
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2005 Proceedings European Conference on Information Systems
(ECIS)

2005

Going Beyond the Blueprint: Unravelling the
Compex Reality of Software Architectures
Kari Smolander
South Carelia Polytechnic, kari.smolander@scp.fi

Matti Rossi
Helsinki School of Economics and Business Administration, mrossi@hkkk.fi

Sandeep Purao
Pennsylvania State University - Abington, spurao@ist.psu.edu

Follow this and additional works at: http://aisel.aisnet.org/ecis2005

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2005 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Smolander, Kari; Rossi, Matti; and Purao, Sandeep, "Going Beyond the Blueprint: Unravelling the Compex Reality of Software
Architectures" (2005). ECIS 2005 Proceedings. 95.
http://aisel.aisnet.org/ecis2005/95

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2005%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2005?utm_source=aisel.aisnet.org%2Fecis2005%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2005%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2005%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2005?utm_source=aisel.aisnet.org%2Fecis2005%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2005/95?utm_source=aisel.aisnet.org%2Fecis2005%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

GOING BEYOND THE BLUEPRINT: UNRAVELING THE
COMPLEX REALITY OF SOFTWARE ARCHITECTURES

Kari Smolander, South Carelia Polytechnic, Koulukatu 5B, FIN-55120 Imatra, Finland,

kari.smolander@scp.fi

Matti Rossi, Helsinki School of Economics, P.O. Box 1210, FIN-00101 Helsinki, Finland,
mrossi@hkkk.fi

Sandeep Purao, School of Information Sciences and Technology, The Pennsylvania State
University, University Park, State College, PA 16802, spurao@ist.psu.edu

Abstract
The term Software Architecture captures a complex amalgam of representations and uses, real and
figurative, that is rendered and utilized by different stakeholders throughout the software development
process. Current approaches to documenting Software Architecture, in contrast, rely on the notion of a
blueprint that may not be sufficient to capture this multi-faceted concept. We argue that it might not even
be feasible in practice to have such a unified understanding of this concept for a given setting. We
demonstrate, with the help of in-depth case studies, that four key metaphors govern the creation and use of
software architecture by different communities: “blueprint”, “literature”, “language”, and “decision”.
The results challenge the current, somewhat narrow, understanding of the concept of software
architecture that focuses on description languages, suggesting new directions for more effective
representation and use of software architecture in practice.

Keywords: software architecture, systems development, grounded theory, metaphors

1 INTRODUCTION

Modern information systems are increasingly built on top of complex underlying communication,
computer and software infrastructures that must communicate across other systems, devices, and group
boundaries. This level of interconnectedness poses significant challenges to the communities involved in
their development and continued use. The state-of-the-practice for documenting these architectures is
dominated by software architects and engineers, who rely heavily on technical representations (Bosch et
al., 2002). Much of the research in this domain, therefore, focuses on building novel or elegant
representation schemes (Bass et al., 1998, Garlan and Kompanek, 2000, Hevner and Mills, 1993,
Medvidovic and Taylor, 2000). While useful in some respects, this research tends to negate the important
roles that other communities play in the development and use of software architecture during the software
development process (Bosch, 2000, Smolander and Päivärinta, 2002).

In practice, the idea of ‘software architecture’ is used, interpreted and communicated by a diverse set of
stakeholders with varying skills and experience, including for instance, data administration departments,
production organizations, external customers, hardware vendors, salespersons, and management. An
understanding of the ‘software architecture,’ thus, allows them to communicate about the system, during
construction or after deployment, during its continued use. The complexity of software architecture, its
fuzzy nature, and varying manners of use, therefore, demand approaches that must go beyond current
efforts at formalizing and devising special-purpose description languages for its representation (Allen and
Garlan, 1997, Medvidovic and Taylor, 2000).

The objective of this research is to discover meanings that different communities of interest ascribe to the
concept of Software Architecture during its creation and use. Drawing on an in-depth study of three
organizations, we analyze the perceptions of different stakeholders (architects, software designers,
managers, and customers) to uncover metaphors that govern the understanding of this complex yet fuzzy
concept in practice. Our results suggest that ‘software architecture’ can be better understood with the help
of multiple metaphors instead of the dominant one of ‘Blueprint’ in use today. The results are important
because they provide a first account of how developers perceive the concept of software architecture
during its creation and use.

