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Abstract 
Encountering the increasing demand for high-performance computational re-

sources in academic as well as commercial organisations, utility computing offers 

a solution by providing users with on-demand availability of requested computing 

services. Approaches to the fundamental issue of resource allocation include the 

use of technical scheduling mechanisms as well as introducing economic ideas 

into the allocation schemes. Technical scheduling mechanisms are often very sim-

ple (such as first-in-first-out) but suffer under the shortcoming to adequately pri-

oritize jobs in times when demand exceeds supply. As empirical studies show, 

Grids (such as PlanetLab) are frequently characterized by huge excess demand 

for resources. This is where economic models such as markets come into play. 

Hitherto, market mechanisms are either (too) simple or too complex for usage in 

Grids. 

The contribution of this paper is threefold. Firstly, a mechanism for Grids is pro-

posed, which is still simple but geared up for use in the Grid. Secondly the 

mechanism is embedded in state-of-the-art Grid middleware Sun N1 Grid Engine 

6. Thirdly, it is shown by means of a numerical case study that this mechanism is 

superior to other commonly used mechanisms. 

 

Keywords:  Utility Computing, Grid Computing, Market-based Scheduling, 

Pay-as-Bid, Sun N1 Grid Engine 
 

1 Introduction 
The number of complex and elaborate calculations which require increasingly 

powerful and faster computing resources has been constantly growing. At the 

same time, resource owners intend to keep their resource inventory at a minimum 

level to avoid high total cost of ownership. A promising solution to these diverg-
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ing trends is to pool together distributed, computational resources to large clus-

ters, so called “Grids”, that can provide users with sufficient computing resources 

on-demand (Foster et al. 2001). Grid computing is often denoted as utility com-

puting, as computing resource are utilities like water or electricity and can be ac-

cessed dynamically (Rappa 2004). Recently, mainly two utility computing initia-

tives have made waves in the community: Sun’s One-Dollar-Per-CPU-Hour
1
 and 

Amazon’s Elastic Compute Cloud
2
 are prominent examples for the industry take-

up of utility computing offerings. 

Concerning their size and build-up, Grid systems can be classified into three 

types: Cluster Grids are sets of cooperating computer hosts in a cluster that offer a 

single point of access to users within a project or department. Enterprise or Cam-

pus Grids enable the sharing of computer resources for members of different pro-

jects or departments within an organisation. Global Grids realize the Enterprise 

Grid idea across organisational boundaries and therefore allow for the creation of 

large virtual resource sharing systems (Joseph et al. 2004). 

The key problem in distributed resource sharing environments, be it Cluster, En-

terprise or Global Grids, is allocation, i.e. how to distribute the scarce resources to 

requesters at what time. The common approach to this problem is to use technical 

schedulers (such as first-in-first-out) to determine the allocation. Those technical 

schedulers are hampered by the fact that they cannot define reasonable priorities 

in cases when there is excess demand for resources (Stößer et al. 2007).  

In recent years, the idea of employing market based mechanisms attracted more 

and more interest due their ability to base the allocation on the real demand and 

supply situation (Smidt 1968; Sutherland 1968). As a side effect, sophisticated 

pricing models are facilitated. 

In this paper, we will focus on Enterprise Grids and in particular on Sun N1 Grid 

Engine (N1GE). The results we achieve here, whether the market mechanism can 

be used for N1GE as well, can be generalized to other Enterprise Grids. The rea-

son why we refer to N1GE is to assure that our market solution is not just purely 

theoretical but solidly founded in the real world. N1GE is a distributed resource 

management and scheduling system from Sun Microsystems which operates on 

the Enterprise Grid level (N1GE User’s Guide, 2005). Being an extension of the 

Solaris operating system, it administers and dynamically allocates the shared pool 

of heterogeneous resources such as computing power, memory and licensed soft-

ware within an organisation. The usage of these resources is managed in a way to 

best achieve the goals of the organisation, such as productivity, timeliness and 

level of service. Concerning the IT infrastructure itself, a more efficient utilisation 

provides the basis for the reduction of total cost of ownership and the increase of 

return on assets for the organisation’s computing facilities. N1GE has been em-

ployed for setting up Grids within organisations like companies and universities, 

each comprising a cluster size of around 500-2,000 CPUs. 

