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ABSTRACT 

Accuracy assessment is a key issue in data quality management. Most of current studies focus on how to qualitatively analyze accuracy 
dimension and the analysis depends heavily on experts’ knowledge. Seldom work is given on how to automatically quantify accuracy 
dimension. Based on Jensen-Shannon Divergence (JSD) measure, we propose accuracy of data can be automatically quantified by 
comparing data with its entity’s most approximation in available context. To quickly identify most approximation in large scale data 
sources, Locality-Sensitive Hashing (LSH) is employed to extract most approximation at multiple levels, namely column, record and field 
level. Our approach can not only give each data source an objective accuracy score very quickly as long as context member is available but 
also avoid human’s laborious interaction. Theory and experiment show our approach performs well in achieving metadata on accuracy 
dimension. 

Keywords 

Data quality, Accuracy, Jensen-Shannon Divergence (JSD) , Locality-Sensitive Hashing (LSH), Context 

INTRODUCTION 

Data quality assessment is as follows. Given a set of data sources which describe the same set of entities, we are to give each 
data source a score indicating how good that data source is in terms of quality dimensions including accuracy, completeness, 
consistency, etc (Aebi and Perrochon, 2000; Wand, 1996). This is a pressing concern in multiple-source environment, 
especially in CIS (Scannapieco, 2004). The goodness of data can be measured in terms of many dimensions but in this paper 
we only focus on accuracy dimension as many other quality dimensions are related to it (Motro, 2006; Parssian, 2002). 
Intuitively, accuracy gives to what extent correctness of data is satisfied. 

A possible way to solve above problem is to invite a human expert to identify all the perfect representations of the entities. 
Then, accuracy can be measured by comparing data with their perfect representations based on some measures (Kukich, 
1992). Unfortunately, this approach does not scale well for large multiple-source environment since it introduces huge human 
efforts. In addition, people usually use ad hoc ways to compare different types of data to quantify accuracy and  it becomes a 
necessity to find a universal accuracy measure for different types of data. 

We propose a novel approach to Quantify Accuracy within Context at Multiple levels (QACM). Our QACM approach can 
automatically and quickly assess data source in terms of accuracy dimension with little human efforts, which is the greatest 
advantage of our approach. Our solution is based on this observation. In a domain specific multiple-source environment, 
especially in CIS system, the same entity is often redundantly stored in many data sources and the same syntax notation 
usually denotes the same entity. Although each data source in CIS is independently maintained and unintentional errors often 
occur, it is not likely that all the copies of the same entity are simultaneously wrong. Naturally, we propose that most 
approximation can be extracted among all overlapped data sources by vote-fusion （Bergamaschi，1999） and accuracy 
can be figured out by comparing data with most approximation. Specifically, accuracy is assessed with three phases as 
follows. 

Phase 1: Identifying Context 
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By mapping each data source into a q-gram metric space (Kukich, 1992), context of one data source is quickly identified, 
which provides highly relevant data sources to be compared with . 

Phase 2: Extracting Most Approximation 

It consists of two steps: preprocessing and extraction. In preprocessing, objects (column, record or field) are mapped onto 
buckets based on LSH signatures (Gionis, 1999; Cohen, 2001; Indyk, 1998) such that the probability of collision is much 
higher for objects that are close to each other than for those that are far apart. In extraction, we first find every object’s top K  
Nearest Neighbors ( KNN ). Then, most approximation of each object is chosen by vote-fusion among all similar ones. 

Phase 3: Measuring Accuracy 

Accuracy is quantified by comparing data source with its most approximation based on Jensen-Shannon Divergence (JSD), 
which gives birth to a universal accuracy measure for different types of data. 

In particular, contributions of this paper are made as follows. 

 We propose data source’s most approximation can be derived from its available context and thus accuracy can be 
automatically quantified by comparing data source with its most approximation with little human’s interaction. 

  Most approximation of column, record or field is extracted by vote-fusion among all its KNNs from contextual data 
sources. This guarantees that a reasonable most approximation can be found by searching a very small portion of data.  