2 METAPHORS

An important idea underlying our research process is that of ‘Metaphors.’ In the domain of information
system design, Madsen introduced the idea (1994), suggesting that a metaphorical instead of classification
approach may be better suited to software design. Metaphors reify linguistic and cognitive crutches that
individuals and communities use to make sense of the complexities around them. In modern literature, the
key proponents of Metaphors are Lakoff and Johnson (1980), who describe them as the underlying layer
of the structure of our conceptual systems that we use to understand abstract or complex concepts we
encounter. The idea of ‘software architecture’ clearly qualifies as such a complex concept. In fact, the
term ‘software architecture’ itself represents a metaphor, where we attempt to understand the structure of
virtual systems using a term – architecture – borrowed from physical structures. A metaphor, therefore,
does not suggest different views or aspects of the underlying complex phenomenon. Instead, each suggests
an image or an allegory that the participants use to make sense of a complex concept. The analysis we
report, thus, attempts to unravel the complex reality of software architecture by uncovering different
metaphorical forms that are employed by the communities engaged in the creation and use of software
architecture in practice.

2.1 Research Method

An exploratory, qualitative, and theory-forming strategy following a grounded theory approach (Glaser
and Strauss, 1967, Strauss and Corbin, 1990) was considered appropriate for this research. For phenomena
that lack scientifically established theories and concepts, such an approach is recommended because it
strongly grounds the generated theory to empirical data, making it a valid choice for software engineering
research (Seaman, 1999).

To understand how different communities engage in the creation of software architecture in practice, we
carried out a study of three software-producing organizations over a period of one year tracking the
different communities involved in the software architecture development process with a particular focus
on understanding how these communities generated, represented, used and shared knowledge regarding
software architectures. Our research methodology was immersive, and used interviews as the primary
mode of data gathering.

The study was conducted in three Finnish software-producing organizations (Table 1), selected because of
the differences in their products, organizations, and business strategies. All the organizations were
considered fairly advanced in their use of state-of-the-art techniques and methods for software
development practices. For instance, they make extensive use of UML during design, and Java and
components during implementation. The organizations represent different types of firms from the software
industry – a service developer of an operator, a software developer for telecom devices, and a developer of
tailored information systems.

Company Business Employees* Interviewees
Telecom service
developer

Development of software-based telecom
services and platforms for in-house
customer

200 2 architects, 2
designers, 3
managers

Handheld software
producer

Software and software tool development
for mobile terminals and hand-held
devices

200 1 architect, 1
designer, 4 managers

IT solution
provider

Development of tailored information
systems for projects dictated by
customers.

400 in a
division, 600 in
the other

3 architects, 1
designer, 2 managers

* = Number engaged in software development

Table 1 Target organizations and Interviewees

Grounded theory development is a research method developed originally in social sciences, which uses
qualitative content analysis for the construction of a theory grounded in the data about the phenomenon
under study. Grounded theory approaches have proved their usefulness when dealing with new and
unexplored areas related to processes and change in organizations. The role and meaning of architecture in
systems development projects exemplifies such an area that lacks scientifically established theories and
concepts. Because theory creation following this approach is strongly grounded to the data (instead of
researcher’s inspiration), the resulting theory is more credible and the research tends to produce useful and
practically valid results (Orlikowski, 1993). Information systems research offers many examples of the
application of grounded theory (for instance, Calloway and Ariav, 1991, Orlikowski, 1993), and the field
of software engineering also recognizes the need for qualitative approaches in the areas related to human
behavior (Seaman, 1999).

The research process proceeded in two broad phases: pre-study, and data collection and analysis (Figure
1). The status of architectural practices in the three organizations was resolved by using both
questionnaires and prepared presentations by the chief architects working in these organizations. The
purpose of this phase was to achieve background information and to serve as the basis for interpretations.

Figure 1. The Research Process

The study reported in this paper gathered the data by conducting interviews in each organization using a
theoretical sampling strategy. Based on the results of the first set of interviews in the first organization,
which included two designers, two architects, one project manager, and one department manager; it was
decided that the role of the internal customer should be added to potential interviewees. Glaser and Strauss
(1967) call this dynamic process of data collection where the sample is extended and focused according to
emerging needs as theoretical sampling. A total of 19 interviews were conducted, interspersed with
transcription and open coding, which allowed this extension. The open coding proceeded in parallel,
treating each interview as confirmation or further development of results from earlier interviews. These
additional interviews included three more architects, three designers, and six managers, of which two were
team leaders, two technology managers, one site manager, and one process development manager.