N1GE provides means of submitting requests for execution of computationally 

demanding tasks, so called “jobs”, to the users associated with the system. A 

technical scheduler orchestrates the allocation of jobs to the available shared re-

sources by arranging the jobs in a central queue, using a variation of configurable 

                                                 
1
 http://www.sun.com/service/sungrid/overview.jsp, February 13, 2007 

2
 http://www.amazon.com/gp/browse.html?node=201590011, February 13, 2007 
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policies. These policies represent the prevailing precedence structure among sin-

gle users, departments and projects within the organisation and thus conduce to 

the appropriate entitlement in the competition for computational resources. Ad-

ministrators of N1GE are provided with tools for policy adaptation as well as sys-

tem monitoring, controlling and reporting. 

This paper is novel and unique as it proposes a mechanism for Grids which is 

fairly simple but specifically designed for usage in the Grid. The proposed 

mechanism is embedded in state-of-the-art Grid middleware Sun N1 Grid Engine 

6. Furthermore, we show in a numerical case study that this mechanism is supe-

rior to other commonly used mechanisms. 

The remainder of this paper is structured as follows: Section 2 presents a motiva-

tional scenario which shows how the market mechanism can be integrated in the 

current scheduler of N1GE. Section 3 covers related efforts in developing market-

based market mechanisms for scheduling in the Grid. Section 4 introduces the 

base model of allocation algorithms. Section 5 presents an extension to this base 

model which tailors the mechanism to the Grid. A numerical case study is given 

in section 6. Section 7 concludes the paper with a brief summary and gives an 

outlook for future research opportunities. 

2 Motivational Scenario 

The N1GE scheduler consists of a waiting queue with pending jobs and a techni-

cal scheduler that assigns waiting jobs to idle resources (see figure 1). The user 

submits a job combined with a specification of requirements of the job. There are 

two different groups of specifications, namely hard and soft state. Hard state re-

quirements are essential for a job to run. If no resource fits the required specifica-

tions, the job will be ignored by the scheduler and remains pending. Soft state 

requirements are tried to be considered, but the job’s processing does not depend 

on them. If no further specification is given by the user, a job is assigned to a ran-

dom resource which fits the requirements. If the job’s requirements cannot be ac-

complished by the assigned resource, e.g. the memory size does not suffice, the 

job fails and the user is notified. In the N1GE scenario, a system administrator is 

usually responsible for submitting the resource specification. End users do not 

need to care about the resource requirements of their jobs. 

After receiving the job requests, the scheduler places the jobs on the waiting list of 

pending jobs. The position of a job in the waiting list is determined by the job’s 

priority value. This priority value is calculated by the scheduler using a pre-

defined mix of different policies. There is one global waiting list under a central-

ized administration for all pending jobs in the Grid environment. 

An excerpt of different policies is given next (Chaubal 2005): 

• Entitlement policy (Ticket Policy, Share Based): Fair share (resp. 

proportional share) with manually (by the administrator) set shares for 

individual users, user groups, a department or a project. 

• Urgency policy: Policy with deadline contribution (increase of dispatch 

priority for jobs which will reach their deadline soon), wait-time 

contribution (increase of dispatch priority for jobs that have been waiting 

for a long time) and resource requirement contribution (change of dispatch 

priority for jobs based on the resources they requested). 
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• Custom policy (POSIX): Standard users can sort their jobs according to 

their importance by assigning different priority values. These ratings apply 

only to the user’s own jobs. 

• Override policy: The administrator can manually intervene and modify the 

dispatch priorities. 

 
Figure 1: Scheduling in the Sun N1 Grid Engine 6 

 

An example policy mix can look like this 

ccuueemix NWNWNWP *** ++=  

where mixP  is the dispatch priority, eN  is the normalized entitlement priority (on 

an interval between 0 and 1) and eW  is the entitlement weighting factor. uN , uW , 

cN  and cW are defined accordingly for the urgency and custom priorities. 