 LSH technique is exploited to retrieve approximate KNNs when most approximation of data source is extracted at 
different levels. It scales well with size of each data source and total context data source number. 

RELATED WORK 

Quality evaluation can be divided into two categories. The first category focuses on qualitatively analyzing data quality 
dimensions (Aebi, 1993; Bouzeghoub, 2004; Orr, 1998; Wang, 1993, 1996). These research mainly gives what data quality 
means and how to measure data quality qualitatively and it is needed to ask people to give the quality rating or quality tags. 
This is too laborious and even impossible for large scale data sources. Literature (Chiang, 2008) proposes to discover 
conditional functional dependencies to identify conformant and non-conformant records. It aims at consistency dimension 
and does not touch on accuracy dimension. 

The second category deals with how to quantitatively assess quality of relational data (Motro, 1996; Parssian, 1999, 2002). 
Literature (Parssian, 1999, 2002) gives methods to estimate accuracy and completeness in terms of record level. Literature 
(Motro, 1996) gives an approach to assess soundness and completeness of relational data. Main drawback of these 
approaches is that manual verification is very laborious. In fact, it is not a good policy and even infeasible for large data 
sources. Literature (Ballou, 2006) proposes to estimate query result quality by sampling from base tables. Of course, it can 
not precisely quantify data source’s quality. 

The work closely relevant to ours is how to assess data quality in CIS (Bertolazzi, 2001; Majkic, 2004; Mecella, 2002; 
Scannapieco, 2004). In literature (Bertolazzi, 2001), a methodological framework for data quality in cooperative systems has 
been proposed, consisting of five phases (i.e., definition, measurement, exchange, analysis and improvement). 
DaQuinCIS(Majkic, 2004; Mecella, 2004; Scannapieco, 2004) is also a platform to address interoperability in CIS. But they 
do not give how to determine the reference against which data quality can be gauged and how to effectively quantify quality 
dimensions in CIS. 

PROBLEM SETTING AND BASIC CONCEPTS INVOLVED 

Definition 1: Given a set of entities E = {e1,…,en}, a Cooperative Information System (CIS) is N data sources D = {T1,…, TN} 
which store E as follows. Each data source Ti ∈ D contains a lot of records, i.e., Ti ={r1,…,rn} and each record ri  ∈ Ti is a 
copy of ei with unexpected modifications such as missing data, wrong data or non-standard representations , etc. 

Our aim is to give each data source Ti a score to indicate its accuracy with regard to E. Note schema mapping can be 
automatically obtained by many schema mapping techniques(Bergamaschi, 1999; Palopoli, 2000) or data profiling tools 
(Dasu, 2002; Evoke).  

Unintentional error of the data is due to random reason to some extent, which further determines how much information is 
conveyed by data. Hence, it is intuitive to borrow some concepts from information theory to quantify accuracy. 

Definition 2: Given two distributions P(X) and Q(X), their Jensen-Shannon Divergence (JSD) is defined as  
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JSD(P||Q) =
2

1
D(P||M) +

2

1
D(Q||M),  

where M =  (P + Q)/2, D(P||M) is differential entropy between P and M and D(Q||M) is differential entropy between Q and M. 

QUANTIFYING DATA SOURCE’S ACCURACY IN CONTEXT  

Given a data source Ti, although its perfect representation E is not available, a number of copies of E (including Ti ) are 
stored in D and we can approximate E from its redundant copies.  

 Identifying data source’s context 

Definition 3: Given a data source Ti, similarity measure sim(.,.) and similarity threshold θcon , context of a data source Ti is 

con(Ti) = {Tj |sim(Ti, Tj) ≥ θcon, j = 1,…,N}. 

