
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2009 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

July 2009

Synthesizing System Integration Requirements
Model Fragments
Narasimha Bolloju
City University of Hong Kong, narsi.bolloju@cityu.edu.hk

Chuan Hoo Tan
City University of Hong Kong

Follow this and additional works at: http://aisel.aisnet.org/pacis2009

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Bolloju, Narasimha and Tan, Chuan Hoo, "Synthesizing System Integration Requirements Model Fragments" (2009). PACIS 2009
Proceedings. 65.
http://aisel.aisnet.org/pacis2009/65

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301343664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2009?utm_source=aisel.aisnet.org%2Fpacis2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2009?utm_source=aisel.aisnet.org%2Fpacis2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2009/65?utm_source=aisel.aisnet.org%2Fpacis2009%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

SYNTHESIZING SYSTEM INTEGRATION REQUIREMENTS

MODEL FRAGMENTS

Narasimha Bolloju

Associate Professor

Department of Information Systems

City University of Hong Kong, Hong Kong

narsi.bolloju@cityu.edu.hk

Chuan Hoo Tan

Assistant Professor

Department of Information Systems

City University of Hong Kong, Hong Kong

ch.tan@cityu.edu.hk

Abstract

Systems integration is an enduring issue in organizations. Many organizations have often been faced

with the predicament of managing large and complex IT infrastructures accumulated over the years.

Before proposing suitable integration architecture and selecting appropriate implementation

solutions, a holistic and clear understanding of the enterprise-wide integration requirements among

various internal and external systems is needed. This paper builds on prior literature on conceptual

modelling of integration requirements to present an algorithm that synthesizes model fragments, i.e.,

piecemeal sections of the integration requirements. The details of the algorithm, for synthesizing two

or more model fragments into a single integration requirements model, are detailed in this paper. An

empirical assessment of the algorithm's generated integration solution is made by comparing it

against that performed manually.

Keywords: systems integration, requirements modeling, conceptual modeling, and synthesizing

requirements

1 INTRODUCTION

“…the economic slowdown may trigger a rise in mergers and acquisitions--which

could create significant opportunities for IT consulting and systems integration

organizations.” Natasha Lomas, ZDNet Asia (Oct 29, 2008)

Systems integration is an enduring issue faced by organizations with large and complex Information

Technology (IT) infrastructures accumulated over the years. Indeed, with more organizations

undergoing restructuring, facing acquisitions and mergers, and reengineering of the systems, there is a

growing need for organizations to embark on the system integration task. Such needs lead to the

emergence of integration technologies such as the Service-Oriented Architectures (SOA) and Event-

Driven Architectures (EDA). SOA denotes an architecture that offers an open, agile, extensible,

composable platform comprised of autonomous, interoperable, discoverable and potentially reusable

services. EDA builds on the principle that events trigger messages to be sent between systems that are

completely unaware of each other and the systems interested in specific types of events react. While

SOA and EDA help organizations to move toward more flexible and agile IT infrastructures, the

capacity of an organization to have a thorough understanding of the integration requirements could

directly affect the choice and implementation strategies of the integration task.

Our review of the extant literature suggests that there is a startling shortage of studies conducted that

could serve to assist systems integrators and architects to understand integration requirements, and to

construct a conceptual model of interactions among the systems and databases. One of the exceptions

is the work by Bolloju (2009), which presents a conceptual modeling technique that comprises of a set

of modeling constructs and a method for obtaining them. Due to the method’s focus on identifying

the logical requirements from each system’s perspective, the individuals or teams responsible for

those systems are able to capture and model those requirements more efficiently and effectively.

However, the issues related to synthesizing the model fragments (e.g., how to reconcile the differences

in interpretation of the fragments) are not addressed. In our view, the synthesizing process requires

significant effort in dealing with semantic and structural differences in representation across different

model fragments. Since the number of model fragments to be merged or synthesized can be quite

large, algorithmic support is expected to contribute to the efficiency and effectiveness of this activity.

This study presents an algorithm to merge model fragments reconciling the naming differences among

those fragments in formulating a synthesized model of the integration requirements represented by

individual model fragments. Section 2 includes background material related to approaches to

modeling integration requirements and associated limitations. Section 3 presents an overview of the

integration requirements model synthesizing process, the details of the synthesizing algorithm and its

implementation. We conclude the paper in Section 5 after providing details of an empirical evaluation

of the implemented algorithm in Section 4. We believe this study will contribute to the cumulative

knowledge of system integration, which could yield practical and tangible benefits to organizations

which are in search of tested system integration requirements modelling techniques.