The dispatch priority for each pending job is reevaluated periodically. The time 

interval for this reevaluation is defined by the system administrator. The job 

length is not taken into account for the scheduling. Once a job is allocated, it can 

use the resource until it is finished. This leads to a possibility of manipulation. A 

user can submit a job with e.g. an endless loop in order to block resources. In this 

case the administrator can stop the job manually or a limit of maximum process-

ing time can be defined. If a job exceeds this limit it is automatically terminated. 

Market mechanism can be attached to the system by incorporating them as a new 

policy to the priority values. The administrator defines weights for the rules of the 

market mechanism in the policy mix and can hence influence the impact the new 

policy has on the dispatch priorities. Introducing a market-based mechanism to the 

Grid Engine scheduler allows users to directly influence their dispatch priority by 

submitting bids along with their jobs. To be useful for N1GE, the market mecha-

nism must meet the following requirements (Stößer et al. 2007, cf. Table 1). 

Requirement Scope Description 

Allocative  

efficiency 

Economic Allocative efficiency is the overall goal of mar-

ket mechanisms for Grid resource allocation. A 

mechanism is allocative efficient, if it maximizes 

the utility across all participating users (welfare 

or overall “happiness”). 
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Budget-balance Economic A mechanism is budget-balanced if it does not 

need to be subsidized by outside payments. 

Computational 

tractability 

Functional The market mechanism needs to be computed in 

polynomial run time in the size of the number of 

resource requests and offers. 

Online  

Mechanism 

Functional The allocation of the mechanism needs to be 

made instantaneously, as the market assumes the 

role of operating system schedulers. 

Simplicity Functional The mechanism needs to be simple such that the 

participants understand the mechanism and the 

bidding strategy. 

Table 1: Requirements for the market mechanism 

3 Related Work 
There are two other basic groups of allocation schemes dealt with in Grid-related 

literature which aim at distributing fractions of a resource among requesters: fair 

share and proportional share mechanisms. 

• Fair share mechanism  
Fair share mechanisms belong to the group of technical schedulers. One 

example is the SHARE scheduler proposed by Kay and Lauder (1988). 

Opposed to other technical schedulers, the idea behind fair share is to be 

fair to users rather than to processes. It is a scheduling strategy in which 

the usage of a certain resource (mainly CPU time) is equally distributed 

among system users (as opposed to equal distribution among processes). In 

a group of n users, everyone will receive a fraction of n1 of the available 

resource. Different fair share implementations allow the administrator to 

partition users into groups and apply fair share to these groups as well. The 

most common way of implementing the fair share scheduling strategy is to 

recursively apply the round-robin scheduling strategy. The drawback of 

the fair share strategy is that all parameters are pre-specified and set by the 

system administrator. The users have no influence on the allocation. From 

an economic perspective, the fair share strategy reaches only a very low 

level of allocative efficiency; except in the case that all users have the 

same utility for a share of the resource. On the downside, fair share is a 

simple, online, budget-balanced mechanism. 

• Proportional share  
To alleviate the problems encountered with fair share and to increase effi-

ciency, proportional share mechanisms were introduced. Proportional 

share initially allows for resource distribution with shares of unequal size 

for different users accounting for varying importance among them. 

Whereas scheduling according to pre-set, fixed shares for different users 

remains technical, market-based proportional share mechanisms dynami-

cally base the resource share on the users’ reported valuations, their 

“bids”. The total amount of available resources is distributed among the 

requesters according to the fraction their reported valuation amounts to in 

the sum of reported valuation across all resource requesters: a user i  with 
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reported valuation iv will receive a fraction of ∑ =

n

j ji vv
1

of the available 

resource when a group of n users is competing for resource access. Sys-

tems using proportional share as allocation scheme were proposed by 

Chun and Culler (2000), Stoica, Abdel-Wahab et al. (1996) and Lai et al. 