Namely, con(Ti) consists of all the syntax-similar data sources. Similarity between Ti and Tj is calculated with two steps. First, 
we compute the similarity between every corresponding columns Ti[k] and Tj [k] for 1 ≤k ≤m ( m is total number of attributes 
of data source). In this paper we adopt Jaccard coefficient, which belongs to LSH family (Indyk, 1998), as such  

sim(Ti[k], Tj [k]) = Jacc(Ti[k], Tj [k]) =|Gq(Ti[k]) ∩Gq(Tj [k])|/|Gq(Ti[k])  ∪ Gq(Tj [k])|,  

where Gq(Ti[k]) is q-gram multiset (Kukich, 1992). For numerical value, we can also embed it into q-gram metric space by 
dividing  it into a sequence of intervals.  

Second, similarity between two data sources Ti, Tj with m common columns is calculated as 

sim(Ti, Tj) = ])[],[(*
1

1 kTkTsim ji

m

k

km


  . 

We collect similar data sources of Ti and regard all the similar data sources (including Ti) as context of Ti, which is achieved 
by Alg.1. We can see time of scanning all the data sources is dominant in Alg.1. 

Algorithm 1: identifyDataSourceContext 

Input: Ti , D={T1, T2, . . . , TN}, column weights ω1, ..., ωm and similarity threshold θcon 

Output: con(Ti) 
 con(Ti) ← ∅ ; 
 Each column of Ti is mapped into q-gram metric space,denoted as Gq(Ti[k])(1 ≤k ≤m); 
 for j ← 1; j ≤ N do  

accSim ← 0; 
  for k ← 1 to m do 

         map Tj [k] into q-gram space,denoted as Gq(Tj [k]); 
accSim ← accSim + ωk *|Gq(Ti[k])∩Gq(Tj [k])|/|Gq(Ti[k])∪Gq(Tj [k])|  ;  

 end 
if accSim/m ≥θcon  then  con(Ti) ← con(Ti)  {∪ Tj}; 

 end 
return con(Ti); 
 
Furthermore, top K context of Ti, denoted as conK(Ti), is defined as follows. 

Definition 4: conK(Ti) is the set constituted by top K similar data sources in con(Ti).  

ConK(Ti) can be similarly obtained as Alg.1 except that it should return the top K ones. 

 

Extracting Data Source’s Most Approximation 

We resort to LSH technique to extract data source’s most approximation by regarding each column (record or field) as a point 
in q-gram metric space. The principle behind LSH is that collision probability of two points is closely related to the similarity 
between them. Specially, the smaller the similarity is , the smaller the collision probability is. This can be summarized as 
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theorem 1. 

Theorem 1: Let sim(.) be set resemblance measure (such as Jaccard coefficient) of space Γ. Then, for 1 > ρ1 > ρ2 > 0, there 
exists a family H of hash functions such that the hash family is (ρ1, ρ2, ρ1, ρ2)-sensitive. That is to say, for any two point u, v 

(1) if u  ∈ B(v, ρ1), then Pr[h(u) = h(v)] ≥ρ1, 

(2) if u ∉  B(v, ρ2), then Pr[h(u) = h(v)] ≤ρ2 

where B(v, ρ) = {p : sim(p, v) ≥ρ}. 

In order for a locality-sensitive family to be useful, it has to satisfy the inequality ρ1 > ρ2. Family of hash function used by 
LSH can be extended naturally from set to multiset (Haveliwala, 2000). Alg.2 gives how to map a set of points into hash 
tables. 

Algorithm 2: LSHHash 
Input: Parameter κ and ℓ, a family of LSH functions {h1(.), ..., hπ(.)}, a set of points in Γ 
Output: Hash tables Tj , j = 1, .., ℓ 
foreach j = 1, ..., ℓ do 

Initialize hash table Tj by generating a random hash function gj(.) = (h(j−1)*κ+1(.), ..., hj*κ(.)); 
end 
foreach j = 1, ..., ℓ do 

foreach point pi ∈Γ do 
store identifier on bucket gj(h(j−1)*κ+1(pi), ..., hj*κ(pi)) of hash table Tj; 

       end 
 end 
 
Second, to identify the similar ones of  query point u (a column, a record or a field value), u is mapped onto buckets with the 
same hash functions as used in Alg.2 and all the points encountered are regarded as candidates. Note we only need to search 
similar points stored in conK(Tfather(u)) (here u  ∈ Tfather) because similar ones are more likely stored in these data sources and 
we do not need to search whole context. This is achieved by Alg.3 and its total times of accessing hash tables is bounded by 
O(Kℓ). The following three sections address how to efficiently extract most approximation at column, record and field level 
respectively by virtue of LSH technique. 

