
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2009 Proceedings Americas Conference on Information Systems
(AMCIS)

2009

Service Objects: Adaptable, Metadata-Based
Services for Multi-Tenant On-Demand Enterprise
Applications
Sebastian Enderlein
Hasso Plattner Institute, sebastian.enderlein@hpi.uni-potsdam.de

Marco Helmich
Hasso Plattner Institute, marco.helmich@hpi.uni-potsdam.de

Juergen Mueller
Hasso Plattner Institute for Software Systems Engineering, juergen.mueller@hpi.uni-potsdam.de

Jens Krueger
Hasso Plattner Institute, jens.krueger@hpi.uni-potsdam.de

Vadym Borovskiy
Hasso Plattner Institute, vadym.borovskiy@hpi.uni-potsdam.de

See next page for additional authors

Follow this and additional works at: http://aisel.aisnet.org/amcis2009

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Enderlein, Sebastian; Helmich, Marco; Mueller, Juergen; Krueger, Jens; Borovskiy, Vadym; Zeier, Alexander; and Plattner, Hasso,
"Service Objects: Adaptable, Metadata-Based Services for Multi-Tenant On-Demand Enterprise Applications" (2009). AMCIS 2009
Proceedings. 807.
http://aisel.aisnet.org/amcis2009/807

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2009%2F807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2009?utm_source=aisel.aisnet.org%2Famcis2009%2F807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2009%2F807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2009%2F807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2009?utm_source=aisel.aisnet.org%2Famcis2009%2F807&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2009/807?utm_source=aisel.aisnet.org%2Famcis2009%2F807&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Authors
Sebastian Enderlein, Marco Helmich, Juergen Mueller, Jens Krueger, Vadym Borovskiy, Alexander Zeier, and
Hasso Plattner

This article is available at AIS Electronic Library (AISeL): http://aisel.aisnet.org/amcis2009/807

http://aisel.aisnet.org/amcis2009/807?utm_source=aisel.aisnet.org%2Famcis2009%2F807&utm_medium=PDF&utm_campaign=PDFCoverPages

Enderlein et al. Service Objects

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 1

Service Objects: Adaptable, Metadata-Based Services for
Multi-Tenant On-Demand Enterprise Applications

Sebastian Enderlein

Hasso Plattner Institute

sebastian.enderlein@hpi.uni-potsdam.de

Marco Helmich

Hasso Plattner Institute

marco.helmich@hpi.uni-potsdam.de

Jürgen Müller

Hasso Plattner Institute

juergen.mueller@hpi.uni-potsdam.de

Jens Krüger

Hasso Plattner Institute

jens.krueger@hpi.uni-potsdam.de

Vadym Borovskiy

Hasso Plattner Institute

vadym.borovskiy@hpi.uni-potsdam.de

Alexander Zeier

Hasso Plattner Institute

alexander.zeier@hpi.uni-potsdam.de

Hasso Plattner

Hasso Plattner Institute

hasso.plattner@hpi.uni-potsdam.de

ABSTRACT

An adaptive, standardized service layer is a key feature of a multi-tenant on-demand enterprise application. Custom business

logic and data need to be exposed via services that are tailored to the respective customer organization. Ideally, this layer of

web services can be automatically derived from the underlying domain model. This paper aims to describe means to design

and implement such a service layer by following a lean, model-driven approach based on the runtime interpretation of

metadata. Finally, the implementation will be validated against a real-world show case.

Keywords

Software as a Service, On-Demand, Service-Oriented Architecture, Model-Driven Architecture, Web Services, REST, Multi-

Tenancy, Enterprise Software, Enterprise Resource Planning

INTRODUCTION

Software-as-a-Service (SaaS) is on the way up. Gartner forecasts the annual growth rate for SaaS enterprise applications at

22.1% through 2011, more than double the growth rate of the overall enterprise software market (Mertz, Eschinger, Eid,

Pring, 2007). The shift to on-demand software promises low recurring subscription fees instead of barely calculable upfront

costs and additional charges for maintenance, hardware, and professional services for adaptation. The high cost-saving

potential makes SaaS enterprise software interesting for Small and Medium-size Enterprises (SMEs) that cannot afford the

financial investments that come with professional on-premises enterprise software. Nonetheless, even SMEs appear to have

complex, unique business processes that are the key to their success (Fink and Markovich, 2008). Consequently, a central

requirement to an enterprise application is a high degree of flexibility.