(2004). Chun and Culler (2000) employ the idea of proportional share on a 

market where multiple requesters compete for computing time. The system 

aims at optimizing for user value and utilizes a scheduler which assures 

that each requester receives a share of the resource which corresponds to 

the fraction of its reported valuation for the resource. The problem with 

market-based proportional share is that it does generally not support Qual-

ity of Service assertions. The mechanism holds the risk that requesters are 

not able to obtain the necessary resources (Lai et al. 2004); the share of re-

sources provided to a requester, i.e. the actual service level returned to the 

requester, will generally be below or above this requester’s required ser-

vice level. More importantly, the basic form of market-based proportional 

share as suggested by Chun and Culler (2000) does not support advance 

reservation and may result in high latency which is fatal for interactive ap-

plications (Lai et al. 2004). For their Tycoon system, Lai et al. (2004) 

tackle latency problems and incorporate advanced reservation for re-

sources and an incentivising payment scheme in the basic market-based 

proportional share mechanism. In summary, proportional share mecha-

nisms satisfy all requirements except the most important one, allocative ef-

ficiency. 

In the following we will explore an alternative mechanism – a so-called pay-as-

bid mechanism (Sanghavi and Hajek 2004) – that may improve on these present 

mechanisms.  

4 Basic Model 

Let τ be an allocation mechanism that splits up one unit of a perfectly divisible 

good among n  users. The vector ],...,[ 1 nwww =  comprehends the non-negative 

bids of the users. These bids equal the payments the users have to make for the 

share of the resource that is assigned to them. This share is referred to by 

],...,[ 1 nxxx =  and is calculated according to the pre-specified τ . Thus )(wx ii τ=  

is the quantity user i  is allocated as a result, given a payment vector w . 

The allocation mechanism τ  is considered valid if it satisfies the following four 

properties (Sanghavi and Hajek 2004): 

1. It is an allocation: 0≥iτ and ∑ =
i i w 1)(τ  for all values of w  such that 

∑ >
i iw 0 ; a zero bid will always get zero allocation. 

2. It is smooth: ),( iii ww −τ is differentiable, increasing and concave in iw for 

all iw− . 

3. It is symmetric in the user indices, such that  ))(()( )( ww ii σττ σ= for all 

permutations σ  of the indices ni ,...,1= . 

4. It is scale free, such that )()( ww ii τγτ =  for all real 0>γ  and ni ≤≤0 . 
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Given this problem formulation, Sanghavi and Hajek (2004) propose an allocation 

mechanism τ  which is shown to be optimal for two users. The two users, referred 

to as l  (“low bidding”) and h  (“high bidding”), have a payment vector ),( hl ww  

with hl ww ≤ . The optimal mechanism *τ , guaranteeing the best worst case 

fractional efficiency
3 

and can be devised as follows: 

h

l
hll

w

w
ww

2
),(* =τ   and 

h

l
hlh

w

w
ww

2
1),(* −=τ  

It can be shown that a Nash Equilibrium exists for any scenario with valid user 

utility functions and a valid allocation mechanism τ, i.e. it satisfies the properties 

given in chapter 2. A utility function is considered valid if it is differentiable, con-

cave and strictly increasing. The Nash equilibrium point can be regarded as the 

result of a hypothetical repeated game where users give “myopic best responses”: 

bids are continuously adjusted based on the market information generated by pre-

vious iterations and finally converge to the values which constitute the equilib-

rium (Sanghavi and Hajek 2004). 

Compared to any other valid mechanism, the basic model generates at least an 

equally high social welfare in its Nash Equilibrium point. Furthermore, the 

uniqueness of this Nash Equilibrium can be guaranteed. Hence, the mechanism is 

not only optimal for the worst case, but even for any pair of valid value functions. 

For two buyers, the worst case fractional efficiency of *τ  adds up to 87 %. The 

mechanism ends up in this worst case scenario when both buyers have linear value 

functions
4
.  