Algorithm 3: findSimilar 

Input: A point u ∈Γ, conK(Tfather(u)) 

Output: similar ones Φ 

Φ←φ; 

 foreach Ti  ∈ conK(Tfather) do 

      for j ← 1 to ℓ do 

        map u based on gj(.); 

Φ ←Φ  ∪ points found in buckets gj(u) of hash table Ti
j ; 

 end 

 end 

 return Φ; 

 

Extracting Most Approximation at Column Level 

 In this policy, similarity between two data sources, say Ti and Tj , is calculated at column level. Most approximation of Ti is 
the concatenation of its every column Ti[k]’s most approximations (here 1 ≤ k ≤ m). Specifically, frequency of a certain q-
gram is total times of occurrences in one column. Most approximation is achieved by two steps as follows. 

Step 1: Preprocessing to Store Each Column Onto Buckets Based on the Column’s LSH Signatures 
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Each column that belongs to context is regarded as a point and mapped onto some buckets with Alg.2. Based on theorem 1, 
we know that if two columns are similar, there is a high probability that they are mapped onto the same bucket. At the end, ℓ 
hash tables are constructed in context and the buckets in Tj [k](1 ≤ j ≤ ℓ, 1 ≤ k ≤ m) store the k-th columns that agree with gj(.). 

Step 2: Extracting Most Approximation 

Ti’s most approximation with regard to E, denoted as Ti’, is composed of (Ti[1]′, Ti[2]′, ..., Ti[k]′, ..., Ti[m]′), where Ti[k]′(1 ≤ k 
≤m) is most approximation of column Ti[k]. Vote-fusion policy is used to determine Ti[k]’s most approximation. Specifically, 
the column whose number of similar ones is largest is selected as the best one. Concrete steps are described in Alg.4. As 
findSimilar algorithm’s running time is bounded by O(Kℓ), time complexity of Alg.4 is O(mKηℓ), where η = |con(Ti)|. 

Algorithm 4: mostAtColumn 

Input: con(Ti), hash tables T1[1], ..., Tℓ[1], ...., T1[m], ..., Tℓ[m] 

Output: most approximation Ti’ 

 simColIndex[m] = {i, ..., i}; /* Initialize */ 

 for k ← 1 to m do 

 simColmnNumArray[|con(Ti)|] = {1, ..., 1}; 

       maxNum ← 1; 

 for j ← 1 to |con(Ti)| do 

  simColumSet ← ∅ ; 

  simColumnSet ←findSimilar(Gq(Tj [k]), conK(Tj)); 

  merge(simColumnNumArray, simColumnSet); 

 end 

       simColIndex[k] ← index of simColumnNumArray entry with largest value ; 

 end 

 for k ← 1 to m do 

Ti′[k] ← TsimColIndex[k][k]; 

 end 

return Ti’; 

 

This policy can extract a most approximation with regard to E quickly.  

Extracting Most Approximation at Record Level 

To extract a more precise most approximation, vote-fusion is performed at record level. That is to say, most approximation of 
Ti consists of all its records’ most approximations, which are extracted from con(Ti). 

Step 1: Preprocessing to Store Each Record in Buckets Basedon its LSH Signatures 

Each data source, say Tl (1 ≤ l ≤ η), is scanned record by record and LSHHash algorithm is applied to map its every record 
onto buckets of hash tables. Note here every record’s q-gram multiset Gq(r) is weighted union of all its field’s q-gram 
multisets. At the end of this step, the bucket of Tl

j (1 ≤ j ≤ ℓ) stores the records from data source Tl that agree with gj(.). 

Step 2: Extracting Most Approximation 

The key problem is to extract each record’s most approximation, which further forms most approximation of Ti. The task falls 
into two core procedures. The first procedure is to identify each record’s micro-context conmicr(r) defined as definition 5, 
which contains at most Kη similar records. The second procedure is to vote record’s most approximation in its micro-context. 