Open coding (Strauss and Corbin, 1990) of the interviews was done using ATLAS.ti (Scientific Software,
2001). Figure 2 shows an example. The open coding process started with the high-level “seed categories”
(Miles and Huberman, 1984) such as stakeholders, problems, and rationale for architecture description (as
in Figure 2). Additional categories were created and existing ones were merged as new evidence and
interpretations emerged. The open coding of all the 19 interviews in the three organizations produced
altogether 179 different categories, which were organized, following a process of axial coding, into eight

Initial Data analysis
Open and Axial coding

Pre-study
Gathering background information
(Reported in (Smolander et al., 2002))

Initial Interviews
Theoretical and snowball sampling

Confirmatory interviews
Presentations to Focus Groups

Selective coding and Identification of
Dimensions and Metaphors

This Study

category families named “communication”, “general features”, “problems”, “rationales”, “solutions”,
“stakeholders”, “tools”, and “viewpoints,” each of which included 4 to 36 specific categories. The
categories and their families were then used to identify the metaphors via an inductive analysis
(Smolander, 2002). Each represented a different combination of values along dimensions describing the
categories. Identification of the metaphors then led to the discovery of additional dimensions (by returning
to the data) that characterized each metaphor. Table 2 shows these dimensions, indicating with italics, the
dimensions added after identifying the metaphors.

Dimension Explanation
Time
orientation

descriptions of past architectural solutions versus current design situation versus
prescriptions about future implementations

Formality descriptions for enabling understanding versus those meant for generating executables
Detail descriptions of technical details or descriptions that purposefully constrain the level of detail
Activity nature of typical activities associated with the descriptions such as recording versus

negotiating versus sense-making
Objective the objective of architectural design and description
Customer
orientation

frequency and strength of interaction between the development organization and customers
utilizing the software architecture

Business
orientation

extent of reasoning the development group must make about the business area of the system

Stakeholder
diversity

the number of roles with multiple backgrounds, organizations, and professions occurring in
software development projects

Table 2. Dimensions Discovered

Finally, the selective coding phase led to the emergence of metaphors, which captured the varied
meanings of architecture in practice. The basic idea of the four metaphors, as described below, emerged as
an idea during the early analysis (cf. Glaser, 1978), but to validate and refine this idea required many
iterations. An iterative strategy was adopted during that analysis, interpreting the coded text, through a
scheme of dimensions that were found in the instantiations of the core category “meaning of architecture
in practice.”

3 FOUR METAPHORICAL FORMS FOR UNDERSTANDING
SOFTWARE ARCHITECTURE

Four distinct metaphors emerged from this inductive analysis. These were: Blueprint – architecture as the
structure of the system to be implemented, Decision – architecture as the decision and basis for decisions
about the system to be implemented, Language – architecture as language for achieving common
understanding, and Literature – architecture as documentation and frames of references for readers.

3.1 Architecture as Blueprint

As expected, the first metaphor that emerged from the analysis was the traditional, ‘Blueprint.’ Within this
metaphor, architecture is considered as a high-level description of the system, directly guiding more

detailed implementation aimed at the production of
individual components. The complete specification
of architecture then resides in the working
implementation of the system. In the current
software architecture research, this metaphor can
be associated with the architecture description
languages. Clearly, it is oriented towards the
future. A typical activity associated with this
metaphor is implementation of software artifacts

and their interconnections within the system, which necessitate both high formality and high level of detail
in the descriptions. Of the interviewees in our study, software designers and some of the technically
oriented architects emphasized this metaphor. In particular, it was strongest among individuals involved in
implementing or programming the system according to specifications.

3.2 Architecture as Decision

The second metaphor, ‘Decision,’ emphasizes the role of architecture as specific decisions about the
system structure. The software architecture decision can have considerable impact on resources needed for

building the system, including work force needs,
special skills and resources that must be spent on
requirements e.g. third party licenses. The
decisions also provide concrete resolutions to
trade-offs and resolve conflicting requirements
such as usability, maintainability, and
performance. Users consider too much formality
and detail harmful for this metaphor to be useful.
For some technical trade-off situations, however,

high formality and detail may be needed. Among the participants we interviewed, stakeholders such as
managers and resource planners (like project managers) emphasized this metaphor, which they also saw as
the basis for division of work between working units.