By choosing to offer an enterprise application as a service that is consumed on demand, SaaS vendors will undergo major

changes in their own business model. A centralized hosting and operation of the application offers some cost-saving potential

through economies of scale. However, the pricing pressure will ultimately force the SaaS vendor to further lower the

operating costs by implementing multi-tenancy (Chong and Carraro, 2006), the ability to manage multiple customer

organizations in a single application instance. The result is a hosted, large-scale enterprise application that incorporates a high

degree of resource sharing between customer organizations (tenants).

As Chong and Carraro (2006) describe further, the two major requirements, multi-tenancy capabilities and flexibility, are

diverging. In our recent paper “Customizing Enterprise Software as a Service Applications: Backend Extension in a Multi-

tenancy Environment” (Mueller, Krueger, Enderlein, Helmich, Zeier, 2009), we described a way to enable flexibility in terms

of custom, tenant-specific business logic in a multi-tenant backend. In this paper in turn, we will now focus on means to

Enderlein et al. Service Objects

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 2

expose this tenant-specific business logic and data through a custom-tailored service layer to make additional features

remotely consumable in the first place.

RELATED WORK

Software as a Service has been first introduced by Bennett, Layzell, Budgen, Brereton, Macaulay, and Munro (1999) who

described an upcoming shift towards service-orientation and virtual market places. Sääksjärvi, Lassila, and Nordström (2007)

explain and evaluate the SaaS business model and identify possible risks, challenges, and benefits for stakeholders.

Chong and Carraro (2006) provide a high-level description of SaaS application architectures, discuss several degrees of

multi-tenancy and flexibility-related issues, and identify new markets to be addressed through SaaS. Guo, Sun, Huang, Wang,

and Gao (2007) introduce a framework for multi-tenant applications and present approaches to isolate tenants from each other

through a Multi-Tenancy Enablement Layer.

Schulz-Hofen (2007) introduces Webdata, a middleware to expose an object-oriented domain model as RESTful web

resources. Hirschfeld and Kawamura introduce an approach to implement dynamic and adaptable web services based on

Aspect-oriented Programming. Wirdemann and Baustert (2007) describe means to implement REST-based web services with

RubyOnRails.

A SERVICE-ORIENTED ARCHITECTURE TO EXPOSE THE TENANT-SPECIFIC DOMAIN MODEL

Every company has its own, unique set of business processes and data. Fowler defines the total of these elements as the

Domain Model of the respective enterprise (Fowler and Rice, 2006). The elements of this domain model are represented by

Business Objects (BOs) that model real-world entities related to the business as software artifacts. As described in (Mueller et

al, 2009), we see BOs as (object-oriented) objects that contain data and define operations on this data. We implemented a

domain model in Ruby and used Mixins to allow third party developers to implement tenant-specific modifications of BOs

without impacting the common code base or business logic and data of other tenants. While the execution of custom business

logic and the ability to store additional data are major milestones towards a flexible, multi-tenant enterprise application, a

major aspect has been left out, yet. How do we make (additional) business logic and data accessible to the customer?

The state-of-the-art answer to this question is the implementation of a Service Layer (see Figure 1), which “defines an

application’s boundary with a layer of services that establishes a set of available operation and coordinates the applications’

response in each operation” (Fowler and Rice, 2006).

Figure 1. A Service Layer to expose the Domain Model (Fowler and Rice, 2006)

While the implementation of a service layer is important in an on-premises enterprise application, it is essential to the success

of a SaaS solution. The whole product becomes worthless to customers if they are not able to remotely access their data and

processes in a standardized, comfortable manner.