Definition 5: conmicr(r) =Ψ1 ∪Ψ2, ...,∪Ψj , ...,∪Ψ|con(Ti)|(r ∈Ti), whereΨj is r′s top K  Nearest Neighbor(KNN) in context 
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data source Tj . 

Note here we choose top K nearest neighbors, rather than nearest neighbor, in each data source as members of micro-context. 
This is due to that r’s nearest neighbor in each data source is not necessarily the best candidate of most approximation. We 
should not exclude potential candidates so early that they have no chance to be fairly selected in later vote-fusion. To quickly 
identify micro-context members, KNN search problem can be relaxed to approximate KNN search problem, namely (ρ1, ρ2, λ, 
γ) problem, as follows. 

Definition 6: Given a set of points in set space Γ, a pair of points (u, v) satisfying sim(u, v) ≥ ρ1 is mapped onto the same 
bucket with probability at least λ, and a pair of points (u, v) satisfying sim(u, v) < ρ2 is mapped onto the same bucket with 
probability at most γ. 

In above definition four user-defined parameters are introduced:ρ1, ρ2, λ, γ. ρ1 and ρ2 are similarity thresholds. λ and γ are 
used to control the precisions that similar points are mapped onto the same bucket. During mapping, we need to set 
parameters κ and ℓ to satisfy user-defined precision requirement λ and γ. Parameters κ and ℓ can be determined by theorem 2 
and 3 and the proof is not described due to space. 

Theorem 2: For (ρ1, ρ2, ρ1, ρ2) family, a pair of points (u,v) satisfying sim(u, v) ≥ ρ1 is mapped onto the same bucket with 

probability at least λ by setting ℓ ≥⌈ ln(1−λ)/ln(1−ρ1
k ) ⌉. 

Theorem 3: For (ρ1, ρ2, ρ1, ρ2) family, there exists k0. A pair of points (u, v) satisfying sim(u, v) ≥ ρ1 is mapped onto the same 
bucket with probability at least λ, and a pair of points (u, v) having sim(u, v) < ρ2 is mapped onto the same bucket with 

probability at most γ by setting κ ≥ κ0 and ℓ = ⌈ln(1−λ)/ln(1−ρ1
k )⌉. 

By retrieval of hash tables, a point u’s approximate KNN can be obtained with Alg.5. Clearly time complexity of Alg.5 is  
Algorithm 5: findApprKNN 

Input: A query point u ∈Γ,T1, ..., Tℓ 

Output: K (or less) approximate nearest neighbors Ψ 

 Ψ← ∅ ; 

 for j ← 1 to ℓ do 

 map u based on gj(.); 

Ψ←Ψ  ∪ points found in buckets gj(u) of hash table Tj ; 

 end 

 return K nearest neighbors of u in set Ψ; /*By linear search in main memory*/ 

Algorithm 6: recordMicroContext 

Input: Gq(r), hash tables T1
1 , ..., T1

ℓ , ..., Tη
1 , .., Tη

ℓ (here η = |con(Ti)|) 

Output: conmicr(r) 

 conmicr(r) ← ∅ ; 

 foreach i = 1, ..η do conmicr(r) ←conmicr(r)  ∪ findApprKNN(Gq(r), Ti
1 , ..., Ti

ℓ ); 

 end 

 return conmicr(r); 

bounded by O(ℓ). Further, record’s micro-context is identified with Alg.6. We can see that the worst case of its computational 
cost is bounded by O(ηℓ). After record’s micro-context is identified, most approximation of record is selected by vote in its 
micro-context with Alg.7. The intuition behind Alg.7 is that among all the members in conmicr(r), the member whose number 
of similar ones is largest, is chosen as most approximation. Thus, data source’s most approximation can be extracted at record 
level as Alg.8. Suppose size of one data source is N. As recordMicroContext algorithm requires O(ηℓ) time and voteAtRecord  