3.3 Architecture as Language

The third metaphor, ‘Language,’ sees architecture as the enabler of a common understanding about the
system structure. According to this metaphor, software architecture serves as the vehicle for

communication between different stakeholders
about high-level structures and solutions. The
metaphor, therefore, emphasizes understanding
between different stakeholders. For this metaphor
as well, too much formality or detail is considered
harmful because it aims at achieving understanding
among a diverse set of stakeholders, who are likely

to possess varying backgrounds and experiences. In our study, those with high customer or business
orientation, such as managers emphasized the need for this metaphor. Other situations when this metaphor

“Our development is organized so that we first
describe the architecture and from that comes the
DLL descriptions and then possibly different
persons make the individual DLL’s. In a way it
[the architecture description] is the basis for the
next phase, which is the DLL design.” - Jack,
Software Engineer

“From my point of view the purpose of
architecture description is that you know where
you are going.” - Harry, Project Manager
“The purpose of architecture description is that
you must be able to tell to the customer and to
the team what is your idea.” - John, Architect

“The customer is now wondering about the
ambiguity of the situation. One architectural
choice looked technically quite good but its price
could rise so high that they must think about
business premises. If it costs 10 millions then
how much it must have usage so that it pays the
price back in a reasonable time.” - Arthur,
Architect

assumed high importance were, when the customer participation was intense, marketing was closely
involved in the process, or when external data administration departments had strong interests. Clearly,
increased diversity among stakeholders meant a greater emphasis on this metaphor.

3.4 Architecture as Literature

The final metaphor that emerged from our analysis was ‘Literature.’ This metaphor is closely related to
the idea of documentation that aids in transferring information among individuals who assume similar

roles over time. Following this metaphor,
architecture is seen as the documentation of the
solution or the collection of solutions made in the
past. Clearly, this metaphor is oriented towards
past decisions, and aims at transferring explicit
knowledge and understanding about technical
artifacts to future generations such as maintainers.
Typical activities associated with this metaphor
include writing to create the literature and reading /
analyzing to understand the literature. This also
dictates the level of detail, which tends to be high
though with a varying degree of formality. Of the

participants in our study, software designers tended to emphasize this metaphor; however, many other
stakeholder groups also suggested that they used this metaphor.

3.5 Summary of metaphors

The brief description above lays out metaphors used by the research participants to make sense of the
complex concept of software architecture in practice. Table 3 summarizes how the metaphors and
dimensions identified in Table 2 relate each other. The table shows in a condensed form the differences
between the metaphors. Clearly, these metaphors can overlap and may be used simultaneously by multiple
stakeholders. A stakeholder may even use multiple metaphors, and the emphasis may vary across
stakeholders and over time. For example, the role of a manager in most software producing organizations
would necessitate use of the metaphors of blueprint and decision. Next we discuss the implications of
these findings for practice and research.

“I think the purpose of architecture descriptions
is to keep the knowledge of what kind of a system
we have. Many times the environments are
heterogeneous and their parts are here and there.
It is nice to have such a document or a part of a
document that you can take a view and see what
is the scope here. In addition, those who will
possibly make further development or
maintenance can learn the system easily with it.”
- Michael, Software Engineer

Metaphor Dimension Blueprint Decision Language Literature

Time
orientation

Future Future Present/Future Past

Formality High Usually low Low Varies
Detail High Usually low Low Usually high
Activity Implementation of

software artefacts
Evaluating
alternatives, making
choices

Communicating about
structures and
technologies

Reading and
analysing

Objective High-level description of
the system guiding
implementation

Making decisions
concerning
resources and
strategies

Understanding system
structures and
technologies

Documenting the
system, under-
standing over time

Customer
orientation

Low High Possibly high Usually low

Business
orientation

Low High Possibly high Usually low

Stakeholder
diversity

Low High High Usually low

Table 3. The four metaphors and their dimension values

4 DISCUSSION

The most salient outcome of our research are the metaphors, which provide a plausible explanation for
why the software architecture community has been unable to provide a commonly agreed upon and useful
definition of software architecture (Baragry and Reed, 2001). Instead, most research on software
architecture has relied on using practical experiences and insight presented as tentative ad-hoc lists or seen
from the perspective of a software engineer (Hofmeister et al., 1999). The definitions have, therefore, been
either too general to be useful in practice or too exact but limiting, emphasizing only some aspects of
architecture e.g. within a certain methodical framework (Garlan et al., 2002). Studies dealing explicitly
with different stakeholders and their informational needs have treated these stakeholders as passive
consumers of the concept of software architecture instead of active participants dictating its creation and
use. This is in sharp contract with our study, and explicit requirements in IEEE standardization efforts
(IEEE, 2000). The results we have described argue that it important to allow decision makers, users and
managers the requisite tools that they can use to discuss and negotiate the software architecture.

