
Association for Information Systems
AIS Electronic Library (AISeL)

BLED 2007 Proceedings BLED Proceedings

2007

A Pay-as-Bid Mechanism for Pricing Utility
Computing
Philipp Bodenbenner
Institute of Information Systems and Management, Universität Karlsruhe, bodenbenner@iism.uni-karlsruhe.de

Jochen Stößer
Institute of Information Systems and Management, Universität Karlsruhe, stoesser@iism.uni-karlsruhe.de

Dirk Neumann
Institute of Information Systems and Management, Universität Karlsruhe, neumann@iism.uni-karlsruhe.de

Follow this and additional works at: http://aisel.aisnet.org/bled2007

This material is brought to you by the BLED Proceedings at AIS Electronic Library (AISeL). It has been accepted for inclusion in BLED 2007
Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Bodenbenner, Philipp; Stößer, Jochen; and Neumann, Dirk, "A Pay-as-Bid Mechanism for Pricing Utility Computing" (2007). BLED
2007 Proceedings. 10.
http://aisel.aisnet.org/bled2007/10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301344292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fbled2007%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled2007?utm_source=aisel.aisnet.org%2Fbled2007%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled?utm_source=aisel.aisnet.org%2Fbled2007%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled2007?utm_source=aisel.aisnet.org%2Fbled2007%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/bled2007/10?utm_source=aisel.aisnet.org%2Fbled2007%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

20
th

 Bled eConference

eMergence:

Merging and Emerging Technologies, Processes, and Institutions

June 4 - 6, 2007; Bled, Slovenia

A Pay-as-Bid Mechanism for
Pricing Utility Computing

Philipp Bodenbenner, Jochen Stößer, Dirk Neumann

Institute of Information Systems and Management (IISM)

Universität Karlsruhe (TH)

Englerstr. 14, 76131 Karlsruhe, Germany

{bodenbenner, stoesser, neumann}@iism.uni-karlsruhe.de

Abstract
Encountering the increasing demand for high-performance computational re-

sources in academic as well as commercial organisations, utility computing offers

a solution by providing users with on-demand availability of requested computing

services. Approaches to the fundamental issue of resource allocation include the

use of technical scheduling mechanisms as well as introducing economic ideas

into the allocation schemes. Technical scheduling mechanisms are often very sim-

ple (such as first-in-first-out) but suffer under the shortcoming to adequately pri-

oritize jobs in times when demand exceeds supply. As empirical studies show,

Grids (such as PlanetLab) are frequently characterized by huge excess demand

for resources. This is where economic models such as markets come into play.

Hitherto, market mechanisms are either (too) simple or too complex for usage in

Grids.

The contribution of this paper is threefold. Firstly, a mechanism for Grids is pro-

posed, which is still simple but geared up for use in the Grid. Secondly the

mechanism is embedded in state-of-the-art Grid middleware Sun N1 Grid Engine

6. Thirdly, it is shown by means of a numerical case study that this mechanism is

superior to other commonly used mechanisms.

Keywords: Utility Computing, Grid Computing, Market-based Scheduling,

Pay-as-Bid, Sun N1 Grid Engine

1 Introduction
The number of complex and elaborate calculations which require increasingly

powerful and faster computing resources has been constantly growing. At the

same time, resource owners intend to keep their resource inventory at a minimum

level to avoid high total cost of ownership. A promising solution to these diverg-

 699

ing trends is to pool together distributed, computational resources to large clus-

ters, so called “Grids”, that can provide users with sufficient computing resources

on-demand (Foster et al. 2001). Grid computing is often denoted as utility com-

puting, as computing resource are utilities like water or electricity and can be ac-

cessed dynamically (Rappa 2004). Recently, mainly two utility computing initia-

tives have made waves in the community: Sun’s One-Dollar-Per-CPU-Hour
1
 and

Amazon’s Elastic Compute Cloud
2
 are prominent examples for the industry take-

up of utility computing offerings.

Concerning their size and build-up, Grid systems can be classified into three

types: Cluster Grids are sets of cooperating computer hosts in a cluster that offer a

single point of access to users within a project or department. Enterprise or Cam-

pus Grids enable the sharing of computer resources for members of different pro-

jects or departments within an organisation. Global Grids realize the Enterprise

Grid idea across organisational boundaries and therefore allow for the creation of

large virtual resource sharing systems (Joseph et al. 2004).

The key problem in distributed resource sharing environments, be it Cluster, En-

terprise or Global Grids, is allocation, i.e. how to distribute the scarce resources to

requesters at what time. The common approach to this problem is to use technical

schedulers (such as first-in-first-out) to determine the allocation. Those technical

schedulers are hampered by the fact that they cannot define reasonable priorities

in cases when there is excess demand for resources (Stößer et al. 2007).

