

Would differential forgetting curves be observed for the different types of knowledge, as we have hypothesized for 

learning curves (i.e., Hypotheses 2)?  Unfortunately, the theory of procedural vs. declarative knowledge, which was 

used to hypothesize about differential learning curves, does not seem to be applicable for explaining forgetting.  The 

concept of procedural vs. declarative knowledge relates to efficacy in learning approaches – procedural knowledge 

is best learned via repeated trials whereas declarative knowledge through instruction or rote memorization.  

Although the process of forgetting simply looks like the inverse of the process of learning (i.e., un-doing of the 

learning), it is not a simple problem to explain the forgetting.  Literature shows conflicting arguments on 

relationship between learning and forgetting.  For example, Cochran (1968) argued that forgetting curve retrogresses 

along with the original learning curve.  Nembhard (2000) showed that forgetting rates and learning rates are 

positively correlated.  On the other hand, Bailey (1989) argued that forgetting rates are independent of learning rates 

and insisted that forgetting cannot be explained by any theory of learning.  Due to lack of consistent theoretical 

arguments in explaining differential forgetting curves, we take an exploratory approach by investigating whether the 

differential rates of forgetting curves exist in software development. 

Methodology 

Data Collection 

In order to empirically test our hypotheses, we collect and analyze an extensive archival dataset from a prominent 

international IT service company in Korea.  The company provides contract-based custom software development 

and software maintenance for a variety of applications to a broad range of industries.  The company has been 

certified by ISO 9001 and the Capability Maturity Model (CMM) since the 1990’s and acquired the Capability 

Maturity Model Integration (CMMI) Level 5 in 2004.  As a result the company has maintained detail project data 

since around 1995.  Our dataset contains detailed information on software projects (e.g., project schedule, plan, 

performance, customer, industry, application type, etc.), the employees who worked on those projects, and the 

technologies and methodologies used in those projects.   

A sample of 556 recent projects (ending between 2005 and 2007) was selected and used in the analysis.  This sample 

of projects involved 3,341 unique employees, 6,675 employee-project assignment records, and 206,173 employee-

project-technology records.  The prior experiences of the employees in terms of domain, technology and 

methodology were computed using historical project data starting from 1988.  Finally, the company’s HR records 

were used for demographic information of employees (e.g., age, gender, education, tenure etc.)   

                                                           

3 Interestingly, although learning curves have been investigated in prior studies in software development and maintenance, 

forgetting curves have not.  To the best of our knowledge, this study is the first to investigate forgetting curves in software 

development. 
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Our sample only includes new software development projects.  In other words, software maintenance projects are 

excluded.  Although prior research on learning curves in software has primarily focused on software maintenance 

(e.g., Boh et al. 2007; Narayanan et al. 2009) and so investigating software maintenance would allow comparison 

across studies, we decided to focus on new software development projects due to several reasons.  First, we believe 

that software development is a better context to test learning theories, especially with respect to knowledge type.  

Given that a dedicated team is typically assigned to maintenance tasks, there is less room for varied experiences in 

software maintenance.  In other words, software maintainers are more likely to repeat projects in the same domain, 

same technology and same methodology than in a new software development context where there is greater 

variability in terms of knowledge and skills required across projects to which developers are assigned.  Therefore, 

the software maintenance context is more conducive to learning curve effects.  Consequently, observing learning 

curve effects in software development, where learning via cumulative experiences is more difficult, would be a 

stronger test of the theory.  Also, given the variability of knowledge and skills across projects in software 

development, there is a greater likelihood that forgetting would also occur even if learning curve effects are indeed 

observed.  Such possibilities provide a richer context in which the implications for project staffing and career paths 

for software professionals would be more accentuated.   

Measures 

Dependent variable 

Several alternative measures are widely used for software development performance: on-time delivery, within-

budget delivery, quality, customer satisfaction, marginal profit, etc.  Data concerning customer satisfaction or 

system quality were not available.  On-time delivery and within-budget delivery) belong to a kind of earned value 

measure which compares actual values with planned values. Therefore, planned values (i.e., planned project 

schedule and cost) hugely affect the measure.  As accumulating experience, the project team is likely to make a 

more precise project plan.  However, besides the experience, there are many other factors to affect the project plan, 

such as strategic relationship with customers, market competitions, and uncertainty on project, which should be 

controlled but were not available in our data set. 

