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EXPANDING THE KNOWLEDGE BASE FOR MORE EFFECTIVE 
DATA MINING  

Kunene, Niki, Virginia Commonwealth University, 1015 Floyd Avenue, School of Business, 
P.O. Box 844000-4000, Richmond VA, USA, knkunene@vcu.edu 

Weistroffer, H Roland, Virginia Commonwealth University, 1015 Floyd Avenue, School of 
Business, P.O. Box 844000-4000, Richmond VA, USA, hrweistr@vcu.edu 

Abstract 

Traditionally, data mining, as part of the knowledge discovery process, relies solely on the 
information contained in the database to generate patterns. Recently, there has been some recognition 
in the field that expanding the knowledge passed to the pattern generation phase by including other 
domain knowledge, may have beneficial effects of the interestingness and actionability of the resulting 
patterns.  In this paper, we present a new knowledge discovery method that uses additional decision 
rules and the analytic hierarchy process (AHP) to conceptualize and structure the domain, thus 
capturing a broader notion of domain knowledge upon which data mining can be applied. Based on 
design science guidelines, we design, develop and implement our method within the domain of a brain 
trauma intensive care unit.   

Keywords: Knowledge discovery, data mining, decision support, brain trauma. 

 



 

1 A NEW METHOD FOR KNOWLEDGE DISCOVERY 

1.1 Introduction 

Knowledge discovery in databases (KDD) is the non trivial process of identifying valid, novel, 
potentially useful, and ultimately understandable patterns in data; and data mining, the application of 
specific algorithms for the extraction of patterns or models from data, is only one step in this process. 
Notwithstanding, much of the published research in KDD has focused on the data mining step. 
Studying the KDD process in its entirety requires an examination of activities that span a 
multidisciplinary field. Fayyad et al. (1996), in what they loosely call a unifying, process-centric, 
framework for KDD, articulate a nine-step process that includes, learning the application domain, 
creating the target dataset, data cleaning and pre-processing, data reduction and data selection, 
choosing the data mining technique (i.e. classification, prediction, clustering, association), choosing 
the data mining algorithm, data mining, proper interpretation of the results, and use of the discovered 
knowledge. Han and Kamber (2001) point out that there is not, as yet, a broadly accepted 
methodology for KDD and data mining, but that any such methodology should contain the following 
steps: (1) problem analysis, (2) data preparation, (3) data exploration, (4) pattern generation (data 
mining), (5) pattern monitoring, and (6) pattern deployment. From a practitioner’s viewpoint, the 
CRoss Industry Standard Process for Data Mining (CRISP-DM) methodology has become a de facto 
standard, and several papers (e.g. de Abajo et al. 2004) published in ACM’s SIGMOD and SIGKDD 
conferences describe KDD technology implemented in different industries using CRISP-DM. The 
design logic of CRISP-DM methodology is not dissimilar to the framework of Fayyad et al. or that of 
Han & Kamber, in that it encompasses the following phases: (1) business understanding, (2) data 
understanding, (3) data preparation, (4) modelling, (5) evaluation, and (6) deployment. What these 
traditional approaches to the KDD process have in common, is the sole reliance on the data found 
within the databases upon which the pattern discovery is performed.  In our research, based on design 
science, we develop a KDD method that articulates a way to incorporate the knowledge about the 
domain that lies outside of the database, knowledge that decision makers use in their day-to-day 
application of the data, user experience and user judgement. We demonstrate our method within the 
domain of a brain trauma intensive care unit of a major academic hospital.  

 

1.2 The Proposed Method 

Figure 1 below gives a high-level depiction of our Method. The left-hand side represents the 
traditional practice and the right-hand side our proposed method. In the traditional approach the 
domain knowledge passed to the knowledge discovery process consists of knowledge derived solely 
from the database; thus the pattern discovery process is bounded by the functional and design 
limitations of the database. Even in those studies (Yoon et al. 1999, Hotz et al. 2001, de Abajo et al. 
2004) that have attempted some incorporation of domain knowledge into the KDD process, this is 
done only by explicating knowledge that can be inferred about the data in the database, without 
recourse to what the users of the data know about the data or their domain, e.g. inter-field relationships 
and attribute correlations. In our method we propose passing, what we call extra-database knowledge, 
to an augmented database or repository, which we have labelled domain knowledge in Figure 1, for 
further pattern generation processing. This extra-database knowledge is derived from the expertise, 
experience and judgment of the decision makers, using the analytic hierarchy process (AHP) (Saaty 
1994) and additional decision rules. 



 

Figure 1. The Traditional Approach versus the Proposed Method. 