In recent years, the idea of employing market based mechanisms attracted more

and more interest due their ability to base the allocation on the real demand and

supply situation (Smidt 1968; Sutherland 1968). As a side effect, sophisticated

pricing models are facilitated.

In this paper, we will focus on Enterprise Grids and in particular on Sun N1 Grid

Engine (N1GE). The results we achieve here, whether the market mechanism can

be used for N1GE as well, can be generalized to other Enterprise Grids. The rea-

son why we refer to N1GE is to assure that our market solution is not just purely

theoretical but solidly founded in the real world. N1GE is a distributed resource

management and scheduling system from Sun Microsystems which operates on

the Enterprise Grid level (N1GE User’s Guide, 2005). Being an extension of the

Solaris operating system, it administers and dynamically allocates the shared pool

of heterogeneous resources such as computing power, memory and licensed soft-

ware within an organisation. The usage of these resources is managed in a way to

best achieve the goals of the organisation, such as productivity, timeliness and

level of service. Concerning the IT infrastructure itself, a more efficient utilisation

provides the basis for the reduction of total cost of ownership and the increase of

return on assets for the organisation’s computing facilities. N1GE has been em-

ployed for setting up Grids within organisations like companies and universities,

each comprising a cluster size of around 500-2,000 CPUs.

N1GE provides means of submitting requests for execution of computationally

demanding tasks, so called “jobs”, to the users associated with the system. A

technical scheduler orchestrates the allocation of jobs to the available shared re-

sources by arranging the jobs in a central queue, using a variation of configurable

1
 http://www.sun.com/service/sungrid/overview.jsp, February 13, 2007

2
 http://www.amazon.com/gp/browse.html?node=201590011, February 13, 2007

 Philipp Bodenbenner, Jochen Stößer, Dirk Neumann­__

 700

policies. These policies represent the prevailing precedence structure among sin-

gle users, departments and projects within the organisation and thus conduce to

the appropriate entitlement in the competition for computational resources. Ad-

ministrators of N1GE are provided with tools for policy adaptation as well as sys-

tem monitoring, controlling and reporting.

This paper is novel and unique as it proposes a mechanism for Grids which is

fairly simple but specifically designed for usage in the Grid. The proposed

mechanism is embedded in state-of-the-art Grid middleware Sun N1 Grid Engine

6. Furthermore, we show in a numerical case study that this mechanism is supe-

rior to other commonly used mechanisms.

The remainder of this paper is structured as follows: Section 2 presents a motiva-

tional scenario which shows how the market mechanism can be integrated in the

current scheduler of N1GE. Section 3 covers related efforts in developing market-

based market mechanisms for scheduling in the Grid. Section 4 introduces the

base model of allocation algorithms. Section 5 presents an extension to this base

model which tailors the mechanism to the Grid. A numerical case study is given

in section 6. Section 7 concludes the paper with a brief summary and gives an

outlook for future research opportunities.

2 Motivational Scenario

The N1GE scheduler consists of a waiting queue with pending jobs and a techni-

cal scheduler that assigns waiting jobs to idle resources (see figure 1). The user

submits a job combined with a specification of requirements of the job. There are

two different groups of specifications, namely hard and soft state. Hard state re-

quirements are essential for a job to run. If no resource fits the required specifica-

tions, the job will be ignored by the scheduler and remains pending. Soft state

requirements are tried to be considered, but the job’s processing does not depend

on them. If no further specification is given by the user, a job is assigned to a ran-

dom resource which fits the requirements. If the job’s requirements cannot be ac-

complished by the assigned resource, e.g. the memory size does not suffice, the

job fails and the user is notified. In the N1GE scenario, a system administrator is

usually responsible for submitting the resource specification. End users do not

need to care about the resource requirements of their jobs.

After receiving the job requests, the scheduler places the jobs on the waiting list of

pending jobs. The position of a job in the waiting list is determined by the job’s

priority value. This priority value is calculated by the scheduler using a pre-

defined mix of different policies. There is one global waiting list under a central-

ized administration for all pending jobs in the Grid environment.

An excerpt of different policies is given next (Chaubal 2005):

• Entitlement policy (Ticket Policy, Share Based): Fair share (resp.

proportional share) with manually (by the administrator) set shares for

individual users, user groups, a department or a project.

• Urgency policy: Policy with deadline contribution (increase of dispatch

priority for jobs which will reach their deadline soon), wait-time

contribution (increase of dispatch priority for jobs that have been waiting

for a long time) and resource requirement contribution (change of dispatch

priority for jobs based on the resources they requested).