Given these difficulties, we opted to measure software project performance using actual labor costs (LaborCost).  

Each project is contracted with a fixed price, so minimizing labor cost directly increases profit for the firm.  Also, 

because incentives are given to project members based on profit, the project team is motivated not to maintain 

unnecessary human resources during the project.  Therefore, labor cost is an appropriate proxy for project cost 

performance.
4
      

Independent variables 

The amount of prior experiences and time lapse since prior experience for a project member in terms of domain, 

technology and methodology were derived from the historical project assignment data.  The company defined each 

project with knowledge requirements in terms of domain, technology and methodology knowledge.  First, domain 

knowledge for a project was categorized using 55 distinct service lines, which represent the type of application.  

Some service lines are vertical applications, which may exist in only one or a few industries (e.g., an e-banking 

system in the financial services industry) whereas others can be horizontal applications that are common across 

industries (e.g., HR or accounting systems).  Although each project may be characterized by multiples service lines 

(i.e., multiple applications), the taxonomy of service lines use at the data collection site was such that most projects 

were defined with only one service line.  Second, technology knowledge for a project was defined using the 

company’s taxonomy of 5,332 distinct unit technologies (i.e., an independent technical building block) required for 

implementing the project.  Examples of unit technology are programming languages such as Java, C, and HTML, 

design techniques such as Entity Relationship Diagrams (ERD) and the Unified Modeling Language (UML), and 

                                                           

4 The overall project costs also include material costs for purchasing hardware and software in addition to labor cost.  However, 

since material costs are largely defined by the characteristics of project, these are almost fixed in nature and are less affected by 

prior experiences.  Therefore, we only use labor cost (i.e., excluding materials cost from the overall project costs) as the 

dependent variable.   
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software packages such as Oracle databases and SAP modules.  The average number of unit technologies per 

projects was approximately 47.  Finally, methodology knowledge was also categorized using the company’s 

taxonomy of 64 distinct systems development methodology techniques.  These included in-house developed 

methodologies which were proprietary to the company as well as publicly used methodologies.  Examples of 

methodologies include object-oriented analysis and design, information engineering, component-based 

development, web-based development, package implementation (e.g., SAP/R3), and information strategy planning.  

Project management skills such as project scope, cost, time, integration, risk, and procurement were also considered 

methodology knowledge.  Most projects used multiple unit methodologies, and the average number of unit 

methodology skills required per project was approximately 7.   

Using the categorization scheme described above, we computed measures for amount of prior experience 

(Experience) 
 
and lapse since prior experience (Lapse).  For each team member assigned to the focal project, we 

counted the number of prior projects he/she participated in that used the same domain knowledge 

(ExperienceDomain), same technology knowledge (ExperienceTechnology) or same methodology knowledge 

(ExperienceMethodology).  We also computed the time interval (in days) between the start of the focal project and 

the prior project in which the same domain knowledge, same technology knowledge or same methodology 

knowledge was used to measure the three Lapse variables – LapseDomain, LapseTechnology and 

LapseMethodology.  For instance, if an employee works on a project developing a retail e-banking application using 

a J2EE platform and the object-oriented analysis and design (OOAD) methodology, then the employee is said to 

have accumulated one project experience in retail e-banking (domain), J2EE platform (technology), and OOAD 

(methodology).  Since the unit of analysis was the software development project where each project consists of 

several developers as part of the software project team and given the disparity in the number of distinct knowledge / 

skills for the three knowledge categories (domain vs. technology, vs. methodology), we used the average of 

individuals’ experiences and lapses normalized by the number of knowledge and skills as the project team-level 

experience.   

For example, if a software development project which requires 2 distinct methodologies (KM1 and KM2) and 2 

members (M1 and M2) are assigned to this project, where member M1 was previously assigned to 3 projects which 

used KM1 or KM2 and member M2 was previously assigned to 1 project which only used KM1, then the total number 

of projects experienced by the project team is 4 and the average number per team member is 2.  However, because 

there are 2 methodologies used in the project, the experience count is normalized by a factor of 2 (methodologies).  