2 BACKGROUND

System integration refers to the construction of linkages among computer systems and databases

(Markus 2000). System integration is necessary as organizations often have to add new functionalities

into the organizational Information Systems (IS) portfolio, which frequently entails dealing with

indispensable legacy systems. Research on system integration primarily builds on the theoretical

raison d’etre to focus on the conceptual modeling technique with which an integrated representation of

the selected phenomena in the focal domain is constructed (Wand and Weber 2002). To construct a

proper conceptual system integration model, it is imperative that the system modelers are informed of

and educated on the appropriate ways of representing the requirements, reconciling the differences in

requirements and deriving a well-integrated representation of the systems as a whole.

Our review of the extant studies suggests that research on system integration requirements modeling

has been scarce; among those studies conducted, a significant number of them focus on data

integration (Bergamaschi et al. 1999; Batini et al. 1986; Batini and Lenzerini 1984). For instance,

Schmitt and Saake (2005) built on the formal concept analysis to propose a generic integration

modeling method that integrates schemata from heterogeneous databases to form a homogenized

schema. Although these studies have been instrumental in enhancing our understanding of data

integration, there is a growing realization that we should not undermine the importance of

understanding and proposing modeling mechanisms that connect and integrate among heterogeneous

applications (Bolloju 2009; Bass and Lee 2002). One of the challenges facing researchers is that

different architectural domains entail different modeling techniques and concepts, making it difficult

to integrate applications or even systems across the entire organization (Jonkers et al. 2004). Indeed,

due to the complexities involved, several related studies have been conducted on the basis of practical

wisdom rather than from theoretical angle (see e.g., Gold-Bernstein and Ruh 2004). The result of these

expeditions is that system modelers often construct topological representations that do not accurately

reflect the focal domain due to: (1) modeling incompleteness, i.e., discarding important details, (2)

ambiguity, i.e., inconsistency in the modeling of processes and parameters passing, and/or (3) detail

excessiveness, i.e., inclusion of irrelevant details that may not aid in the model clarity (Greca and

Moreira 2000). The root of the problem, as highlighted by Weber (2003), is that conceptual modeling

attempt has been undermined because it suffers from a lack of sound theoretical foundations to

underpin its research, pedagogy, and practice.

Conceptual modeling is rooted by the seminal work of Brachman (1979) who conceived conceptual

modeling as composed of a small set of language-independent elements and relationships, which

could be used to capture and express semantic meanings of the focal domain. This set of language-

independent elements and relationships could yield desirable modeling outcome properties, such as

modeling correctness. Building on this notion, researchers have proposed various forms of modeling

techniques, such as service invocations in the sequence and communication diagrams of Unified

Modeling Language (UML) and the dataflow diagram that forms layers of abstraction, which are

traditionally focused on modeling interactions within a system (Kendall and Kendall 2002). Moreover,

these techniques are designed to be used during the system development stage, making them less

applicable for situations in which established operational systems are to be integrated.

Table 1. Summary of System Integration Constructs (source: Bolloju, 2009)

A more recent attempt by Bolloju (2009), which seeks to address the challenges of system integration,

proposes a set of constructs. The proposed technique builds on the two-stages modeling approach, in

which the modeler first creates model fragments representing integration requirements for each system

perspective, and subsequently synthesizes the fragments to form an integrated, holistic model of the

requirements of the entire set of systems studied. To facilitate the modeling, a set of constructs,

Construct Illustration

Nodes Sys1 and Sys2 represent systems;

Links (directed arrows) indicate interactions:

services (S1, S3), events (E1, E3). Guard

conditions C1 and C2, filter service requests and

events reaching the destination.

X defines translation of O13 to O14 (Oi

represents service request or event)

BATCH defines batching or grouping of several

O1s into one O2.

SPLIT defines separating or splitting O3 into

individual service requests/events O4.

AGGR defines aggregation or combining O5,

O6, O7 into a single aggregated or composite

service request or event O8.

DISTR defines distribution or slicing a

composite O9 into several service requests or

events.

namely the nodes which represent individual or group of systems and data sources, and the links

which denote the service requests and events between a pair of nodes, is proposed (see Table 1 for a

summary of the constructs). Section 3 presents two examples of model fragments and a

corresponding manually synthesized requirements model. An evaluation of the constructs and method

for creating model fragments and synthesizing the model fragments indicated that the process is effort

intensive and error prone, and consequently highlighted a strong need for algorithmic support for

synthesizing a given set of model fragments. Specifically, the manual synthesizing process included

reconciliation of differences among the model fragments that were created by numerous modelers. In

this research, we seek to address this limitation of the technique proposed by Bolloju (2009).