Enderlein et al. Service Objects

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 3

Problem Statement

The multi-tenant architecture of the SaaS enterprise application has major impact on the design and implementation of the

service layer. While the application instance and major elements of the infrastructure are shared among tenants, each

customer organization requires custom-tailored services that expose its unique domain model and data. Consequently, the

application has to ensure that only the specific customer is able to consume the services, and that modifications of the service

layer at no circumstances affect other tenants. Furthermore, if the domain model of a specific tenant is modified, the

surrounding service layer needs to be adapted. A tenant-specific coding for each service leads to high redundancy and

additional implementation effort for partners in the context of a large-scale SaaS enterprise application with thousands of

customers. Thus, a model-driven approach based on a declarative notation to describe the elements of the domain model on

service level is required. The application in turn must be capable of interpreting the given descriptions at run-time, whenever

requests from the respective tenant are received.

Show Case

In order to illustrate the concepts that will be proposed, our considerations are framed by a real-world problem of a company

with 300 employees. The company sells folding facades, grew during the last years, now feels the need to implement an

Enterprise Resource Planning (ERP) system, and is attracted by the SaaS pricing model. During the implementation, various

customization requirements have been identified. Among them is the need for a Product Configurator to simplify and

accelerate offer generation and to automate sales engineering. This tool is going to be exposed to resellers who can enter sales

orders for a defined set of products on their own. The work and the material for entered sales orders are thereafter disposed

automatically. The ERP system which is about to be implemented, does not offer such a feature by default. Therefore, it is

subject to customization.

In the described case, the customization covers the introduction of a completely new BO which stores the configuration and

the extension of the BO Lineitem (which is attached to BO Opportunity) by a reference to this new business object.

Therefore, the new BO Configuration is created and attached to a Lineitem. The folding facades produced by the company

have characteristics such as height, width, color, and a glass type. All these attributes are persisted. Furthermore, a method to

calculate the price of the current configuration is required. The new object structure is visualized in Figure 2 using the

Fundamental Modeling Concepts (FMC) (Knoepfel, Groene, Tabeling, 2005).

Figure 2. Modifications to the domain model (FMC Entity-Relationship Diagram)

Enderlein et al. Service Objects

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 4

In Mueller et al. (2009), we described how to modify the domain model to meet the requirements of the customer.

Furthermore, the Configurator UI component must be able to remotely consume the additional data and trigger custom

business logic such as the calculation of the price for the current configuration (see Figure 3).

R
SaaS Application Backend

Service Layer

Opportunity

Flexibility Framework

Lineitem Ext.

Configuration

R

R

Reseller

R
Legend

R

Agent

Storage

Channel (request)

Structure Variance

Figure 3. Architecture with extended Service Layer (FMC Block Diagram)

The extension of BO Lineitem and the new BO Configuration require additional services to be consumed by the Configurator

component. A Flexibility Framework, which is not in the scope of this paper, has to integrate the changes into the existing

domain model and must expose the extended features as services.

Web Service Technologies

In the following, we will introduce technologies and architecture styles that facilitate the implementation of a service layer.

SOAP

SOAP is a network protocol that defines an XML-based messaging framework that can be used to “exchange structured and

typed information between peers in a decentralized, distributed environment” (Mitra and Lafon 2007). SOAP acts as a

standardized envelope for data elements that are defined in a common, interoperable format (Fremantle, Weerawarana,

Khalaf, 2002). SOAP furthermore supports the definition of bindings to underlying protocols to transport these envelopes as

messages.

REST

Representational State Transfer (REST) is a software architecture style for distributed hypermedia system that was first

introduced by Fielding (2000). The principle element in REST is a resource, any piece of information such as a picture,

hypertext, or a BO. Besides raw data, every resource contains representation metadata that describes the resource. Typical

examples for representations are documents, files, or messages. A resource can be uniquely identified by a resource

identifier, for instance a URL. Interaction with resources is by default stateless, requiring each request to contain all

necessary information to fulfill the current operation. The communication interface leveraged for the information exchange

must be uniform and decoupled from the actual service provided. The most commonly used example for a uniform interface

is a binding to the four most frequently used operations of the HTTP protocol: GET, POST, PUT, and DELETE.