Ultimately, the final measure for team experience for amount of methodology knowledge (ExperienceMethodology) 

becomes 1.  Similarly, team experience lapse is also normalized.  Suppose there are two members (M1 and M2) in a 

project team who were previously (and perhaps independently) assigned to another project that for the same domain 

as that of the current project.  If M1 did so 60 days ago, while the prior project of M2 was 40 days ago, then the 

average interval of repeated domain experiences (LapseDomain) becomes 50 days. 

Control variables 

Project size.  We used project revenue to control for project size.  ProjectSize is computed as the total revenue 

minus the revenue related to materials (e.g., sever hardware, software license fees, etc.), which were excluded 

because they are not related with learning and workforce productivity (see footnote 4).  Commonly used measures 

for project size include team size (i.e., number of team members), project duration, and number of function point 

(FP).  However, since our dependent variable (LaborCost) is a function of team size and project duration, these two 

were not appropriate.  Also, our data had many projects with missing FP values, so this measure could not be used 

due to unavailability of data. 

Outsourcing / Subcontracting.  Many projects in our sample subcontracted some of the activities to external 

outsourcing service providers.  This is common practice in software development, especially when the company 

lacks available resources or specialized skills, as a means to hedge the risk of low utilization of human resources.  

Therefore, we included the ratio of labor costs for outsourcing of total labor costs (OutsourcingRatio) to control for 

the extent of such practices.   

Project complexity.  In order to control for the complexity of the software project, we used the number of distinct 

skill requirements for technology (NumTechnologies) and methodology (NumMethodologies).  Given the lack of 

variability in number of required domain skills in our dataset, the number of domains was not included.   
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Macroeconomic condition.  We included year dummies (for end year of project) to control for macroeconomic 

factors such as inflation or business cycle.   

Additional control variables for organizational characteristics (e.g., sales team, development team) and team 

member characteristics (e.g., education level and background, gender, tenure) were initially collected but the 

inclusion of these variables were found not to significantly influence of enlighten our results.  Therefore, we 

excluded these variables from our analysis and do not discuss them further.  Table 2 summarizes the descriptive 

statistics and inter-correlations among variables. 

Table 2.  Descriptive Statistics and Inter-correlations 

 Mean St.dev (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
(1)  LaborCost 19.32 1.59           

(2)  ProjectSize 1.51 2.82 0.66***          

(3)  ln(OutsourceRatio) 0.42 0.22 0.47*** 0.16***         

(4)  NumMethodologies 12.22 6.88 0.51*** 0.49*** 0.07*        

(5)  NumTechnologies 43.97 46.80 0.60*** 0.62*** 0.02 0.50***       

(6)  ln(ExpDomain) 1.09 0.84 -0.35*** -0.16*** -0.05 -0.18*** -0.27***      

(7)  ln(ExpTech) 0.58 0.50 -0.49*** -0.30*** 0.00 -0.27*** -0.43*** 0.46***     

(8)  ln(ExpMethod) 0.63 0.58 -0.45*** -0.24*** -0.05 -0.16*** -0.34*** 0.43*** 0.61***    

(9)  LapseDomain  26.55 41.21 0.07 0.17*** 0.04 0.07 0.01 0.13*** 0.01 0.04   

(10) LapseTech  25.39 13.08 0.08* 0.10** 0.02 0.15*** 0.01 -0.01 0.06 0.07* 0.18***  

(11) LapseMethod 23.53 13.61 0.11*** 0.14*** -0.03 0.18*** 0.13*** -0.07 -0.12*** 0.19*** 0.09** 0.51*** 

Significance Levels: * p < 0.1, ** p < 0.05, *** p < 0.01 

Analytical Approach 

The most common way to model learning curves is to use power functions.  Equation 1 shows the simple power law 

formula which has been used to explain learning curves in the literature since it was proposed by Wright (1936).  