 __A Pay-as-Bid Mechanism for Pricing Utility Computing

 701

• Custom policy (POSIX): Standard users can sort their jobs according to

their importance by assigning different priority values. These ratings apply

only to the user’s own jobs.

• Override policy: The administrator can manually intervene and modify the

dispatch priorities.

Figure 1: Scheduling in the Sun N1 Grid Engine 6

An example policy mix can look like this

ccuueemix NWNWNWP *** ++=

where mixP is the dispatch priority, eN is the normalized entitlement priority (on

an interval between 0 and 1) and eW is the entitlement weighting factor. uN , uW ,

cN and cW are defined accordingly for the urgency and custom priorities.

The dispatch priority for each pending job is reevaluated periodically. The time

interval for this reevaluation is defined by the system administrator. The job

length is not taken into account for the scheduling. Once a job is allocated, it can

use the resource until it is finished. This leads to a possibility of manipulation. A

user can submit a job with e.g. an endless loop in order to block resources. In this

case the administrator can stop the job manually or a limit of maximum process-

ing time can be defined. If a job exceeds this limit it is automatically terminated.

Market mechanism can be attached to the system by incorporating them as a new

policy to the priority values. The administrator defines weights for the rules of the

market mechanism in the policy mix and can hence influence the impact the new

policy has on the dispatch priorities. Introducing a market-based mechanism to the

Grid Engine scheduler allows users to directly influence their dispatch priority by

submitting bids along with their jobs. To be useful for N1GE, the market mecha-

nism must meet the following requirements (Stößer et al. 2007, cf. Table 1).

Requirement Scope Description

Allocative

efficiency

Economic Allocative efficiency is the overall goal of mar-

ket mechanisms for Grid resource allocation. A

mechanism is allocative efficient, if it maximizes

the utility across all participating users (welfare

or overall “happiness”).

 Philipp Bodenbenner, Jochen Stößer, Dirk Neumann­__

 702

Budget-balance Economic A mechanism is budget-balanced if it does not

need to be subsidized by outside payments.

Computational

tractability

Functional The market mechanism needs to be computed in

polynomial run time in the size of the number of

resource requests and offers.

Online

Mechanism

Functional The allocation of the mechanism needs to be

made instantaneously, as the market assumes the

role of operating system schedulers.

Simplicity Functional The mechanism needs to be simple such that the

participants understand the mechanism and the

bidding strategy.

Table 1: Requirements for the market mechanism

3 Related Work
There are two other basic groups of allocation schemes dealt with in Grid-related

literature which aim at distributing fractions of a resource among requesters: fair

share and proportional share mechanisms.

• Fair share mechanism
Fair share mechanisms belong to the group of technical schedulers. One

example is the SHARE scheduler proposed by Kay and Lauder (1988).

Opposed to other technical schedulers, the idea behind fair share is to be

fair to users rather than to processes. It is a scheduling strategy in which

the usage of a certain resource (mainly CPU time) is equally distributed

among system users (as opposed to equal distribution among processes). In

a group of n users, everyone will receive a fraction of n1 of the available

resource. Different fair share implementations allow the administrator to

partition users into groups and apply fair share to these groups as well. The

most common way of implementing the fair share scheduling strategy is to

recursively apply the round-robin scheduling strategy. The drawback of

the fair share strategy is that all parameters are pre-specified and set by the

system administrator. The users have no influence on the allocation. From

an economic perspective, the fair share strategy reaches only a very low

level of allocative efficiency; except in the case that all users have the

same utility for a share of the resource. On the downside, fair share is a

simple, online, budget-balanced mechanism.

• Proportional share
To alleviate the problems encountered with fair share and to increase effi-

ciency, proportional share mechanisms were introduced. Proportional

share initially allows for resource distribution with shares of unequal size

for different users accounting for varying importance among them.

Whereas scheduling according to pre-set, fixed shares for different users

remains technical, market-based proportional share mechanisms dynami-

cally base the resource share on the users’ reported valuations, their

“bids”. The total amount of available resources is distributed among the

requesters according to the fraction their reported valuation amounts to in

the sum of reported valuation across all resource requesters: a user i with

 __A Pay-as-Bid Mechanism for Pricing Utility Computing

 703

reported valuation iv will receive a fraction of ∑ =

n

j ji vv
1

of the available

resource when a group of n users is competing for resource access. Sys-

tems using proportional share as allocation scheme were proposed by

Chun and Culler (2000), Stoica, Abdel-Wahab et al. (1996) and Lai et al.