• GET is used to retrieve a representation of the resource referenced by the resource identifier. GET operations are

safe, meaning that they may not have any impact on the state of the resource on the server side. Consequently, GET

operations are idempotent, which means that multiple requests will always cause identical side effects (Schulz-

Hofen, 2007).

• POST operations cause state changes and are typically used to create new resources in the context of the resource

referenced by the resource identifier in form of a URI. If a POST request delivers a representation in its message

body, the represented resource will be stored and appended as a subordinate of the referenced resource (Schulz-

Hofen, 2007). Consequently, POST operations are neither idempotent nor safe.

Enderlein et al. Service Objects

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 5

• PUT updates or creates the resource identified by the URI and is consequently idempotent, but not safe.

• DELETE operations request to delete the resource specified in the URI. DELETE is not safe, but idempotent.

IMPLEMENTATION

In the following, we will describe our approach for a service layer that copes with the challenges described in the Problem

Statement. The resulting implementation will be validated based on the given show case. In our last paper, the

implementation of a flexible, multi-tenancy-enabled backend was based on RubyOnRails. Thus, it is recommended to take

over this decision and develop the service layer in Ruby and leverage the features of the Rails framework.

Basic Assumptions

A basic requirement for the service layer is the ability to adopt and expose modifications of the underlying domain model in

an automated manner without the need for further manual intervention. This domain model “creates a web of interconnected

objects” (Fowler and Rice, 2006), which we defined as Business Objects consisting of data and behavior and implemented in

Ruby. Consequently, an automated adoption of modifications to a Business Object can only be reached if the relationship

between services and BOs is a 1:1 mapping. If every BO is surrounded by its own service, and if service methods can be

automatically mapped to methods of the underlying object, it is possible to expose new features through additional service

methods. By implication, two dependent BOs expose two web services that depend on each other.

Before we can implement an object-oriented service layer as described above, it is recommended to design the general

architecture of the service layer as well as methodologies to describe and access the services available.

A RESTful Interface

Both approaches, SOAP as well as REST, can be used to implement the service layer. Nonetheless, each of them has its

specific advantages and drawbacks, as described by Cappell (2009). SOAP focuses on messages and access to named

operations, while REST emphasizes the exposure of resources with a hierarchical, URI-based paradigm. Both features will be

required, but a resource-based approach is close to our demand for an object-oriented service layer. We will thus draw on

REST and expose BOs as resources. Consequently, attributes of a specific BO are referenced by a URL that identifies the BO

and points to the subordinate attribute (see Figure 4).

Figure 4. Example REST request to retrieve all Lineitems of Opportunity “12345”

By implementing a RESTful service interface, we are able to structure our domain model in a hierarchy based on namespaces

and parent-child relationships. It is furthermore possible to perform CREATE, READ, UPDATE, DELETE (CRUD)

operations on each BO. However, our domain model contains object-oriented BOs that consist of data and behavior.

Consequently, a structured way to perform BO operations other than CRUD has to be provided.

Enderlein et al. Service Objects

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 6

A popular approach that is followed by service platforms such as Facebook, Amazon S3, or Flickr is to define a REST-like

service interface that takes up basic concepts of REST, but offers enhanced functionality. We follow this approach and define

a grammar to execute BO-specific operations (see Figure 5).

Figure 5. A RESTful interface to facilitate BO-specific operations using HTTP POST

It is now possible to execute operations on the BO (instance) that is referenced by the resource identifier by using a dedicated

action tag as well as optional method parameters in the POST message body.

We cannot predict the side effects and semantics of specific BO operations, but we must assume that they may change the

state of the resource referenced. Thus, calling methods with HTTP GET would violate the safety constraint. Calling BO-

specific operations can be best compared to an UPDATE operation. Since most browsers are not capable of sending PUT

messages, it is recommended to use HTTP POST.