The dependent variable y is usually the cost per unit; the constant c is the initial cost per unit; variable x represents 

the number of trials (or cumulative experience), and finally exponent β is the learning rate parameter – β becomes 

negative (i.e., decreasing the cost per unit), when learning curve effects exist.  Larger negative β (absolute) values 

imply a steeper slope of learning curves (i.e., faster learning or performance gains can be achieved with fewer 

cumulative experiences).  Taking the natural log on both sides produces the linear form (eq. 2), which can be used 

with ordinary least squares (OLS) regressions.   

y = cx
 β
  (eq. 1) 

ln(y) = ln(c) +
 
β×ln(x) (eq. 2) 

Consistent with prior literature on learning curves in software development (Boh et al. 2007; Langer et al. 2008; 

Huckman et al. 2009), we develop the following model for project i:  

Model 1: ln(LaborCosti) = β0 + β1×ProjectSizei  + β2×ln(OutsourcingRatioi) + β3×NumMethodologiesi + 

β4×NumTechnologiesi +  β5×Y2005i + β6×Y2006i + β7×ln(ExperienceDomaini) + 

β8×ln(ExperienceTechnologyi) +β9×ln(ExperienceMethodologyi) + εi  

In order to incorporate forgetting effects, we add the experience lapse variables (eq. 3) and take the natural log on 

both sides:   

y = c(xα
t
)
β
  (eq. 3) 

ln(y) = ln(c) +
 
β×ln(x) + β×ln(α)×t (eq. 4) 

The variables y, x, c and β are the same as in (eq.  1).  Variable t represents the time elapsed since previous trial and 

α is the forgetting rate parameter.  When forgetting curve effects exist, α takes a value between 0 and 1.  α =1 means 

no forgetting while α=0 means no accumulation.  Smaller values of α imply a steeper slope of forgetting curves (i.e., 

faster forgetting).  Model 2 below operationalizes the knowledge depreciation model where the amount of forgetting 

is related to both the amount of accumulated experience and elapsed time (Argote et al. 1990; Boone, Ganeshan, & 

Hicks 2008; Darr et al. 1995).   
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Model 2: ln(LaborCosti) = β0 + β1×ProjectSizei  + β2×ln(OutsourcingRatioi) + β3×NumMethodologiesi + 

β4×NumTechnologiesi +  β5×Y2005i + β6×Y2006i + β7×ln(ExperienceDomaini) + 

β8×ln(ExperienceTechnologyi) + β9×ln(ExperienceMethodologyi) + 

β7×ln(α10)×LapseDomaini + β8×ln(α11)×LapseTechnologyi + 

β9×ln(α12)×LapseMethodologyi + εi  

Econometric Issues 

To deal with potential heteroskedasticity problems, we compute White’s heteroskedasticity-consistent estimates of 

the regression model parameters, correcting for inefficiencies due to unequal error variances (White 1980).  Finally, 

we test for potential multicollinearity problems by checking that variance inflation factors (VIF) for the right-hand 

side variables (i.e., independent and control variables) are within recommended limits.  

Analysis and Results 

We conducted the analyses using a hierarchical approach.  We first estimate a baseline regression model that only 

includes the control variables (Baseline Model).  Then we progressively add the independent variables for 

cumulative experience (ExperienceDomain, ExperienceTechnology, and ExperienceMethodology; Model 1) and 

experience lapse (LapseDomain, LapseTechnology, and LapseMethodology; Models 2) and check to see if the 

inclusion of the independent variables increases the explanatory power of the regression models. The results are 

summarized in Table 3.  The increased explanatory power between models shows that both cumulative experience 

and experience lapse variables are predictors of the project performance gains, labor cost (Base model vs. Model 1: 

∆R
2
 = 0.083, Model 1 vs. Model 2: ∆R

2
 = 0.027).  