(2004). Chun and Culler (2000) employ the idea of proportional share on a

market where multiple requesters compete for computing time. The system

aims at optimizing for user value and utilizes a scheduler which assures

that each requester receives a share of the resource which corresponds to

the fraction of its reported valuation for the resource. The problem with

market-based proportional share is that it does generally not support Qual-

ity of Service assertions. The mechanism holds the risk that requesters are

not able to obtain the necessary resources (Lai et al. 2004); the share of re-

sources provided to a requester, i.e. the actual service level returned to the

requester, will generally be below or above this requester’s required ser-

vice level. More importantly, the basic form of market-based proportional

share as suggested by Chun and Culler (2000) does not support advance

reservation and may result in high latency which is fatal for interactive ap-

plications (Lai et al. 2004). For their Tycoon system, Lai et al. (2004)

tackle latency problems and incorporate advanced reservation for re-

sources and an incentivising payment scheme in the basic market-based

proportional share mechanism. In summary, proportional share mecha-

nisms satisfy all requirements except the most important one, allocative ef-

ficiency.

In the following we will explore an alternative mechanism – a so-called pay-as-

bid mechanism (Sanghavi and Hajek 2004) – that may improve on these present

mechanisms.

4 Basic Model

Let τ be an allocation mechanism that splits up one unit of a perfectly divisible

good among n users. The vector],...,[1 nwww = comprehends the non-negative

bids of the users. These bids equal the payments the users have to make for the

share of the resource that is assigned to them. This share is referred to by

],...,[1 nxxx = and is calculated according to the pre-specified τ . Thus)(wx ii τ=

is the quantity user i is allocated as a result, given a payment vector w .

The allocation mechanism τ is considered valid if it satisfies the following four

properties (Sanghavi and Hajek 2004):

1. It is an allocation: 0≥iτ and ∑ =
i i w 1)(τ for all values of w such that

∑ >
i iw 0 ; a zero bid will always get zero allocation.

2. It is smooth:),(iii ww −τ is differentiable, increasing and concave in iw for

all iw− .

3. It is symmetric in the user indices, such that))(()()(ww ii σττ σ= for all

permutations σ of the indices ni ,...,1= .

4. It is scale free, such that)()(ww ii τγτ = for all real 0>γ and ni ≤≤0 .

 Philipp Bodenbenner, Jochen Stößer, Dirk Neumann­__

 704

Given this problem formulation, Sanghavi and Hajek (2004) propose an allocation

mechanism τ which is shown to be optimal for two users. The two users, referred

to as l (“low bidding”) and h (“high bidding”), have a payment vector),(hl ww

with hl ww ≤ . The optimal mechanism *τ , guaranteeing the best worst case

fractional efficiency
3

and can be devised as follows:

h

l
hll

w

w
ww

2
),(* =τ and

h

l
hlh

w

w
ww

2
1),(* −=τ

It can be shown that a Nash Equilibrium exists for any scenario with valid user

utility functions and a valid allocation mechanism τ, i.e. it satisfies the properties

given in chapter 2. A utility function is considered valid if it is differentiable, con-

cave and strictly increasing. The Nash equilibrium point can be regarded as the

result of a hypothetical repeated game where users give “myopic best responses”:

bids are continuously adjusted based on the market information generated by pre-

vious iterations and finally converge to the values which constitute the equilib-

rium (Sanghavi and Hajek 2004).

Compared to any other valid mechanism, the basic model generates at least an

equally high social welfare in its Nash Equilibrium point. Furthermore, the

uniqueness of this Nash Equilibrium can be guaranteed. Hence, the mechanism is

not only optimal for the worst case, but even for any pair of valid value functions.

For two buyers, the worst case fractional efficiency of *τ adds up to 87 %. The

mechanism ends up in this worst case scenario when both buyers have linear value

functions
4
.

This difference in the levels of efficiency is caused by the different pricing

schemes. While proportional share uses homogeneous pricing, Sanghavi and Ha-

jek (2004) introduce a discriminatory pricing mechanism. The buyer with a lower

bid pays a higher price per share than the high bidder. This volume discount en-

courages high bidders to bid higher, and thus closer to their true valuation, com-

pared to a scenario with a uniform pricing scheme where users can potentially

benefit from shading their bids downwards.

In general, the pricing is given by
receivedquantity

paidamount

i wp
_

_
)(= . This equals the price the

user would be paying for the entire unit given his bid. Thus, for the Sang-

havi/Hajek mechanism, in the two buyer case the following pricing scheme is ap-

plied:

hl wwp 2)(= and
lh

h
h

ww

w
wp

−
=

2

2
)(

2

 with hl pp ≥ .

Sanghavi and Hajek (2004) developed an extension of the above mechanism from

two to n buyers. This mechanism still has the property of a “volume discount”,

i.e. higher bidders pay lower prices.