Service Object Descriptors

By implementing a REST-like service as described above, we are now able to create, read, update, and delete elements of the

domain model. It is furthermore possible to execute any operation that is offered by the respective Business Object. However,

a proper use of the service layer is only possible if sufficient metadata can be provided. Otherwise, the result of operations or

the structure of each object would be unknown to the service consumer, which complicates the development of service

clients. Thus, we need to provide structured information that sufficiently describes the shape and features of the underlying

domain model elements. We will start by defining a new type of object:

Service Objects (SOs) are real-world entities that expose behavior and data through a service layer. Each SO leverages an

underlying Business Object that implements the exposed functionality and data. It is described by a Service Object

Descriptor (SO Descriptor), including its attributes, operations, and associations to other objects. In Mueller et al. (2009), we

introduced a basic Domain-Specific Language (DSL) based on XML to specify BOs. We will follow this approach and define

the Service Object Description Language (SODL), which consists of the following key elements derived from the underlying

BOs:

• Description Root: The root element of a SO Descriptor contains the BO class that is referenced by the SO.

• Associations: All associations to other objects need are listed under this node. Each association is described by a

relationship type / cardinality (“belongs_to”, “has_one”, or “has_many”), the name of the association, as well as the

target class and a visibility tag (“public”, “private”).

• Properties: All attributes of the underlying BO that shall be exposed are listed here with a description of their type

and a visibility tag (“read”, “write”, “readwrite”).

• Methods: This node contains all BO methods the Service Object may expose to consumers. Each method is defined

by a name, a return type, and an optional list of parameters.

Enderlein et al. Service Objects

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 7

An example of a SO Descriptor for the object “Configuration” is visualized in Listing 1.

<business_object name="Configuration">

 <associations>

 <association cardinality="has_one" name="material" target_type="Material" visibility="public"/>

 <association cardinality="has_one" name="glass" target_type="Glass" visibility="public"/>

 <association cardinality="has_one" name="color" target_type="Color" visibility="public"/>

 <association cardinality="belongs_to" name="lineitem" target_type="Lineitem" visibility="public"/>

 </associations>

 <properties>

 <property name="width" access="readwrite" type="Float"/>

 <property name="length" access="readwrite" type="Float"/>

 <property name="weight" access="read" type="Float"/>

 <property name="price" access="read" type="Integer"/>

 </properties>

 <methods>

 <method name="get_progress" return_type="Integer"/>

 </methods>

</business_object>

Listing 1. SO Descriptor for Configuration

The scope of SODL is similar to WSDL (Christensen, Curbera, Meredith, Weerawarana, 2001), namely to describe the

respective web service at design time. However, WSDL defines many elements, such as port types, end points, or bindings,

which are not required when using REST. Although these shortcoming have been tackled with WSDL 2.0 (Mandel , 2008),

no built-in means to describe BOs (including their attributes, methods, and associations) are provided, but an additional

notation on top of WSDL would be required.

The SO Descriptor acts like a Facade (Gamma, Helm, Johnson, Vlissides, 1995) and allows a clear separation between the

Service Layer and the underlying BO. Only methods, associations, or parameters that are listed in the SO Descriptor may be

accessed by external service consumers, while the BO itself may contain additional data or behavior.

Business Object Extensions

In the presented show case, a new Business Object named Configuration needs to be implemented and made accessible via

services. Furthermore, the existing BO Lineitem will be extended by a reference to Configuration. Consequently, the BO and

the SO Descriptor of Lineitem have to be modified. Similar to new BOs, an extension to an existing BO consists of a source

code file that introduces new data and behavior and a SO Descriptor with a slightly different schema. The description file for

the extension of Lineitem is shown in Listing 2.

<bo_extension name="LineitemExtension" parent="Lineitem">

 <associations>

 <association name="configuration" cardinality="has_one" target_type="Configuration" … />

 </associations>

 <properties/>

 <methods/>

</bo_extension>

Listing 2. Service Object Descriptor for LineitemExtension

In the given example, the extension of Lineitem adds a single association to the BO Configuration. The SO Descriptor

furthermore contains a reference to the core BO Lineitem as well as the name of the extension.