 

1.3 Using AHP to Conceptualize the Domain Problem 

Our Method relies on the conceptualization of the domain in a structured fashion. For this purpose we 
employ the AHP to formulate the problem structure, of which the database data form only a part. The 
resultant domain knowledge, as shown on the right hand side of Figure 1, is an AHP hierarchy.  The 
AHP is a multi-criteria decision method that uses hierarchical structures of the goal – criteria – 
alternatives form to represent a decision problem, and then assigns priorities for the decision 
alternatives based on user judgments. 

In conceptualizing the domain beyond only the database data, we are interested in the rules or 
heuristics used by the decision makers, their decision objectives, and their preference assessments. 
Once we have constructed the AHP decision hierarchy, our expert decision maker is asked to complete 
the hierarchy by making pairwise comparisons of the items (criteria) with respect to the level above, 
the goal as it were. Similarly, subcriteria at the next level are assigned weights with respect to the level 
above them. The acquired relative weights of criteria (and subcriteria) are synthesized, ultimately 
yielding the composite priorities of all criteria and eventually the relative (global weights) of the 
alternatives. 

 

1.4 The Incorporation of Production Rules 

There exists additional knowledge about each element of the hierarchy. This knowledge can be 
incorporated by constructing decision rules deemed important to the outcome. These rule-based 
inferences are of the form: IF <condition(s)> true THEN <consequence(s)> true; or alternatively, 
IF <condition(s)> true THEN do <action(s)>.  These rules can be equivalently expressed as object-
attribute-value triplets (OAV-triplets). In our study, no inferences will be made about items not 
captured in the AHP derived decision hierarchy.  

 



 

2 ILLUSTRATION USING A CASE STUDY 

2.1 The Application Domain 

In this section, we describe the domain wherein our KDD method is developed and tested according to 
the design science guidelines set out by (March & Smith 1995; Hevner et al. 2004). Our case study is 
conducted at the brain trauma intensive care unit (ICU) of a large academic hospital. The overall goal 
of the ICU is to maximize patient outcome as measured by the Glasgow outcome scale (GOS) at six 
months. Patient outcome is affected by several factors, including pre-hospital management, direct 
trauma center transport, triage (measured using the Glasgow coma scale (GCS)), and the participation 
in trauma education programs. Cerebral ischemia is considered the single most important secondary 
event affecting patient outcome. Primary insult to the brain occurs at the site of the accident and is 
beyond the control of the ICU, however secondary insults occur during patient care, and the ICU’s 
treatment objective is to avoid these by all means.  

The ICU maintains a database which stores monitoring information (oxygenation, microdialysis, and 
hemodynamic monitoring), as well as epidemiological, drug treatment (mannitol, barbital, etc.), 
outcome data and other systemic variables. Physicians and staff rely on their own expertise, 
continuous assessments, and scientific evidence to continuously improve surgical as well as drug 
intervention for better patient outcome. Our data analysis, however, is retrospective, that is nothing we 
do is currently used to intervene on patient care.  
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Figure 2. Conceptualization of the Domain – a Decision Hierarchy. 

On Figure 2, Level 1 of the hierarchy is the root which represents the overall goal of the domain 
decision problem. Level 2 of the hierarchy represents the main factors or criteria that affect patient 
outcome: initial management, the GCS triage, the patient’s age, and cerebral ischemia. Levels 3 and 4 
represent subcriteria, and Level 5 reflects (drug) treatment interventions. Each drug treatment has both 
effects and side-effects which can be evaluated as benefits or costs. At the lowest level of the 



 

hierarchy (not shown) are the alternatives (patients as it were). With the AHP the acquired relative 
weights of factors (and sub-factors) are synthesized, ultimately yielding the composite priorities of all 
criteria and eventually the relative (global weights) of the alternatives. Thus each patient is assigned a 
global weight, as a result of AHP structuring and assessment. This weight we transform and construct 
as an additional attribute of patient, which we incorporate into the augmented database of our domain 
knowledge. To arrive at the weights of the factors and the global weights of the alternatives, using the 
AHP, pairwise comparisons are performed with the pairwise assessments provided by the chief 
neurosurgeon. 

To illustrate our Method, we will restrict ourselves to elements up to the second level of the hierarchy, 
which coincide broadly with what are known as epidemiological factors. In the case of initial 
management and cerebral ischemia, we use well-established proxy measures. 