3
 The fractional efficiency is defined as

∑
∑

i ii

i ii

xU

xU

)(

)(

*
, with ∑∑ ≥

i iii ii xUxU)()(*
 x∀

4
In addition, the slope of the value function of one buyer has to be half the slope of the other

buyer. As a comparison the worst case efficiency of the proportional share mechanism is 82.84%

(for a proof see Johari and Tsitsiklis 2004).

 __A Pay-as-Bid Mechanism for Pricing Utility Computing

 705

For n buyers and a given payment vector),...,(1 nwww = , the following mecha-

nism is proposed:

ds
w

w
s

w

w

ij

ji
i)1(

1

0 maxmax

*

∫∏
≠

−=τ

with at least two 0≥iw and maxw being the maximum bid.

Since it satisfies the four previously given requirements, the mechanism *τ is

valid. The given mechanism simplifies to the optimal mechanism proposed for

two buyers when n is set to 2.

In contrast to the case for two buyers, it is hard to determine an exact value for the

worst case efficiency for an unlimited number of buyers. Instead, Sanghavi and

Hajek calculate an interval as an approximation for the worst case efficiency:

875.0
)(

))~((
8703.0

*

*

≤≤
∑
∑

i ii

i ii

xU

wU τ

Obviously, the proposed mechanism is still close to the theoretical maximum

worst case efficiency, i.e. 87.5%. But a guarantee that the mechanism *τ is the

optimal one can no longer be given.

5 Extended Model
To adapt the basic model to the domain of scheduling in a Grid environment, with

a particular focus on the N1GE scenario, further considerations have to be done.

The following section presents a number of extensions to the basic model which

are required to make the scheduling mechanism applicable for large-scale re-

source clusters retaining the economic features:

• Re-evaluation of the Priority Value
Recalculation of the priority values of all pending jobs is necessary when-

ever a new job enters the waiting list. This is required since every new bid

would change the allocated share of each waiting job. The re-evaluation of

all jobs would put quite some load on the scheduler if a large number of

jobs enter the waiting queue within a short time interval. This problem can

be prevented if the recalculation is not done for every new job, but accord-

ing to a pre-specified time window. All jobs arriving at the waiting queue

during such a window are gathered and the recalculation is done for all of

the jobs at once. A problem that could arise when time windows are em-

ployed is that jobs arriving at the beginning of such a window are delayed

before being put on the waiting queue. This is especially undesirable for

time critical and urgent jobs. Therefore the time window has to be speci-

fied accordingly (e.g. re-evaluation is done every 2 seconds) to minimize

the delay of the jobs.

• Feedback
For a convergence to the Nash equilibrium point, the users need feedback

on their bids to see how much share of the good they received. Using this

partial market information, they will adjust their bids in myopic best re-

sponses to finally reach the Nash equilibrium point. The N1GE scheduler

does not support direct feedback yet. The reporting tool for the waiting list,

named qstat in N1GE, shows the priority value for each job, but this is the

accumulated value for all policies that are part of the policy mix in the

 Philipp Bodenbenner, Jochen Stößer, Dirk Neumann­__

 706

specific scenario. To ensure a convergence to the Nash equilibrium it

might be necessary to extend the tool in such a way that it reports the frac-

tion of the priority value that was allocated to each job according to the

submitted bid. The “won” priority value should only be reported to the

user that submitted the respective job. Otherwise it might exhibit the pos-

sibility for a user to draw conclusions on the other users’ valuations and

consequently influence his future bids in such a way that the Nash equilib-

rium is no longer reached.

• Bid Updating
Related to the issues of re-evaluation of the priority value and feedback is

bid updating: Shall the mechanism allow bidders to update their bids after

submitting the jobs to the waiting queue? Considering a periodic re-

evaluation of the priority value, this would not increase the computational

effort since priorities are updated anyway. It still needs to be analysed if

bid updating has any impacts on the economic properties of the mecha-

nism. But it probably would not change these properties since bid updating

can be interpreted as part of the “myopic best response” bidding which

leads to the Nash equilibrium. It would allow bidders to directly react on

the positioning of their jobs in the queue.

• Job Starvation
The current Sanghavi/Hajek mechanism entails the problem of job starva-

tion. If a user submits a job with a very low bid the job will be displaced

by all following jobs with a higher bid. Thus this job will probably never

proceed to be executed. To diminish this setback a waiting time bonus

could be introduced. This instrument is already incorporated in the N1GE

urgency policy and allows increasing the priority value of a job according

to the time it has already waited. Another possibility would be a deadline

for pending jobs. After a certain specified time of waiting in the queue the

job will be “killed” and taken out of the queue. The user who submitted

the job will be informed. This solution can be combined with the possibil-

ity for users to update their bids. Should the previous bids not suffice for

the job to advance in the queue, the user can increase the bid value. If this

is not done, the job will eventually be dismissed by the system.