Once the customer of the extension attempts to install the extension, the Flexibility Framework (see Figure 3) will merge

both descriptions into a new, tenant-specific SO Descriptor and store this metadata in a repository.

Enderlein et al. Service Objects

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 8

Service Request Handling

The dynamic nature of the implemented SaaS application bears additional challenges to service request handling. It is

possible that additional BOs may have to be loaded into the application at run time. This implies that a service request for a

Service Object may arrive at a time where the underlying BO class as well as the SO Descriptor are not yet loaded and

available to the application. However, some entity has to handle the request in the first place. Thus, a Generic Controller by

default receives all requests, retrieves the tenant-specific context information consisting of the SO Descriptor and the BO

class, and forwards the request to the specific BO (see Figure 6).

Metadata/Code

Repository

SO Descriptor

BO Source Code

Generic Service Controller

R

Service Object

Business Object

Public interface

R

Figure 6. General Architecture to handle service requests (FMC Block Diagram)

The Generic Controller has to perform certain tasks before it forwards the requests to the BO. The most important of these

tasks are:

• Authentication and authorization: Once the identity of the requesting user has been proven, the user-/tenant-specific

context, consisting of the SO Descriptor and the tenant-specific Business Object, can be loaded. Based on the

metadata description, the Generic Controller now consumes the Public Interface to decide whether the user is

allowed to execute the requested operation for the specific BO or not. This interface is generated by the Flexibility

Framework and consists of the methods, attributes, and associations listed in the SO Descriptor.

• Resolving requests: In order to be able to forward the request to the BO, the Generic Controller has to identify which

BO was actually referenced by the request. Following the resource orientation of the REST paradigm, this

information can be retrieved by analyzing the request URL. If the requested action was meant to be performed on a

BO instance, the Generic Controller will load this instance and hand over the request to the BO instance instead of

the BO class. A "create" request for an Opportunity for example should be handled by the BO class Opportunity,

and not by an already existing Opportunity instance. Updating the status field of the BO Opportunity from "Open" to

"Closed" on the other hand only makes sense on an instance of Opportunity.

Enderlein et al. Service Objects

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 9

Before the request can be handed over to a BO class or instance, it is necessary to map the request action to a BO operation

and to bring all parameters in correct order. This step is only important in case of web service requests, because parameters

defined in a URL may occur in a different order than expected, leading to a BO method call with corrupted data. Thus, the

SO Descriptor is used identify the target method and to reconstruct the correct order of parameters (see Listing 3).

1 def call_matching_method(obj, method_name, params)

2 # raise exception if the method does not exist

3 unless obj.service_methods.include? method_name.downcase

4 raise ArgumentError, "Method '#{method_name}'' does not exist!"

5 end

6 # raise exception if parameter count is not equal

7 unless obj.service_methods[method_name.downcase].size == params.size

8 raise ArgumentError, "Method '#{method_name}'' requires a different number of parameters!"

9 end

10 # check if all expected parameters are delivered

11 plist = []

12 obj.service_methods[method_name.downcase].each do |p, type|

13 unless params.include? p

 raise ArgumentError, "Method '#{method_name}'' requires different parameters!"

14 end

15 plist << params[p]

16 end

17 # call the method

18 obj.send(method_name, *plist)

19 end

Listing 3. Implementation of a matching algorithm from Service operations to BO methods

A service method and a BO operation can be considered to match, if their names (line 3) as well as their parameter count

(Line 7) and parameter names (Line 13) are equal.

Once the BO operation has been identified and all parameters are in correct order, the BO will execute the operation (Line

18). Finally, the results (if there are any) are returned to the Generic Controller, who serializes the result object to XML or

JSON and sends a response containing the serialized object back to the requesting party.

VALIDATION

In the Problem Statement, we depicted several challenges regarding the construction of a services layer in a multi-tenant

enterprise application. In this section, we will validate the concepts described in this paper against these issues and we will

furthermore evaluate how our implementation matches the needs described in the show case.