3 SYNTHESIZING INTEGRATION REQUIREMENT MODELS

Modeling system integration requirements is an iterative process that involves several steps (see

Figure 1). The team of the system analysts and integrator would first need to gather and study the

interaction, e.g., procedural invocation and message passing, among the various systems. The output

of this step is a set of model fragments that entail the various interactions among systems, which could

include both internal and external systems. The model fragments are consolidated to form an

integrated model, known as the enterprise integration requirements model. Next, the overall enterprise

integration architecture (e.g., SOA and EDA that build on top of an enterprise service bus) is derived

based on the enterprise integration requirements model. Finally, based on the overall enterprise

integration architecture specific solutions meeting the requirements of individual systems can be

developed.

It is to be noted that this form of bottom-up approach, i.e., gathering various integration requirements

and then synthesizing the model fragments to form an overall enterprise requirement, poses two

challenges. First, discrepancies in naming the nodes, services, events, attributes of events, parameters

of services could occur across model fragments. For instance, different names could be used to

describe employee number, e.g., empNo, emplNo, emp_no, empNumb, empID, emp-no. Second,

structural differences in parameters of services and attributes of events could occur. For instance,

number of arguments, order of the arguments, types of arguments of a service between two systems

could differ, making the integration of the model fragments challenging. In this study, we propose an

algorithm that seeks to synthesize and amalgamate the model fragments to form the enterprise

integration requirements model.

Figure 1. Bottom-up method for modeling integration requirements

3.1 Synthesizing Process

Synthesizing algorithm merges a given set of model fragments (see Figures 2a and 2b for example)

into a single synthesized integration requirements model (see Figure 3 for example) in two steps.

First, a combined model is created with one additional intermediary transformation node group to

collect all transformation nodes from the input models. In this process, interactions such as System A

consuming service s() from System B are mapped to two interactions, one System A to consume s() X

and the other X to consume s() from System B where X is a null transformation added to the

intermediary transformation node group (see Table 2 for code fragment).

Figure 2a. Sample model fragment A.

Figure 2b. Sample model fragment B.

Figure 3. Sample enterprise integration requirements model.

The second step resolves similarities among nodes and similarities among interactions in the

intermediary requirements model (see Table 3). This step makes use of the hierarchical clustering

technique to group similar nodes into node clusters, and similar interactions between a system node

and intermediary transformation interaction clusters based on predefined threshold values for

similarity scores. For this purpose, any pair of elements that match exactly will be considered equal

(similarity score 1) and those that do not match exactly will receive a score between 0 and 1. The

similarity score for names is computed using a string similarity function. As part of this resolution

process, names of the system nodes are resolved completely before resolving interactions (i.e.,

services and events) using the interaction similarity function described in Table 3. .

Current implementation of the synthesizing algorithm uses a composite string similarity function to

compute a similarity score of a given pair of strings (in their lowercase form) as an average of the

following commonly used metrics: 1) Euclidean distance, 2) Chapman's Matching Soundex, 3) Jaro,

4) Levenshtein, 5) Monge Elkan, and 6) Smith-Waterman
1
. After experimenting with several

individual similarity functions using several sets of labels selected from different projects, the

combined score produced using the above six metrics was found to result in more representative

similarity scores (neither too high nor too low) for typical variations expected in naming of various

elements used in integration models. A weighted combination of different similarities was used for

the calculation of interaction similarities - for services a combination of name, return value and

parameter similarities, and for events a combination of name and attribute similarities.

1 Due to the space constraint, we will not elaborate on the six metrics. For a quick understanding of the various metrics,

please refer to http://www.dcs.shef.ac.uk/~sam/stringmetrics.html.