This difference in the levels of efficiency is caused by the different pricing 

schemes. While proportional share uses homogeneous pricing, Sanghavi and Ha-

jek (2004) introduce a discriminatory pricing mechanism. The buyer with a lower 

bid pays a higher price per share than the high bidder. This volume discount en-

courages high bidders to bid higher, and thus closer to their true valuation, com-

pared to a scenario with a uniform pricing scheme where users can potentially 

benefit from shading their bids downwards. 

In general, the pricing is given by 
receivedquantity

paidamount

i wp
_

_
)( = . This equals the price the 

user would be paying for the entire unit given his bid. Thus, for the Sang-

havi/Hajek mechanism, in the two buyer case the following pricing scheme is ap-

plied:  

hl wwp 2)( =   and  
lh

h
h

ww

w
wp

−
=

2

2
)(

2

  with hl pp ≥ . 

Sanghavi and Hajek (2004) developed an extension of the above mechanism from 

two to n  buyers. This mechanism still has the property of a “volume discount”, 

i.e. higher bidders pay lower prices.  

                                                 

3
 The fractional efficiency is defined as 

∑
∑

i ii

i ii

xU

xU

)(

)(

*
, with ∑∑ ≥

i iii ii xUxU )()( *
 x∀  

4 
In addition, the slope of the value function of one buyer has to be half the slope of the other 

buyer. As a comparison the worst case efficiency of the proportional share mechanism is 82.84% 

(for a proof see Johari and Tsitsiklis 2004). 
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For n  buyers and a given payment vector ),...,( 1 nwww = , the following mecha-

nism is proposed: 

ds
w

w
s

w

w

ij

ji
i )1(

1

0 maxmax

*

∫∏
≠

−=τ  

with at least two 0≥iw  and maxw being the maximum bid. 

Since it satisfies the four previously given requirements, the mechanism *τ is 

valid. The given mechanism simplifies to the optimal mechanism proposed for 

two buyers when n is set to 2. 

In contrast to the case for two buyers, it is hard to determine an exact value for the 

worst case efficiency for an unlimited number of buyers. Instead, Sanghavi and 

Hajek calculate an interval as an approximation for the worst case efficiency: 

875.0
)(

))~((
8703.0

*

*

≤≤
∑
∑

i ii

i ii

xU

wU τ
 

Obviously, the proposed mechanism is still close to the theoretical maximum 

worst case efficiency, i.e. 87.5%. But a guarantee that the mechanism *τ  is the 

optimal one can no longer be given. 

5 Extended Model 
To adapt the basic model to the domain of scheduling in a Grid environment, with 

a particular focus on the N1GE scenario, further considerations have to be done. 

The following section presents a number of extensions to the basic model which 

are required to make the scheduling mechanism applicable for large-scale re-

source clusters retaining the economic features: 

• Re-evaluation of the Priority Value 
Recalculation of the priority values of all pending jobs is necessary when-

ever a new job enters the waiting list. This is required since every new bid 

would change the allocated share of each waiting job. The re-evaluation of 

all jobs would put quite some load on the scheduler if a large number of 

jobs enter the waiting queue within a short time interval. This problem can 

be prevented if the recalculation is not done for every new job, but accord-

ing to a pre-specified time window. All jobs arriving at the waiting queue 

during such a window are gathered and the recalculation is done for all of 

the jobs at once. A problem that could arise when time windows are em-

ployed is that jobs arriving at the beginning of such a window are delayed 

before being put on the waiting queue. This is especially undesirable for 

time critical and urgent jobs. Therefore the time window has to be speci-

fied accordingly (e.g. re-evaluation is done every 2 seconds) to minimize 

the delay of the jobs.  

• Feedback 
For a convergence to the Nash equilibrium point, the users need feedback 

on their bids to see how much share of the good they received. Using this 

partial market information, they will adjust their bids in myopic best re-

sponses to finally reach the Nash equilibrium point. The N1GE scheduler 

does not support direct feedback yet. The reporting tool for the waiting list, 

named qstat in N1GE, shows the priority value for each job, but this is the 

accumulated value for all policies that are part of the policy mix in the 
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specific scenario. To ensure a convergence to the Nash equilibrium it 

might be necessary to extend the tool in such a way that it reports the frac-

tion of the priority value that was allocated to each job according to the 

submitted bid. The “won” priority value should only be reported to the 

user that submitted the respective job. Otherwise it might exhibit the pos-

sibility for a user to draw conclusions on the other users’ valuations and 

consequently influence his future bids in such a way that the Nash equilib-

rium is no longer reached. 