• Implement a service layer to expose the domain model: We introduced the concept of an object-oriented service layer

that provides services for all elements of the domain model. This service layer follows a REST-like approach and can be

consumed via basic HTTP methods.

• Follow a model-driven approach to enable the immediate and implicit adaptation of changes to the domain

model(s): We introduced Service Objects that expose the features of underlying BO according to a SO Descriptor. The

interpretation of this model described in metadata as well as the construction of the SO takes place at runtime when a

request for the specific object is received. Consequently, modifications of the domain model will be immediately and

automatically adapted by the surrounding service.

• Clearly separate all tenants from each other and provide unique services that match the domain model of the

specific tenant: The Generic Controller is able to identify the appropriate tenant based on the login information and will

provide this information when it retrieves the required objects and metadata. Neither the SO Descriptor, nor any third party

source code is able to reference entities outside the own tenant, since the multi-tenancy is completely encapsulated by the

framework.

In the show case presented, a customer organization required additional Business Objects as well as BO extensions in order

to automate their sales processing. We have provided a dynamic and flexible service layer that is capable of exposing custom

business logic by drawing on metadata. We have furthermore described the shape of the additional metadata required in the

given showcase (see Listings 1 and 2). Given a flexible domain model as described in Mueller et al. (2009), we are able to

integrate this custom business logic and automatically adapt the tenant-specific service layer without affecting other

Enderlein et al. Service Objects

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 10

customers of the SaaS enterprise application. Consequently, a development partner is now able to implement a Configurator

UI component that accesses these additional services and facilitates the automation of the sales processing as described in the

show case.

CONCLUSION

The success of a SaaS enterprise application highly depends on the cost-saving potential, in contrast to a traditional enterprise

application. The new business model ultimately forces SaaS vendors to implement a multi-tenant architecture to make their

product affordable for SMEs.

Despite a shared infrastructure, the solution has to be flexible enough to facilitate tenant-specific domain models.

Consequently, the services that expose this domain model have to be tailored to the specific requirements of each customer

organization without affecting other tenants or the common code base.

In our paper we provided a lean, interpreted approach to implement a service layer that fulfills these requirements. We

furthermore introduced a real-world show case that covers the implementation of a typical partner extension. Based on the

architecture proposed, we provided means on how a partner could extend the core business logic to satisfy the requirements

of the customer organization. Finally, we validated our approach by drawing on the requirements of a real-world show case.

By providing a multi-tenant, but flexible enterprise architecture with tenant-specific domain models and a service layer that is

automatically derived from this model, we aim to encourage 3
rd

 party developers to enhance the basic application and frame a

rich ecosystem of partners.

Outlook

The model-driven service layer we proposed in this paper enables service consumers to request SO Descriptors in order to

learn about the structure of the Service Objects available. However, to make our solution usable with low implementation

effort, we need to provide tools to create client side object proxies, similar to a WSDL Stub Generator.

In the limited scope of this paper, we furthermore assumed that all services of an enterprise application can be bound to

specific BOs, leaving out cross functionality or higher-level operations. It is likely that a SaaS ERP solution will require an

additional set of services. We will conduct further research on the implementation of a Composite Layer on top of the

architecture presented in this paper.

REFERENCES

1. Mertz, S., Eschinger, C., Eid, T., Pring, B. (2007) Dataquest Insight: SaaS Demand Set to Outpace Enterprise

Application Software Market Growth, Gartner Dataquest

2. Fink, L., Markovich, S. (2008) Generic Verticalization Strategies in Enterprise System Markets: An Exploratory

Frameworkm, Beer-Sheva, Israel, Ben Gurion University of the Negev

3. Chong F., Carraro G. (2006) Architecture Strategies for Catching the Long Tail, MSDN Library, Microsoft Corporation,

http://msdn.microsoft.com/en-us/library/aa479069.aspx

4. Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay, L., Munro, M. (1999) Service-Based Software: The Future

for Flexible Software, Durham, UK, University of Durham, http://www.bds.ie/Pdf/ServiceOriented1.pdf

5. Sääksjärvi, M., Lassila, A., Nordström, H. (2007) Evaluation The Software As A Service Business Model: From CPU

Time-sharing to Online Innovation Sharing, Proceedings of the sixth conference on IASTED International Conference

Web-Based Education – Volume 2, ACTA Press, Anaheim, CA, California, pages 322-330.