• Job Length
The current disregard of the job length when calculating the priority values

is another topic to be discussed. Currently the job length is not taken into

account at all for determination of the job’s order in the queue. Conse-

quently, the mechanism is not “merge-proof” (Moulin 2004): It might be

unattractive for users to submit short jobs with high urgency. These kinds

of jobs are very expensive compared to longer jobs. Hence users might

tend to merge smaller jobs to one big job to pay the “entrance fee” to the

waiting list only once. Submitting a merged job with a bid that equals the

sum of the single bids of the merged bids could lead to a much better posi-

tion in the waiting queue compared to submission of the single jobs. It

might thus be useful to base the allocation on the lengths of jobs, which

however creates the need for determining a job’s length beforehand.

Though there are tools for roughly estimating the duration of a specific

job, incorporating them will doubtless have a negative effect on the ease of

use of the mechanism.

 __A Pay-as-Bid Mechanism for Pricing Utility Computing

 707

• Payment
It has to be specified at what time of the allocation process the user has to

make his payment. It might happen that the job is rejected because none of

the machines fits the job’s required specifications or that it fails during

execution. If the user has to pay directly after submitting his job to the

waiting list, he has to be refunded in these cases where the execution of the

job fails. A payment that is made in the first stage of allocation is also

problematic when bid updating is allowed. For every modified bid that he

submits he has to adjust his payment. A solution would be to account only

for jobs which passed the execution phase successfully.

6 Case Study
In the following case study, fair share, proportional share and the extended model

are compared concerning their allocation and the resulting efficiencies. They are

assumed as being incorporated as policies in the N1GE scheduler and the only

policies to determine the dispatch priority; all other available policies are

weighted with 0.

Suppose two users are competing for resources in this N1GE environment. Cur-

rently all resources are blocked with running jobs. The waiting list for pending

jobs is empty. Now the two users submit their jobs iJ , with 2,1=i , along with the

resource specifications required for the job’s execution. For the proportional share

and the Sanghavi/Hajek pay-as-bid mechanism each user additionally submits his

bid iw .

6.1. Allocation and Pricing

The scheduler computes the priority values according to the pre-specified schedul-

ing mechanism, here: fair share, proportional share and extended mechanism. The

share for each user is denoted by ix . The users’ quasi-linear utility functions are

given by 1111 5.1)(xpxxU −= and 2222 4)(xpxxU −= where ip is user i
th

 unit

price, i.e. the price user i would have to pay if he got the whole resource unit. Fur-

thermore, assume the centralized resource provider to have a quasi-linear utility

function ∑=
i iiP xpxU)(with no reservation prices. This is a quite realistic as-

sumption in Enterprise and Campus Grid settings. Consequently, social welfare

can be computed as iiP xxxUxUxUxU 45.1)()()()(21 +=++= .

Fair Share
Applying the fair share scheduling strategy, in which each user receives an equal

share and no payments arise from this allocation, the priority value for all users

can be calculated as
nix 1= . In the current example with two users, 1x and 2x are

consequently set to 0.5 and 021 == pp . This allocation results in the valuations

75.0)(1 =xU , 2)(2 =xU and 0)(=xU P . Summing up the individual valuations,

the fair share mechanism creates welfare of 75.2)(=xU , which corresponds to an

efficiency ratio of 68.75% compared to the optimal allocation; In this optimal al-

location, the high bidding user is given a priority value of 1.0 whereas the low

bidder receives nothing. This allocation would create the maximum social welfare

of 4.

 Philipp Bodenbenner, Jochen Stößer, Dirk Neumann­__

 708

Proportional Share
The example applies a dynamic type of proportional share mechanism in which

the users submit bids to the provider. After receiving the bids, the provider dis-

tributes fractions of the priority value according to the pre-set allocation rule

∑
=

i i

i

i
w

w
w)(~τ to the users.

Concerning the pricing, it is assumed that a pay-as-bid rule is applied: Each user is

required to finally pay a total sum which equals his submitted bid. For the pay-as-

bid-rule, the unit price pi for user i can consequently be computed as

i

i
iiii

x

w
pxpw =⇔= . With proportional share, however,

∑
=

j j

i
i

w

w
x and thus

∑=
j ji wp , that is user 1 and user 2 have to pay the same unit price.