• Bid Updating 
Related to the issues of re-evaluation of the priority value and feedback is 

bid updating: Shall the mechanism allow bidders to update their bids after 

submitting the jobs to the waiting queue? Considering a periodic re-

evaluation of the priority value, this would not increase the computational 

effort since priorities are updated anyway. It still needs to be analysed if 

bid updating has any impacts on the economic properties of the mecha-

nism. But it probably would not change these properties since bid updating 

can be interpreted as part of the “myopic best response” bidding which 

leads to the Nash equilibrium. It would allow bidders to directly react on 

the positioning of their jobs in the queue. 

• Job Starvation  
The current Sanghavi/Hajek mechanism entails the problem of job starva-

tion. If a user submits a job with a very low bid the job will be displaced 

by all following jobs with a higher bid. Thus this job will probably never 

proceed to be executed. To diminish this setback a waiting time bonus 

could be introduced. This instrument is already incorporated in the N1GE 

urgency policy and allows increasing the priority value of a job according 

to the time it has already waited. Another possibility would be a deadline 

for pending jobs. After a certain specified time of waiting in the queue the 

job will be “killed” and taken out of the queue. The user who submitted 

the job will be informed. This solution can be combined with the possibil-

ity for users to update their bids. Should the previous bids not suffice for 

the job to advance in the queue, the user can increase the bid value. If this 

is not done, the job will eventually be dismissed by the system.  

• Job Length 
The current disregard of the job length when calculating the priority values 

is another topic to be discussed. Currently the job length is not taken into 

account at all for determination of the job’s order in the queue. Conse-

quently, the mechanism is not “merge-proof” (Moulin 2004): It might be 

unattractive for users to submit short jobs with high urgency. These kinds 

of jobs are very expensive compared to longer jobs. Hence users might 

tend to merge smaller jobs to one big job to pay the “entrance fee” to the 

waiting list only once. Submitting a merged job with a bid that equals the 

sum of the single bids of the merged bids could lead to a much better posi-

tion in the waiting queue compared to submission of the single jobs. It 

might thus be useful to base the allocation on the lengths of jobs, which 

however creates the need for determining a job’s length beforehand. 

Though there are tools for roughly estimating the duration of a specific 

job, incorporating them will doubtless have a negative effect on the ease of 

use of the mechanism. 
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• Payment 
It has to be specified at what time of the allocation process the user has to 

make his payment. It might happen that the job is rejected because none of 

the machines fits the job’s required specifications or that it fails during 

execution. If the user has to pay directly after submitting his job to the 

waiting list, he has to be refunded in these cases where the execution of the 

job fails. A payment that is made in the first stage of allocation is also 

problematic when bid updating is allowed. For every modified bid that he 

submits he has to adjust his payment. A solution would be to account only 

for jobs which passed the execution phase successfully. 

6 Case Study 
In the following case study, fair share, proportional share and the extended model 

are compared concerning their allocation and the resulting efficiencies. They are 

assumed as being incorporated as policies in the N1GE scheduler and the only 

policies to determine the dispatch priority; all other available policies are 

weighted with 0. 

Suppose two users are competing for resources in this N1GE environment. Cur-

rently all resources are blocked with running jobs. The waiting list for pending 

jobs is empty. Now the two users submit their jobs iJ , with 2,1=i , along with the 

resource specifications required for the job’s execution. For the proportional share 

and the Sanghavi/Hajek pay-as-bid mechanism each user additionally submits his 

bid iw . 