6. Guo, C. J., Sun, W., Huang, Y., Wang, Z. H., and Gao, B. (2007), A framework for native multi-tenancy application

development and management, E-Commerce Technology and the 4th IEEE International Conference on Enterprise

Computing, E-Commerce, and E-Services, CEC/EEE 2007, The 9th IEEE International Conference on, pages 551-558,

July 2007.

7. Mueller, J., Krueger, J., Enderlein, S., Helmich, M., Zeier, A. (2009) Customizing Enterprise Software as a Service

Applications: Backend Extension in a Multi-tenancy Environment, Proceedings of the 11
th
 International Conference on

Enterprise Information Systems (ICEIS 2009) (to appear), May 6 – 10, Milan, Italy, http://epic.hpi.uni-

potsdam.de/pub/Home/JuergenMueller/Mueller_Krueger_Enderlein_Helmich_Zeier_-

_Customizing_Enterprise_SaaS_Applications.pdf

Enderlein et al. Service Objects

Proceedings of the Fifteenth Americas Conference on Information Systems, San Francisco, California August 6th-9th 2009 11

8. Schulz-Hofen, J. (2007) WebData - Definition of a Middleware for Exposing and Accessing Object-oriented Domain

Models as Web, September 25, Hasso-Plattner-Institute for IT-Systems Engineering, Potsdam, Germany,

http://www.scribd.com/doc/2218300/WebData-Defnition-of-a-Middleware-for-Exposing-and-Accessing-Objectoriented-

Domain-Models-as-Web-Resources

9. Wirdemann, R., Baustert, T. (2007) RESTful Rails Development, March 26, b-Simple, Hamburg, Germany

10. Fowler, M., Rice, D. (2006) Patterns of the Enterprise Application Architecture, Addison-Wesley, Boston, MA, USA

11. Knoepfel, A., Groene, B., Tabeling, P. (2005) Fundamental Modeling Concepts: Effective Communication of IT

Systems, Wiley, Chichester, England

12. Mitra, N., Lafon, Y. (2007) SOAP Version 1.2 Primer, W3C, http://www.w3.org/TR/soap12/.

13. Fremantle, P., Weerawarana, S., Khalaf, R. (2002) Enterprise Services, Examining the emerging field of Web Services

and how it is integrated into existing enterprise infrastructures, Communications of the ACM, October 2002/Vol. 45 No.

10, 77 – 82

14. Chappell, D. (2009) SOAP vs. REST: Complements or Competitors?, 2009 ESRI Developer Summit Keynote, March 25,

http://www.esri.com/events/devsummit/pdfs/keynote_chappell.pdf

15. Mandel, L. (2008), Describe REST Web services with WSDL 2.0, IBM developerWorks library, May 29,

http://www.ibm.com/developerworks/webservices/library/ws-restwsdl/

16. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S. (2001) Web Services Description Language (WSDL) 1.1,

W3C Note, http://www.w3.org/TR/wsdl

17. Fielding R. (2000) Architectural Styles and the Design of Network-based Software Architectures, University of

California, Irvine, USA, http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

18. Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995) Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley Longman, Amsterdam, 1
st
 Edition, March 1995

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	Service Objects: Adaptable, Metadata-Based Services for Multi-Tenant On-Demand Enterprise Applications
	Sebastian Enderlein
	Marco Helmich
	Juergen Mueller
	Jens Krueger
	Vadym Borovskiy
	See next page for additional authors
	Recommended Citation
	Authors

	Microsoft Word - $ASQ5989855_File000008_90417348.doc