 

2.2 An Illustration Using GCS and Age 

The GCS is regarded as an objective measure of consciousness, used as a clinical measure of the 
severity of injury in patients with severe traumatic brain injury. In general, there is an increasing 
probability of poor outcome (GOS) with a decreasing GCS in a continuous, stepwise manner. GCS is 
measured after pulmonary and hemodynamic resuscitation, and after pharmacologic and paralytic 
agents have been metabolized.  Mortality means the GOS = 1.  Age is an important factor in the 
neurological outcome of traumatic brain injury patients; the brain is believed to have a decreased 
capacity to repair itself with age. In general, there is an increasing probability of poor outcome with 
increasing age in a stepwise manner. Its predictive value is at about 70%. Younger patients tend to fair 
better, with age 40 being a significant marker. There is also a significant increase in probability of 
poor outcome above 60 years of age; in other words this is another critical age threshold for worsening 
prognosis. While there are certain issues that compound the observation of GCS, no observer 
reliability problems exist for age. Thus we treat the GCS domain largely as guideline knowledge and 
age as standard knowledge. 

In general, we define a class of rule-objects, where a rule-object has the following attributes: 
RuleName, RuleCertainty (weight), RuleCondition and RuleConsequence. A rule either applies to or 
is not applicable to a patient, in the case of the former RuleConsequence, and RuleCertainty values 
must be recorded as impacting on the relevant decision factor by the specified level of certainty. For 
example, if a patient is 55 years old, then the expected mortality (i.e. GOS = 1) is 0.46 * 0.50.  By 
adding an attribute called expected_mortality and assigning it the value 0.23 for the patient in the 
augmented database, we capture incidence of the rule. Pattern discovery is then deployed on the 
augmented database. 
 

2.3 The Data Mining Phase 

After having expanded the knowledge base, as described above, we now use data mining.  A data 
mining tool infers a model from the repository. When supervised learning is employed, which 
generally includes classification and prediction techniques, the user is required to define one or more 
classes in the database.  In our case, we could use GOS, for example.  Thus, input consists of the rows 
of data with all of the defined attributes, and the data rows are classified on the basis of the class label 
attribute, GOS.  The output is a set of class labels, where each class label corresponds to a unique 
pattern, the class description.  A class is defined by a combination of values for the predicted 
attributes, or more generally, a class is defined by a condition on the attributes.  Prediction techniques 
are similar to classification, that is, using the classification model, unseen data is used to predict the 
class label of each row.  The prediction is then compared to the known class label to measure model 
accuracy.  The attributes that denote the class label of a tuple are called the predicted attributes (target 



 

variables). The remaining attributes are called the predicting attributes. Using our Method, the nature 
and number of predicting attributes is different to what it ordinarily would be using a traditional 
application of data mining.  

With the decision problem and the data as described above, the application of data mining can thus be 
used principally to predict patient outcome and/or cerebral ischemia, or for classification of cases with 
respect to specific patient outcome events according to GOS, i.e. dead, vegetative, severe disability, 
moderate disability, or good recovery. In medical terms, the prediction of the probable course of 
outcome of a disease is what we understand to be the prognosis. Thus, patterns identified may be 
considered for prognostic indicators. Using the traditional approach, the KDD process uses as input 
only the data from the database. With our method, the extra-database domain knowledge we have 
articulated and incorporated into the repository is also used to influence the data mining phase.  

 

2.4 Measures of Interestingness 

There are two types of measures of interestingness used to evaluate the data mining output. These are 
objective (Hilderman & Hamilton 2000) and subjective measures of interestingness (Hilderman & 
Hamilton 2001). Objective measures are standard quantitative assessments used in data mining; their 
selection naturally depends on the data mining tool used (that is, classification/prediction, clustering or 
association). For classification or prediction, we are interested in accuracy, stability, lift, and 
complexity. Accuracy measures how well objects were correctly classified by the tool for both seen 
and unseen data.  Stability speaks the tools consistency in classifying or predicting both seen and 
unseen data; we measure stability as an interval number from 0 to 1, where 0 means completely stable 
and 1 means completely unstable. Lift charts plot the relative predictive/classification improvement 
from the baseline (chance); decision tree complexity is measured by a combination of the depth of the 
tree, and the number of leaves. We limit the depth so as not to exceed six for all models, thus we focus 
on the number leaf nodes. With respect to subjective measures of interestingness, we use 
surprisingness and actionability (Silberschatz & Tuzhilin 1995, 1996). Surprisingness speaks to the 
unexpectedness of the patterns or class descriptions generated, whereas actionability ascertains 
whether the resulting class description is something decision makers can do anything about, it is 
measured on a scale of 1 to 5, where 1 is not actionable and 5 readily actionable. 