Another perspective provided by our analysis is that the use of software architecture varies according to
stakeholder, situation, and phase of the project. At the beginning of a project, the ‘language’ and
‘decision’ metaphors prevail as different internal and external stakeholders interact to achieve a common
vision of the goals. As the project proceeds towards implementation, technically oriented stakeholders,
such as architects, designers, and programmers get more involved in the process and the emphasis shifts to
the ‘blueprint’ metaphor. As the system is deployed, the ‘literature’ metaphor gains emphasis, because
new participants must operate or maintain the system, which requires understanding its structure and
principles through documentation. In spite of this broad progression, though, all metaphors appear to
endure through the development process as the system and its structure must be constantly communicated
and understood, new decisions must be made, new changes and extensions must be designed, and
documented to enable learning. Because of the involvement of multiple stakeholders in its creation and

use, the overarching perspective that allows us to further understand our discovery of metaphors is one of
“negotiation” and “interaction” across communities of practice. Figure 2 captures this perspective.

Literature

BlueprintLanguage

Decision

What are we doing
and how does it

work?

What the heck
is that?

These things must
be decided! Do we
have enough money

and other stuff?

It works this way!

Architecture
document

Figure 2. Making Sense of Software Architecture

As the progression suggests, the concept of software architecture usually forms a continuum from vague
and noble ideals into stringent decisions about technical platforms and data interchange formats. As the
concept becomes more concrete, stakeholders become aware of the consequences, conflicts, and problems
they will face. This leads to two distinct requirements for architectural descriptions. First, they should
allow refinement to a concrete level (both politically and technically) soon after the project initiation, and
second, the descriptions (and their implications) should be approachable and intelligible by the
stakeholders engaged in the process. The approaches used to describe architecture, such as the 4+1
architectural view (Kruchten, 1995), instead, represent a forced compromise, allow minimal variations
during the development process, and focus primarily on technological requirements. The immediate and
obvious implication of the four metaphors, therefore, is that there are many perspectives of architecture to
be described and many experts with different skills and vocabularies that use the architecture, suggesting a
need for informal and expressive approaches. Further, these approaches should allow maintenance of
multiple and even conflicting views of the architecture simultaneously.

A clear research opportunity that we identify is to create representational forms that can satisfy many of
these needs. Much existing research aims at creating precise architecture definition languages, whereas
practice needs architecture representations, which allow the co-existence of several, maybe mutually
incompatible, views of architecture. The participants in the creation and use of software architecture must
engage in a dialogue with others, which requires visual representations. The metaphors we have
discovered provide clear directions about properties needed from architecture development methods and
representations, which can allow all groups to participate in the development process. Unlike

representation forms for software development e.g. data flow diagrams and UML, where communication
with users is considered important and has been the topic of research, this need appears to have been
dismissed altogether for architectural description languages. The analysis we have reported essentially
opens this direction for research. In a related vein, our analysis suggests that the dominant view about
software architecture – which corresponds to the ‘Blueprint’ metaphor – may be too narrow, and may not
be sufficient to resolve architectural problems in practice.

References
Allen, R. and D. Garlan (1997) "A Formal Basis for Architectural Connection," ACM Transactions on

Software Engineering and Methodology (6) 3, pp. 213-49.
Baragry, J. and K. Reed. (2001) “Why We Need A Different View of Software Architecture.” Proceedings

of the Working IFIP/IEEE Conference on Software Architecture (WICSA 2001), Amsterdam, The
Netherlands, 2001, pp. 125-134.

Bass, L., P. Clements, and R. Kazman (1998) Software Architecture in Practice: Addison-Wesley.
Bosch, J. (2000) Design and Use of Software Architectures: Adopting and Evolving a Product-Line

Approach: Addison-Wesley.
Bosch, J., M. Gentleman, C. Hofmeister, and J. Kuusela (eds.) (2002) Software Architecture: System

Design, Development and Maintenance - IFIP 17th World Computer Congress - TC2 Stream / 3rd
Working IEEE/IFIP Conference on Software Architecture (WICSA3), Aug 25-30 2002, Montréal,
Quebec, Canada: Kluwer Academic Publishers.