The resolution process uses user-defined threshold values (minimum cut-off scores) for automatic

matching of a given type of elements. Any values above the threshold value require manual

resolution. The system maintains the history of manual resolutions and makes use of that

"knowledge" for identifying future similarities.

synthesize(in Mf: set of IntReqModels; out Ms:IntReqModel)

begin

 Ms := null;

 IntMs := mergeFragments(Mf, Ms);

 MS := resolveSimilarities(IntMs);

end;

mergeFragments(in Mf:IntReqModel, inout Ms:IntReqModel)

// merge model fragment Mf into synthesized model Ms

begin

 add a transformation node group T to Ms; // to collect transformations in various model fragments

 for each interaction <N1,Int,N2> in Mf do //N1, N2 node pair, Int is either service request or event

 begin

 if node N1 is a transformation node

 then addNodeToGroup(N1,T)

 else addNode(N1,Ms); // adds node only if it does not exist in Ms

 if node N2 is a transformation node

 then addNodeToGroup(N2,T)

 else addNode(N2,Ms); // adds node only if it does not exist in Ms;

 if interaction <N1,Int,T> does not exist in Ms

 then addInteraction<N1,Int,Xi>; // add a null transformation node Xi

 if interaction <T,Int,N2> does not exist in Ms

 then addInteraction<Xi,Int,N2>;

 end;

end; // merge

Table 2. Pseudocode for merging model fragments.

resolveSimilarities(Ms: IntReqModel)

begin

create system node clusters with nodeSimilarity above nodeThreshold value;

create interaction clusters with interactionSimilarity above intThreshold value;

end;

nodeSimilarity(N1:Node,N2:Node): float

begin

 if N1 and N2 are identical or defined equivalent, or belong to an existing cluster

 then return 1

 else begin

 morphologicalEq(N1.name,MN1);

 morphologicalEq(N2.name,MN2);

 return stringSimilarity(MN1,MN2);

 end

end;

interactionSimilarity(Int1:Interaction,Int2:Interaction): float

begin

 if Int1 is a service and Int2 is a service

 then return(0.6*stringSimilarty(Int1.name,Int2.name)

 +0.2*returnValueTypeSimilarity(Int1.returnType,Int2.returnType)

 +0.2*argumentSimilarity(Int1.arguments,Int2arguments))

 else return(0.7*stringSimilarty(Int1.name,Int2.name)

 +0.3*attributeSimilarity(Int1.arguments,Int2.arguments))

end;

Table 3. Pseudocode for resolving similarities.

3.2 Implementation

The current system implementation aims at validating the synthesizing process. This system facilitates

1) capturing descriptions of model fragments along with related data such as user-defined

equivalences via a synonym list, and threshold values for merging algorithm, and 2) merging of

selected model fragments into one synthesized integration requirements model.

This system represents the collection of model fragments as a project which is internally represented

as a Java object (see the meta-model shown in Figure 4) and saved as an XML document using

XStream conversion library. The same converter is also used to load a saved project (XML

document) and convert it into a Java object for further manipulation. The system supports entry of

model fragment descriptions through a simple forms-based user interface (final version will provide a

graphical drawing facility). This system is implemented using Java 5.0 with SimMetrics 1.6.2 library

for computing string similarities and XStream 1.3 for converting Java objects to XML documents and

vice versa, in order to provide persistence.

Figure 4. Meta model of integration requirements model

4 EVALUATION

An evaluation of the synthesizing algorithm was conducted to understand its effectiveness by

comparing three manually synthesized models with the synthesized models generated by the system.

The model fragments and synthesized models were created and submitted as project reports by teams

of graduate students of a course on systems integration. Each project report, in addition to one

synthesized model, had several model fragments created by the student teams and descriptions of

services, events and transformations. Table 4 depicts the details of these projects where the last

column indicates the total number of links present in model fragments and the total number of services

and events (some links are associated with multiple interactions). The descriptions of these model

fragments were input by a research assistant into the system to generate the synthesized models.

Project #
of Model

Fragments
of Systems

of Interactions

(services and events)

P09 9 11 56 (links 53)

P12 6 17 57 (links 34)

P14 5 16 51 (links 25)

Table 4: Contents of project reports used for evaluation

Since the implemented system is expected to address the effort intensive and relatively straight

forward merging of a set of model fragments, the evaluation is focused on the effectiveness (rather the

efficiency) of the synthesizing process – especially in dealing with various labels or identifiers of

model elements that could have slight variations. The effectiveness is measured using recall and

precision measures which are widely used in information retrieval area. The recall (relevant/existing)

is defined as the ratio of the number of interactions in the generated synthesized model in the

manually synthesized model and the number of interactions in the manually synthesized model. The

precision (relevant/retrieved) is defined as the ratio of the number of interactions in the generated

synthesized model that are present in the manually synthesized model and the number of interactions

in the generated synthesized model. Finally, the F-measure which is defined as the harmonic mean of

recall and precision (2*recall*precision/(recall+precision)) is used to arrive at a single measure of

effectiveness of the synthesizing algorithm.