6.1. Allocation and Pricing 

The scheduler computes the priority values according to the pre-specified schedul-

ing mechanism, here: fair share, proportional share and extended mechanism. The 

share for each user is denoted by ix . The users’ quasi-linear utility functions are 

given by 1111 5.1)( xpxxU −=  and 2222 4)( xpxxU −=  where ip  is user i
th

 unit 

price, i.e. the price user i would have to pay if he got the whole resource unit. Fur-

thermore, assume the centralized resource provider to have a quasi-linear utility 

function ∑=
i iiP xpxU )(  with no reservation prices. This is a quite realistic as-

sumption in Enterprise and Campus Grid settings. Consequently, social welfare 

can be computed as iiP xxxUxUxUxU 45.1)()()()( 21 +=++= . 

Fair Share 
Applying the fair share scheduling strategy, in which each user receives an equal 

share and no payments arise from this allocation, the priority value for all users 

can be calculated as 
nix 1= . In the current example with two users, 1x  and 2x  are 

consequently set to 0.5 and 021 == pp . This allocation results in the valuations 

75.0)(1 =xU , 2)(2 =xU  and 0)( =xU P . Summing up the individual valuations, 

the fair share mechanism creates welfare of 75.2)( =xU , which corresponds to an 

efficiency ratio of 68.75% compared to the optimal allocation; In this optimal al-

location, the high bidding user is given a priority value of 1.0 whereas the low 

bidder receives nothing. This allocation would create the maximum social welfare 

of 4. 
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Proportional Share 
The example applies a dynamic type of proportional share mechanism in which 

the users submit bids to the provider. After receiving the bids, the provider dis-

tributes fractions of the priority value according to the pre-set allocation rule 

∑
=

i i

i

i
w

w
w)(~τ  to the users.  

Concerning the pricing, it is assumed that a pay-as-bid rule is applied: Each user is 

required to finally pay a total sum which equals his submitted bid. For the pay-as-

bid-rule, the unit price pi for user i can consequently be computed as 

i

i
iiii

x

w
pxpw =⇔= . With proportional share, however, 

∑
=

j j

i
i

w

w
x and thus 

∑=
j ji wp , that is user 1 and user 2 have to pay the same unit price. 

For two users, the given utility and pricing functions, the mechanism arrives at the 

Nash equilibrium
5
 bid vector ),( *

2

*

1

* www = =(0.2975, 0.7934). In this Nash equi-

librium, 
11
3*

1

*

1 )(~ == wx τ  is allocated to user 1 and 
11
8*

2

*

2 )(~ == wx τ  to user 2 and 

no user i has an incentive to unilaterally deviate from its bid *

iw . The unit prices 

are 1.1*

2

*

1 == pp . 

Thus the proportional share mechanism generates an overall social welfare of 

32.345.1)(
11
8

11
3 =⋅+⋅=xU and an efficiency ratio of 82.95%. 

Extended Model 

According to the optimal allocation mechanism *τ  for the two users given above, 

the Nash equilibrium point is reached for the bid vector ),( *

2

*

1 ww  = (0.28125, 

0.75) and the following shares are allocated to the users: 

User 1: 1875.0
2

)(
*

2

*

1*

1

*

1 ===
w

w
wx τ  

User 2: 8125.0
2

1)(
*

2

*

1*

2

*

2 =−==
w

w
wx τ  

In the Nash equilibrium, the extended model results in an overall social welfare of 

53125.38125.041875.05.1)( =⋅+⋅=xU . Hence, the allocation according to the 

extended model reaches an efficiency ratio of 88.28% for this setting, which is 

significantly higher than the results of the fair share and proportional share alloca-

tions. 

Applying the pay-as-bid-rule to this allocation exemplifies the “volume discount” 

for the high bidding user 2. He pays a unit price of 9231.0
*

2

2*

2 ==
x

w
p  whereas 

user 1 has to pay a notably higher unit price of 5.1
*

1

1*

1 ==
x

w
p . 