  Table 3.  Regression Results 

 Baseline Model Model 1 Model 2 

 Parameter Est. Std Err Parameter Est. Std Err Parameter Est. Std Err 

Intercept 17.109
***

 0.1268 18.123
***

 0.1449 18.160
***

 0.1641 

ProjectSize 0.178
***

 0.0354 0.167
***

 0.0293 0.148
***

 0.0169 

ln(OutsourcingRatio) 2.891
***

 0.2096 2.879
***

 0.1825 2.851
***

 0.1744 

NumMethodologies 0.036
***

 0.0068 0.033
***

 0.0057 0.031
***

 0.0065 

NumTechnologies 0.011
***

 0.0017 0.007
***

 0.0013 0.006
***

 0.0011 

Y2005 -0.221
**

 0.1010 -0.393
***

 0.0887 -0.407
***

 0.0978 

Y2006 -0.187
*
 0.0987 -0.237

***
 0.0863 -0.214

***
 0.0917 

ln(ExpDomain)   -0.188
***

 0.0482 -0.236
***

 0.0586 

ln(ExpTechnology)   -0.450
***

 0.1007 -0.494
***

 0.1113 

ln(ExpMethodology)   -0.389
***

 0.0770 -0.436
***

 0.0982 

LapseDomain      0.999 0.0038 

LapseTechnology     0.998 0.0068 

LapseMethodology     0.981
***

 0.0076 

Sample Size (N) 556 556 454 

R
2
  0.6665 0.7492 0.7769 

Adj R
2
 0.6641 0.7451 N/A 

Significance Levels: 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01 

Notes: Robust standard errors are reported.  R
2
 for Model 2 is pseudo-R

2
.   

In the baseline model, we first find that our control variables are significantly associated with performance gains.  

Larger projects (ProjectSize) and more complex projects (NumMethodologies and NumTechnologies) are associated 

with increased labor cost (ProjectSize: β1 = 0.178, p < 0.01; NumMethodologies: β3 = 0.036, p < 0.01; 

NumTechnologies: β4 = 0.11, p < 0.01).  OutsourcingRatio is positively correlated with labor cost (β2 = 2.879, p < 

0.01), and both year dummies are representing the inflation effect (Y2005: β5 = -0.221, p < 0.01; Y2006: β6 = -0.187, 

p < 0.1).   

With Model 1, we first observe that the coefficients of all control variables remain relatively stable – another 

indicator that multicollinearity is not at play.  More substantively, we find that all three of the cumulative experience 
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variables have significant effects on project performance gains (ExperienceDomain: β7 = -0.188, p < 0.01; 

ExperienceTechnology: β8 = -0.450, p < 0.01; and ExperienceMethodology: β9 = -0.389, p < 0.01).  In other words, 

all three categories of knowledge and skills for software development exhibit learning curve effects.  Hypothesis 1 

was thus supported.   

Using the Wald test, we further checked whether the different types of software development knowledge (i.e., 

domain vs. technology vs. methodology) have differential learning curves.  The coefficient for 

ExperienceMethodology was found to be significantly less than that of ExperienceDomain (χ
2
 = 4.17, p < 0.05).  

Similarly, the coefficient for ExperienceTechnology was significantly less than that of ExperienceDomain (χ
2
 = 4.64, 

p < 0.05).  However, the difference between ExperienceMethodology and ExperienceTechnology was not significant 

(χ
2
 = 0.16, ns).  These results imply that methodology knowledge and technology knowledge have steeper learning 

curves than domain knowledge but there was no difference in the slopes between the learning curves for 

methodology and technology knowledge.  Hypothesis 2 was partially supported – H2a and H2b were supported, but 

H2c was not supported.   

Nonlinear regression techniques
5
 were used to estimate Model 2.  We observe again that the coefficients of all 

control variables, as well as cumulative experience variables remain relatively stable.  With respect to the experience 

lapse variables, we find that longer lapses between experiences with the same methodology have at least a marginal 

effect on project performance degradation (LapseMethodology: α = 0.981, p < 0.01).  However, lapses in domain 

experience or technology experience did not seem to degrade project performance (LapseDomain: α = 0.999, ns; 

LapseTechnology: α = 0.998, ns).  This suggests that knowledge and skills on methodology acquired through 

cumulative experiences may be prone to forgetting, while knowledge of domain and technology would be more 

resilient to forgetting.  In summary, Hypothesis 3 is only partially supported – H3c was supported, while H3a and 

H3b were not supported. 