Calloway, L. J. and G. Ariav (1991) “Developing and Using a Qualitative Method to Study Relationships
among Designers and Tools,” in H. E. Nissen, H. K. Klein, and R. Hirschheim (Eds.) Information
Systems Research: Contemporary Approaches and Emergent Traditions: North-Holland, pp. 175-193.

Garlan, D., S.-W. Cheng, and A. J. Kompanek (2002) "Reconciling the Needs of Architectural Description
with Object-Modeling Notations," Science of Computer Programming (44) 1, pp. 23-49.

Garlan, D. and A. J. Kompanek. (2000) “Reconciling The Needs of Architectural Description with Object-
Modeling Notations.” Proceedings of the Third International Conference on the Unified Modeling
Language - UML 2000, York, UK, 2000, pp. 498-512.

Glaser, B. (1978) Theoretical Sensitivity: Advances in the Methodology of Grounded Theory. Mill
Valley: Sociology Press.

Glaser, B. and A. L. Strauss (1967) The Discovery of Grounded Theory: Strategies for Qualitative
Research. Chigago: Aldine.

Hevner, A. R. and H. D. Mills (1993) "Box-structured methods for systems development with objects,"
IBM Systems Journal (32) 2, pp. 232-251.

Hofmeister, C., R. Nord, and D. Soni (1999) Applied Software Architecture. Reading, MA: Addison-
Wesley.

IEEE. (2000) IEEE Recommended Practice for Architectural Description of Software-Intensive Systems.
IEEE IEEE Std 1471-2000.

Kruchten, P. B. (1995) "The 4+1 View Model of Architecture," IEEE Software (12) 6, pp. 42-50.
Lakoff, G. and M. Johnson (1980) Metaphors We Live by. Chigago: The University of Chigago Press.
Madsen, K. H. (1994) "A guide to metaphorical design," Communications of the ACM (37) 12, pp. 57-62.
Medvidovic, N. and R. N. Taylor (2000) "A Classification and Comparison Framework for Software

Architecture Description Languages," IEEE Transactions on Software Engineering (26) 1, pp. 70-93.
Miles, M. B. and A. M. Huberman (1984) Qualitative Data Analysis: A Sourcebook of New Methods.

Beverly Hills: Sage.
Orlikowski, W. J. (1993) "CASE Tools as Organizational Change: Investigating Incremental and Radical

Changes in Systems Development," MIS Quarterly (17) 3.

Scientific Software (2001) "ATLAS.ti - The Knowledge Workbench," http://www.atlasti.de/ (28 Mar,
2002).

Seaman, C. B. (1999) "Qualitative Methods in Empirical Studies of Software Engineering," IEEE
Transactions on Software Engineering (25) 4, pp. 557-572.

Smolander, K. (2002) “Four Metaphors of Architecture in Software Organizations: Finding out The
Meaning of Architecture in Practice.” International Symposium on Empirical Software Engineering
(ISESE 2002), Nara, Japan, October 03 - 04, 2002, 2002, pp. 211-221.

Smolander, K., K. Hoikka, J. Isokallio, M. Kataikko, and T. Mäkelä. (2002) “What is Included in
Software Architecture? A Case Study in Three Software Organizations.” Proceedings of 9th annual
IEEE International Conference and Workshop on the Engineering of Computer-Based Systems
(ECBS), 8-11 April 2002, Lund, Sweden, 2002, pp. 131-138.

Smolander, K. and T. Päivärinta. (2002) “Describing and Communicating Software Architecture in
Practice: Observations on Stakeholders and Rationale.” Proceedings of CAiSE'02 - The Fourteenth
International Conference on Advanced Information Systems Engineering, Toronto, Canada, May 27 -
31, 2002,, 2002, pp. 117-133. Lecture Notes in Computer Science.

Strauss, A. L. and J. Corbin (1990) Basics of Qualitative Research: Grounded Theory Procedures and
Applications. Newbury Park, CA: Sage Publications.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2005

	Going Beyond the Blueprint: Unravelling the Compex Reality of Software Architectures
	Kari Smolander
	Matti Rossi
	Sandeep Purao
	Recommended Citation

	Microsoft Word - 301_paper.doc