For two users, the given utility and pricing functions, the mechanism arrives at the

Nash equilibrium
5
 bid vector),(*

2

*

1

* www = =(0.2975, 0.7934). In this Nash equi-

librium,
11
3*

1

*

1)(~ == wx τ is allocated to user 1 and
11
8*

2

*

2)(~ == wx τ to user 2 and

no user i has an incentive to unilaterally deviate from its bid *

iw . The unit prices

are 1.1*

2

*

1 == pp .

Thus the proportional share mechanism generates an overall social welfare of

32.345.1)(
11
8

11
3 =⋅+⋅=xU and an efficiency ratio of 82.95%.

Extended Model

According to the optimal allocation mechanism *τ for the two users given above,

the Nash equilibrium point is reached for the bid vector),(*

2

*

1 ww = (0.28125,

0.75) and the following shares are allocated to the users:

User 1: 1875.0
2

)(
*

2

*

1*

1

*

1 ===
w

w
wx τ

User 2: 8125.0
2

1)(
*

2

*

1*

2

*

2 =−==
w

w
wx τ

In the Nash equilibrium, the extended model results in an overall social welfare of

53125.38125.041875.05.1)(=⋅+⋅=xU . Hence, the allocation according to the

extended model reaches an efficiency ratio of 88.28% for this setting, which is

significantly higher than the results of the fair share and proportional share alloca-

tions.

Applying the pay-as-bid-rule to this allocation exemplifies the “volume discount”

for the high bidding user 2. He pays a unit price of 9231.0
*

2

2*

2 ==
x

w
p whereas

user 1 has to pay a notably higher unit price of 5.1
*

1

1*

1 ==
x

w
p .

5
For a derivation and proof of uniqueness of the Nash equilibrium for the proportional share

mechanism see Maheswaran and Basar (2005).

 __A Pay-as-Bid Mechanism for Pricing Utility Computing

 709

 Fair Share Proportional Share Extended Model

Bid vector ---)79.0,30.0(),(*

2

*

1 =ww)75.0,28.0(),(*

2

*

1 =ww

Allocation 5.021 == xx
27.0

*

1
=x

73.0*

2
=x

19.0*

1 =x

81.0*

2 =x

Unit prices --- 09.1*

2

*

1 == pp
5.1*

1 =p

92.0
*

2 =p

Utilities

75.0)(1 =xU

2)(2 =xU

0)(=xU P

11.0)(*

1 =xU

12.2)(*

2 =xU

09.1)(* =xU P

0)(*

1 =xU

5.2)(
*

2 =xU

03.1)(
* =xUP

Social Welfare 75.2)(=xU 32.3)(* =xU 53.3)(* =xU

Efficiency ratio 68.75% 82.95% 88.28%

Table 2: Comparison of the Scheduling Mechanisms

7 Conclusion
The extended model being inspired by Sanghavi/Hajek pay-as-bid mechanism is a

promising addition for the N1GE scheduler. Employing a market-based mecha-

nism for resource allocation in Grids offers new possibilities on both sides, for

providers as well as for buyers. Current technical schedulers require an adminis-

trator to specify user weights based on these users’ relative importance, regardless

of the dynamic demand and supply situation, opening up possible inefficiencies.

To this end, the Sanghavi/Hajek pay-as-bid mechanism allows flexible reactions

to changes in the demand and supply situation. Moreover, it offers an elaborated

pricing scheme where prices reflect the current market situation and induce users

to report their true valuations to the system. The administrator no longer needs to

adjust the weights manually and the users can directly express urgency of their

jobs by submitting a high bid without being dependent on the administrator as a

“mediator”. Furthermore, this usage-based pricing scheme opens up new avenues

for both external (Inter-enterprise and Utility Computing) Grids and internal (En-

terprise and Campus) Grids.

The implementation of the mechanism within N1GE can be done fairly easy as a

new scheduling policy, which then would be part of the policy mix. This integra-

tion can be done without major changes in the existing architecture. As men-

tioned, an extension of the current waiting list reporting tool might be necessary to

enable a more sophisticated feedback functionality for the users. Very important

for a successful integration of a market-based scheduler will be the enforcement

of the payment. Thus some kind of payment system, either based on real money or

virtual credits, has to be integrated in the N1GE architecture which is conjunct

with a high implementation effort.

Comparing the extended model to other market-based mechanisms, it scores with

its ease-of-use and an allocation mechanism that is transparent to the user. In addi-

tion, it has a noticeably increased worst case fractional efficiency in comparison to

the proportional share mechanisms and is close to the theoretical maximum re-

garding the worst case efficiency of pay-as-bid mechanisms. Above all, the ex-

tended model imposes a very low additional communicational and computational

 Philipp Bodenbenner, Jochen Stößer, Dirk Neumann­__

 710

effort on the scheduling process. It allows real-time allocations, even if the recal-

culation of the priority has to be done periodically.