Algorithm 7: voteAtRecord 

Input: r  ∈ Ti, θmicr, conmicr(r) 
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Output: r′ 

simNumArray[|conmicr(r)|]={ 0,..,0}; /* Initialize*/ 

 foreach ri  ∈ conmicr(r) do 

     foreach rj  ∈ con(Tfather(ri)) do 

if sim(ri, rj) ≥ θmicr  then  simNumArray[i]++; 

 end 

 end 

 r′ ← the record in conmicr(r) with the largest counter in simNumArray; 

 return r′; 

Algorithm 8: mostAtRecord 

Input: Ti, θmicr, hash tables T1
1 , ..., T1

ℓ , ..., Tη
1 , .., , Tη

ℓ 

Output: Ti′ 

 rid ← 0; 

while not eof of Ti  do 

 rid + +; 

 conmicr(rrid) ←recordMicroContext(Gq(rrid), T1
1 , ..., T1

ℓ , ..., Tη
1 , .. , Tη

ℓ ); 

r′rid ← voteAtRecord(rrid, θmicr, conmicr(rrid)); 

insert r′rid into Ti′  ; 

 end 

return Ti′; 

 

algorithm requires O(ηK2) time, time complexity of algorithm Alg.8 is O(Nη(K2 + ℓ)). Compared with algorithm 
mostAtColumn, most approximation extracted at record level is much more precise because it can distinguish the values from 
different records while the former can not. 

 Extracting Most Approximation at Field Level: 

 In this extraction policy, most approximation of every record is a synthetic one, rather than an existing record. In other words, 
every field of a record’s most approximation is chosen from all corresponding field values in the record’s micro-context. 
Extraction consists of two core steps as follows. 

Step 1: Preprocessing to Store Each Record in Buckets Based on Its LSH Signature 

This is the same as the corresponding step when most approximation is extracted at record level. 

Step 2: Extracting Most Approximation 

Most approximation of each record is synthesized as Alg.9. As total number of members in conmicr(r) is at most Kη, time  

Algorithm 9: voteAtField 

Input: r  ∈ Ti, θfieldsim, conmicr(r) 

Output: r′ 

 r′[1..m] = {null, ..., null}; /* Initialize */ 

 for k ← 1 to m do 

 simNumArray[|conmicr(r)|]={0,..,0};/* Initialize */ 
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 foreach ri[k]  ∈ conmicr(r) do 

  foreach rj[k]  ∈ con(Tfather(ri)) do 

if sim(ri[k], rj[k]) ≥ θfieldsim  then simNumArray[i]++; 

 end 

 end 

 r′[k] ← field value that corresponds to the largest entry of simNumArray; 

 end 

 return r′ 

Algorithm 10: mostAtField 

Input: Ti, θfieldsim, hash tables, T1
1 , ..., T1

ℓ , ..., Tη
1 , ..., Tη

ℓ 

Output: Ti′ 

 rid ← 0; 

while not eof of Ti  do 

 rid + +; 

 conmicr(rrid) ←recordMicroContext(Gq(rrid), T1
1 , ..., T1

ℓ , ..., Tη
1 , .. , Tη

ℓ); 

r′rid  ← voteAtField(rrid, θfieldsim, conmicr(rrid)); 

insert r′rid into Ti′ ; 

 end 

return Ti′ ; 

 
complexity of alg.9 is bounded by O(mK2η). Following this, most approximation of data source can be extracted as Alg.10. 
As the q-grams from different field values of the same record are distinguished, a very precise most approximation can be 
achieved. Time complexity of this algorithm is O(N η(mK2 + ℓ)). As m, K are constants and ℓ is set by precision requirements, 
running time mainly depends on N and η, namely size of data source and total number of context data sources. 

Measuring Data Source’s Accuracy 

Accuracy of Ti is measured based on JSD between Ti and Ti′. JSD is also computed at column, record and field level 
respectively and we do not describe them in details. 

EXPERIMENTAL EVALUTION 

We ran experiments on real and synthetic data sources to evaluate QACM approach. 