 

 

                                                 
5 
For a derivation and proof of uniqueness of the Nash equilibrium for the proportional share 

mechanism see Maheswaran and Basar (2005). 
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 Fair Share Proportional Share Extended Model 

Bid vector --- )79.0,30.0(),( *

2

*

1 =ww  )75.0,28.0(),( *

2

*

1 =ww  

Allocation 5.021 == xx  
27.0

*

1
=x  

73.0*

2
=x  

19.0*

1 =x  

81.0*

2 =x  

Unit prices --- 09.1*

2

*

1 == pp  
5.1*

1 =p  

92.0
*

2 =p  

Utilities 

75.0)(1 =xU  

2)(2 =xU  

0)( =xU P
 

11.0)( *

1 =xU  

12.2)( *

2 =xU  

09.1)( * =xU P
 

0)( *

1 =xU  

5.2)(
*

2 =xU  

03.1)(
* =xUP

 

Social Welfare 75.2)( =xU  32.3)( * =xU  53.3)( * =xU  

Efficiency ratio 68.75% 82.95% 88.28% 

Table 2: Comparison of the Scheduling Mechanisms 

7 Conclusion  
The extended model being inspired by Sanghavi/Hajek pay-as-bid mechanism is a 

promising addition for the N1GE scheduler. Employing a market-based mecha-

nism for resource allocation in Grids offers new possibilities on both sides, for 

providers as well as for buyers. Current technical schedulers require an adminis-

trator to specify user weights based on these users’ relative importance, regardless 

of the dynamic demand and supply situation, opening up possible inefficiencies. 

To this end, the Sanghavi/Hajek pay-as-bid mechanism allows flexible reactions 

to changes in the demand and supply situation. Moreover, it offers an elaborated 

pricing scheme where prices reflect the current market situation and induce users 

to report their true valuations to the system. The administrator no longer needs to 

adjust the weights manually and the users can directly express urgency of their 

jobs by submitting a high bid without being dependent on the administrator as a 

“mediator”. Furthermore, this usage-based pricing scheme opens up new avenues 

for both external (Inter-enterprise and Utility Computing) Grids and internal (En-

terprise and Campus) Grids.  

The implementation of the mechanism within N1GE can be done fairly easy as a 

new scheduling policy, which then would be part of the policy mix. This integra-

tion can be done without major changes in the existing architecture. As men-

tioned, an extension of the current waiting list reporting tool might be necessary to 

enable a more sophisticated feedback functionality for the users. Very important 

for a successful integration of a market-based scheduler will be the enforcement 

of the payment. Thus some kind of payment system, either based on real money or 

virtual credits, has to be integrated in the N1GE architecture which is conjunct 

with a high implementation effort.  

Comparing the extended model to other market-based mechanisms, it scores with 

its ease-of-use and an allocation mechanism that is transparent to the user. In addi-

tion, it has a noticeably increased worst case fractional efficiency in comparison to 

the proportional share mechanisms and is close to the theoretical maximum re-

garding the worst case efficiency of pay-as-bid mechanisms. Above all, the ex-

tended model imposes a very low additional communicational and computational 
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effort on the scheduling process. It allows real-time allocations, even if the recal-

culation of the priority has to be done periodically.  

Further work has to be done on analyzing the extensions and their impact on the 

economic features of the mechanism. For this purpose it would be very helpful to 

actually implement the mechanism within the N1GE scheduler. This would allow 

for running simulations to examine the mechanism’s behaviour and performance, 

especially regarding execution time, in large scale clusters. 

In addition, the focus is on other scenarios where the mechanism can be employed 

along with the N1GE. A very interesting and challenging approach is to establish 

a decentralized version of the mechanism to support decentralized waiting queues 

as well. This might be necessary to keep the N1GE scheduler applicable for very 

large clusters (20,000+ cores), which will be demanded in the near future.  

A second scenario would change the current allocation per job to a reservation of 

timeslots of whole machines (resp. CPUs). This would enable users to book a ma-

chine for a certain time span and use it to run as many jobs as possible. The prob-

lem with this scenario is a restriction of N1GE, which allows only one task per 

CPU at a time. A possible solution to this would be virtualization, where virtual 

machines are utilized on a layer between scheduler and resources to make single 

CPUs “divisible”. 
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