 Exact match Approximate match

Project # Recall Precision F-measure Recall Precision F-measure

P09 86.79 82.14 84.40 98.11 92.86 95.86

P12 70.59 42.11* 52.75 73.53 43.86* 54.95

P14 100 49.02* 65.79 100 49.02* 65.79

Table 5: Evaluation results of synthesizing algorithm

Table 5 lists the values of recall, precision and F-measure for two sets of comparisons: a) exact match

where the elements in the generated models must be identical to those in the manually synthesized

models, and b) approximate match where minor differences are ignored. The low precision score in

the second and third rows of the above table were identified as a result of problems such as missing

systems, services, and events in the manually synthesized models. The lower scores, resulting from

the problems associated with manual synthesizing process, also indicated the need for automated

support for synthesizing model fragments especially when large number of models to be merged.

5 CONCLUDING COMMENTS

This paper builds on the prior work on conceptual modeling of systems integration requirements to

present an algorithm that synthesizes model fragments, i.e., piecemeal sections of the integration

requirements. The process of synthesizing two or more model fragments into a single integration

requirements model is detailed in this paper. The algorithm makes use of string similarity metrics and

parameter matching to arrive at clusters of similar elements in the model fragments. The effectiveness

of the implemented algorithm is demonstrated by comparing the synthesized integration models

generated by the system against those performed manually. This study, thus, contributes an effective

solution to the effort-intensive and error-prone synthesizing process.

One of the limitations of this study is related to employing student project reports to validate the

synthesized algorithm. Although these project reports contained a good number of model fragments,

they may still be a distance from those in the real world IT infrastructure in terms of complexity and

sheer size. While it is quite natural that the models generated by the implemented system may not

exclude any elements from the input model fragments, the process of combining similar elements is

likely to be superior if it is done manually.

Based on the findings from this study, we have developed a tool to support the synthesizing process.

We are currently in the process of revising the tool and when this tool is completed, the human role in

the synthesizing process will be limited to manually identifying and resolving a small set of elements

from several model fragments.

In conclusion, we believe this work is unique for it builds on the conceptual modeling techniques used

in systems development to system integration. Further research in this regard could assist

organizations’ IT architects in eliciting and representing system integration requirements.

References

Bass, C. and Lee, J. M. (2002). “Building a Business Case for EAI”, eAI Journal, Janurary, 18-20.

Bolloju, N. (2009). “Conceptual Modeling of System Integration Requirements”, IEEE Software,

forthcoming.

Batini, C., & Lenzerini, M. (1984). “A methodology for data schema integration in the entity

relationship model”, IEEE transactions on software engineering, 10(6), 650-664.

Batini, C., Lenzerini, M., & Navathe, S. (1986). “A Comparative Analysis of Methodologies for

Database Schema Integration”, ACM Computing Surveys, 18(4).

Bergamaschi, S., Castano, S., & Vincini, M. (1999). “Semantic integration of semistructured and

structured data sources”, ACM SIGMOD Record, 28(1), 54-59.

Brachman, R. J. (1979). “On the Epistemological Status of Semantic Networks”, In: N. V. Findler

(ed.): Associative Networks: Representation and Use of Knowledge by Computers, Academic Press,

New York, 3-50.

Greca, I. M., & Moreira, M. A. (2000). “Mental Models, Conceptual Models, and Modeling”,

International Journal of Science Education, 22(1), 1-11.

Jonkers, H., Lankhorst, M., and Buuren, R. V. (2004). “Concepts for Modeling Enterprise

Architectures”, International Journal of Cooperative Information Systems, 13(3), 257-287.

Kendall, K. E. & Kendall, J. E. (2002). Systems Analysis and Design. Prentice Hall, 7th Edition

Markus, M. L. (2000). “Paradigm Shifts - e-Business and Business/ Systems Integration”,

Communications of the AIS, 4(1), 1-45.

Schmitt, I., & Saake, G. (2005). “A comprehensive database schema integration method based on the

theory of formal concepts”, Acta Informatica, 41(7), 475-524.

Wand, Y. & Weber, R. (2002). Research Commentary: Information Systems and Conceptual

Modeling – A Research Agenda. Information Systems Research, 13(4), 363-377.

Weber, R. (2003). “Conceptual Modeling and Ontology: Possibilities and Pitfalls”, Journal of

Database Management, 14(3), 1-20.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	July 2009

	Synthesizing System Integration Requirements Model Fragments
	Narasimha Bolloju
	Chuan Hoo Tan
	Recommended Citation

	Microsoft Word - 169362-text.native.1247821337.doc