Real Data Sources. As there is no standard benchmark to evaluate data quality in CIS environment, we collected two groups 
of real data sources from National University of Singapore. The first group describes a certain year’s undergraduates 
majoring in information system (denoted as Eis) and the second group describes a certain year’s undergraduates majoring in 
computer science (denoted as Ecs). Specifically, data are from six sources including TFC ,TAC, TSSC, TRSC, TCC and TSO.  

Synthetic Data Sources. Synthetic data sources were populated using real data describing community entities, which was 
extracted from globalcomputing1. It acts as E. Twelve synthetic data sources {T1, T2, . . . , T12} were produced according to 
some rules (Kim, 2003). 

We have done experiments in terms of effectiveness, running time and effects of LSH technique respectively but here  the 
effects of LSH technique is not reported due to space. The state of the art about quantifying data quality is sampling 

                                                           
1 http://www.globalcomputing.com 
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combined with human interaction (Ballou, 2006; Motro, 1996; Parssian, 1999, 2002), while ours is an automatic approach to 
quantify accuracy dimension. Hence, we do not compare our approach with them due to its unfairness. 

 Effectiveness of QACM Approach 

Real accuracy by comparing Ti with E is denoted as accreal(Ti) and accuracy by comparing Ti with Ti’ is denoted as acc(Ti). 

As in cooperative multi-source environment people are more interested in top n data sources ranked by accuracy, we adopt 
p@n to measure effectiveness of our approach (Ricardo, 1999). 

Effectiveness on Real Data Sources:  

We evaluated effectiveness on two groups of data. It showed that for each group the former five data sources are highly 

 

 

 

 

 

 

 

 

        

                  Figure1. P@n measure on group(is)                                                             Figure. 2. P@n measure on group(cs)               

overlapped and the last data source has a low relevance to other data sources. Thus, we chose former five data sources as 
context. Most approximation of each data source is extracted by mostAtColumn, mostAtRecord and mostAtField within 
context respectively. We varied n from 1 to 4. Fig.1 plots the p@n measure for Eis

 group and Fig.2 plots the p@n measure for 
Ecs

 group. They show p@n measure obtained at more refined level is always more precise. This is due to its more precise 
most approximation extracted. 

 

 

 

 

 

 

 

 

 

 

Figure. 3. P@n measure w.r.t total context number                                           Figure. 4. P@n measure w.r.t K   

Effectiveness on Synthetic Data Sources:  

We varied parameters of interest on synthetic data sources to test its effect. 

Effect of Total Context Data Source Number. We evaluate how total context data source number affects p@n measure. We 
fixed ℓ = 10, κ = 12 and varied total context data source number from 3 to 12 by adjusting parameter θcon. Size of every 
synthetic data source is fixed to 30 000. We tested how p@n measure changed with respect to context data source number by 
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exploring different values of n from 1 to 4. We only report the result in Fig.3 by setting n = 2 and n = 4 due to space. For each 
n, p@n measure increases first rapidly then slowly with the increase of total context data source number. Furthermore, 
marginal improvement of p@n measure is approaching zero when total context data source number is beyond a certain 
threshold. This is due to that when total context data source number is small, every newly added context data source can 
remarkably correct q-gram distribution while this effect is becoming less and less when total context data source number 
becomes larger. The figure also illustrates that the extraction policy at coarser level is less sensitive to total context data 
source number than the extraction policy at more refined level. This is mainly due to that different extraction policies behave 
differently in distinguishing data distributions. 

 

 

 

 

 

 

 

 

 

 

 

                         Figure. 5. Running time of different extraction policies                      Figure. 6. Running time w.r.t total context data source number 

Effect of K. Actually, parameter K serves two functions. First, in selecting candidates of most approximation in each data 
source, it bounds the number of candidates from one data source. Second, it also limits the number of members each object 
(column, record or field) is supported during vote. We fixed η = 8, ℓ = 10 and κ = 12. We have explored the results of 
p@1,p@2,p@3 and p@4 by varying K from 2 to 8. We only report results of p@2 and p@4 measures in Fig.4 due to space. 
We can observe that the increase of p@n measure is rapidly becoming smaller with the increase of K. The increase is 
approaching zero when K exceeds 4. In fact, if K is too small, some potential best candidates may be excluded too early. 
Hence vote policy can not work well. However, if K is too large the marginal improvement of effectiveness is also negligible. 