Further work has to be done on analyzing the extensions and their impact on the

economic features of the mechanism. For this purpose it would be very helpful to

actually implement the mechanism within the N1GE scheduler. This would allow

for running simulations to examine the mechanism’s behaviour and performance,

especially regarding execution time, in large scale clusters.

In addition, the focus is on other scenarios where the mechanism can be employed

along with the N1GE. A very interesting and challenging approach is to establish

a decentralized version of the mechanism to support decentralized waiting queues

as well. This might be necessary to keep the N1GE scheduler applicable for very

large clusters (20,000+ cores), which will be demanded in the near future.

A second scenario would change the current allocation per job to a reservation of

timeslots of whole machines (resp. CPUs). This would enable users to book a ma-

chine for a certain time span and use it to run as many jobs as possible. The prob-

lem with this scenario is a restriction of N1GE, which allows only one task per

CPU at a time. A possible solution to this would be virtualization, where virtual

machines are utilized on a layer between scheduler and resources to make single

CPUs “divisible”.

References
Chaubal, C., (2005): Scheduler Policies for Job Prioritization in the Sun N1 Grid

Engine 6 System. Sun BluePrints Online, Sun Microsystems, Inc., Santa

Clara, CA, USA, http://www.sun.com/blueprints/1005/819-4325.pdf.

Chun, B. N. and D.E. Culler (2000): Market-based Proportional Resource Sharing

for Clusters. Technical Report, Berkeley, CA, USA.

Foster, I., C. Kesselman and S. Tuecke (2001): The Anatomy of the Grid: Ena-

bling Scalable Virtual Organizations. International Journal of High Perfor-

mance Computing, Vol. 15, No. 3, pp. 200-222.

Johari, R. and J. Tsitsiklis (2004): Efficiency Loss in a Network Resource Alloca-

tion Game. Mathematics of Operations Research, Vol. 29, No. 3, pp. 407–

435.

Kay, J. and P. Lauder (1988): A Fair Share Scheduler. Communications of the

ACM, Vol. 31, No. 1, pp. 44-56.

Kelly, F., (1997): Charging and Rate Control for Elastic Traffic. European Tran-

sactions on Telecommunications, Vol. 8, No. 1, pp. 33-37.

Lai, K., B.A. Huberman and L. Fine (2004): Tycoon: A Distributed Market-based

Resource Allocation System. Technical Report, HP labs, Palo Alto, CA,

USA.

Maheswaran, R. and T. Basar (2005): On Revenue Generation When Auctioning

Network Resources. Proceedings of the 44
th

 IEEE Conference on Decision

and Control, and the European Control Conference.

Moulin, H. (2004): Proportional Scheduling, Split-proofness, and Merge-

proofness. Games and Economic Behavior, forthcoming.

 __A Pay-as-Bid Mechanism for Pricing Utility Computing

 711

Rappa, M.A. (2004): The Utility Business Model and the Future of Computing

Services. IBM Systems Journal, Vol. 43, No. 1, pp. 32-42.

Sanghavi, S. and B. Hajek (2004): Optimal Allocation of a Divisible Good to

Strategic Buyers. Proceedings of the 43
rd

 IEEE Conference on Decision and

Control.

Smidt, S. (1968): Flexible Pricing of Computer Services. Management Science,

Vol. 14, No. 10.

Stößer, J., D. Neumann and A. Anandasivam (2007): A Truthful Heuristic for

Efficient Scheduling in Network-Centric Grid OS. Proceedings of the 15th

European Conference on Information Systems (ECIS), June 7-9, 2007, St.

Gallen, Switzerland, forthcoming.

Stoica, I., H. Abdel-Wahab, et al. (1996): A Proportional Share Resource Alloca-

tion Algorithm for Real-Time, Time-Shared Systems. IEEE Real-Time Sys-

tems Symposium.

Sun N1GE 6 User’s Guide (2005), Sun Microsystems, Inc., Santa Clara, CA, U-

SA, http://docs.sun.com/app/docs/doc/817-6117/.

Sutherland, I. E. (1968): A Futures Market in Computer Time. Communications

of the ACM, Vol. 11, No. 6, pp. 449-451.

 Philipp Bodenbenner, Jochen Stößer, Dirk Neumann­__

 712

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2007

	A Pay-as-Bid Mechanism for Pricing Utility Computing
	Philipp Bodenbenner
	Jochen Stößer
	Dirk Neumann
	Recommended Citation

	bled2007-pay-as-bid_final