Robustness of Results  

The robustness of these results was tested using a variety of additional analyses.  First, to test whether the results 

were sensitive to the inclusion/exclusion of some control variables, we ran the analysis progressively by including 

different combinations of control variables.  The results of the key independent variables – the experience and lapse 

variables – were found to be stable and were not affected by adding or dropping control variables.  In addition, the 

Wald tests results for differential learning curves (for testing Hypotheses 2) was also largely consistent with the 

results reported herein.  

To test whether forgetting effects was robust to model specification, we tested the forgetting model using the power 

function of time, which is another widely used function for fitting forgetting curves (Wixted and Ebbesen 1991).  

The results were similar to our original results with the exception that forgetting curves were also found for 

technology (in addition to methodology).  This result provides further confidence that forgetting effects do exist in 

software development, especially for methodology knowledge and also perhaps for technology knowledge.   

Finally, we checked whether the results were robust to operationalization of the experience variables.  In our original 

analysis, we have used the counts of prior experiences in the same domain (or same technology or same 

methodology) to measure prior experiences.  However, this measure does not take into account the difference 

between shorter and longer projects.  For example, with our original having completed 2 projects that lasted 6 

months each is deemed to provide more experience than having completed 1 project that lasted 1 year.  To check 

whether this may be a concern, we developed an alternative measure for cumulative experience for a particular 

knowledge and skill by computing the cumulative duration (i.e., in working days) for which an individual has 

worked on the particular knowledge and skill.  Using this measure yielded similar results.   

Given the results of these additional analyses, we conclude that our results are quite robust.   

                                                           

5 Proc NLIN in SAS 9.1.3 was used to estimate Model 2.  Using general optimization approaches (e.g., the Gauss-Newton 

method), this procedure iteratively searches for the parameter values that produces the lowest residual sum of squares.   
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Conclusion and Discussion  

This study examined learning and forgetting curves in software development.  We ask whether different types of 

knowledge and skills used in software development, namely domain knowledge, technology knowledge, and 

methodology knowledge, benefit from learning via cumulative experiences and/or suffer from forgetting by lapse of 

time, and if so, whether there are any differences in their respective learning and forgetting rates.  Our results 

suggest that all three types of software development knowledge exhibit learning curve effects but methodology and 

technology knowledge are more efficiently learned via cumulative experiences than domain knowledge and that 

only methodology knowledge exhibits a forgetting curve while domain and technology knowledge do not.   

Our paper makes several contributions to literature.  First, we include forgetting effects in our model and analyses.  

Given that software developers typically engage in unrelated projects in between related projects, it is important to 

integrate learning and forgetting in the same model.  To the best of our knowledge, our study is the first to 

investigate forgetting effects in software development.  Second, we showed that the type of knowledge can also 

entail differential learning curves.  Although extensive research has investigated differential learning curves, few 

have actually looked at the impact of the types of knowledge.   

Our empirical findings also shed light into practical questions in software development such as which knowledge 

and skills are most influential to project performance, how to staff software projects, and how to think about career 

development paths for software professionals.  For example, software organizations may infer that methodology and 

technology experience is more influential to performance than domain experience or that developing a domain 

expert takes relatively longer than developing a technology or methodology guru due to different learning rates.   

This paper is however not without limitations.  One of limitations is the use of labor cost as the dependent variable 

representing software project performance.  Although there are several different measures used for software 

development performance such as quality, time, and customer satisfaction, our study only includes cost performance 

due to the limited availability of data and implications of the strategic context of the company.  Another limitation 

lies in our conceptualization and modeling of the mechanism of forgetting.  Forgetting is caused not only by lapses 

in time between trials but also from interference by other experiences between successive similar trials.  In this 

paper, we only consider the former.  The impact of interference should also be investigated in future research.  

In addition to the obvious future research directions that stem from the aforementioned limitations, this paper opens 

up many new avenues for future research.  Having shown that the type of knowledge matters in learning and 

forgetting, it would be interesting to investigate whether breadth or diversity/variety of prior experiences have an 

impact on project team performance.  We may also consider the composition of the project team (in terms of 

knowledge) and investigate its impact on project performance.  For example, are teams composed of mainly 

specialists better than teams composed of many generalists?  What is an appropriate balance of generalists and 

specialists in the software team?  This paper is but a small step in this exciting new direction.   
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