 Running Time of QACM Approach 

In QACM the core procedure is to extract most approximation among context. Therefore, we evaluate running time of 
different extraction policies on real and synthetic data sources. Every extraction algorithm was run 10 times to get its average 
to reduce the side effect resulting from hardware or software. 

Running Time of Different Policies 

We fixed η = 8, ℓ = 10, κ = 12 and K = 3. Fig.5 shows the running time on Eis and Ecs respectively. Compared with the 
running time taken by mostAtRecord and mostAtField, the running time taken by mostAtColumn is almost negligible 
because total number of accessing hash tables in last policy is only a very small fraction of that in former two policies. Both 
mostAtField and mostAtRecord scan data source record by record, but total number of accessing hash tables in the former is 
(m − 1)NηK2 times larger than that involved in the latter. This is verified in the graphs. In view of different p@n measures of 
three policies, users should consider both effectiveness and running time cost in choosing a policy. 

Scalability Evaluation:  

We evaluate scalability with respect to the parameters of interest. 

Scalability in Total Context Data Source Number. We fixed K= 3, ℓ= 10 and size of each data source to be 30 000. We 
varied total context data source number from 3 to 12. As shown in Fig.6, running time scales almost linear with total number 
of context data sources. This would be better for user experience, since our QACM approach can scale well with the increase 
of total data source number. 
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Scalability in Size of Each Data Source. We evaluate on synthetic data sources to test how size of each data source affects 
running time. We fixed K = 3 and η = 8 and varied size of each data source from 10 000 to 300 000 to test scalability of our 
QACM approach. Fig.7 plots the running time with different size of each data source. We observe that mostAtColumn is not 
sensitive to size of each data source and running time of extraction policies at record and field level increases linearly with 
size of each data source. This is our desirable property. 

 

 

 

 

 

 

 

 

 

Figure. 7. Running time w.r.t size of each context data source                                           Figure. 8. Running time w.r.t K    

Scalability in K. We also fixed η = 8, ℓ = 10, κ = 12 and size of each data source to be 30 000. Fig.8 shows the result by 
varying K from 2 to 8. We observed that running time increases linearly with K for extraction policy at column level. 
However, running time increases almost quadratic with K for extraction polices at record or field level. Fortunately, 
considering that in practice a small K is enough. Actually, K is at most total context data source number and it can not be too 
large. Hence, we do not need to worry about its effect on running time. 

CONCLUSION AND DISCUSSION 

Accuracy dimension is a pressing care in many data quality scenarios such as data integration, information retrieval, etc. we 
propose a novel automatic approach to quantify accuracy dimension in multiple-sources environment. Note that although our 
QACM approach aims at multiple-source environment but it is not only limited to this kind of environment as long as context 
members can be obtained. For example, in world wide web our scheme can also be used to evaluate whether one web page or 
web site is accurate or not with the help of other techniques such as information extraction, information retrieval, etc. In sum, 
the contributions of this paper can be summarized as follows. 

 As accuracy of data can be gauged by discrepancy between data and its entity’s perfect representation and perfect 
representation is difficult to obtain, we propose that accuracy of data source can be feasibly gauged by comparing data 
source with its most approximation. This is the key of quantifying accuracy automatically. 

 Accuracy measure is defined based on Jensen-Shannon Divergence (JSD). This is a universal measure to quantify 
accuracy for different types of data. 

 Using LSH technique, our QACM approach can quickly extract most approximation of data source at different levels, 
namely column, record and field level, which scales well with total number of data sources and size of each data source. 

To sum up, automatic data quality assessment is a challenging problem until recently and in this paper we address how to 
quantify accuracy dimension. There is still much work to do in future. For example, how to extend our approach to other data 
quality dimensions and how to assess accuracy in terms of semantics are also our focus. 
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