 

2.5 Some Preliminary Results 

Our example uses only the epidemiological portion of the problem structure, that is, AGE, GCS, 
Hypotension (a proxy measure for initial management), and the Ischemic Score (a clinically used 
proxy measure for cerebral ischemia). In a preliminary testing of our model, we developed some data 
mining decision tree classification models using our approach and compared the results against an 
otherwise traditional application of data mining. We will only discuss accuracy, stability, and 
complexity, and provide some general comments on subjective interestingness.  

Table 1 shows a marked increase in objective interestingness measures between the data mining model 
using the traditional approach (Model 1) and the data mining model employing our Method which 
includes AHP structuring (Model 2). Correct classification rates improve by 33% and 41% for training 
and validation data, and stability improves by 37%. Model 2 also generates a more complex model. 
An overly simple model has little descriptive or explanatory utility.  In our case, Model 1 uses only the 
ischemic score as the predicting attribute, and throws the other attributes out. Model 2, on the other 
hand, uses four-fifths of the predicting variables to split the data. The significance of this is that by 
utilizing a greater proportion of the available predicting attributes, Model 2 is a better descriptive 
model. For most applications the worth or descriptive value of a single attribute is usually already 



 

investigated and understood, using statistical approaches. Thus, Model 2 outperforms Model 1 with 
respect to objective interestingness measures.  

 Model 1 
(Traditional Approach) 

Model 2  
(our Method) 

OBJECTIVE INTERESTINGNESS MEASURES 

  
43% 64% 

Accuracy–Classification rate: 
Training Data set 
Validation Data set 24% 41% 
Stability [0-1] .30 0.22 
Complexity LOW [ 2 leaf nodes] MODERATE [9 leaf nodes] 

SUBJECTIVE INTERESTINGNESS MEASURES 

Surprisingness No Yes 
Actionability N/A 3-4 

Table 1.  Summary of Interestingness Measures for a Preliminary Model. 

The patterns generated by Model 1 were not surprising, and thus actionability was a moot point. Some 
leaf nodes in Model 2 were judged surprising, others not. Overall we focus on the surprisingness of 
patterns and weigh their actionability. Intuitively, one expects that the more complex models are 
subjectively more interesting than very simple models. More descriptive models may be more 
expensive to translate into action; however their potential actionability is more readily ascertainable. 

IF  AHP_100 <  16.45 
AND Ischemia IS ONE OF: 0 1 2  
AND GCS IS ONE OF: 6 7 8 9  
THEN 
  NODE    :      32 
  5       :   66.7% 
  4       :   16.7% 
  3       :   16.7% 
  2       :    0.0% 
  1       :    0.0% 

IF     16.45 <= AHP_100 <  24.85 
AND Ischemia IS ONE OF: 0 1 2  
AND GCS IS ONE OF: 6 7 8 9  
THEN 
  NODE    :      33 
  5       :    0.0% 
  4       :   14.3% 
  3       :   14.3% 
  2       :   42.9% 
  1       :   28.6% 

LHS of node split RHS of node split 
Table 2.  Two Leaf Node Examples for Model 2, Using our Method. 

The LHS of Table 2 shows that if a patient’s AHP global weight is less than the lower boundary 
threshold of 16.45, GCS is greater or equal to 6, and ischemic less than or equal to 2 then there is a 
67% chance of good recovery (GOS=5), a total of 83.4% chance of independent survival (GOS = 4, 5) 
and odds are the patient will not die (GOS =1) or be vegetative (GOS=2) when all three cohere. The 
RHS of Table 2 shows that if a patient’s AHP global weight is greater than 16.45 but less than 24.85, 
with ischemia and GCS unchanged from the rule on the LHS, then the odds of good recovery are nil; 
there is also a 29% mortality rate, and a 85.8% chance of poor outcome (GOS 1, 2, 3). Here, the lower 
the AHP score the greater the risk of mortality.  

In contrast, results of the first Model 1 show if the ischemic score is equal to or greater than 2, there is 
a 64.7% chance of mortality. This is correct, but not surprising. 

 

3 CONCLUSION 

In this paper, we illustrate a new method for knowledge discovery and illustrate it using a brain trauma 
ICU case study. Our method relies on the conceptualization of a domain using AHP and rule-based 
systems to articulate additional domain knowledge.  In general, this conceptualization can be applied 



 

to a broad class of problems and domains.  The use of AHP in a multiplicity of environments is well-
documented, ranging from resource allocation, planning and site location, in health-care, economics, 
governance, and natural resource problems (Zahedi 1986). Data mining and knowledge discovery in 
databases (KDD) has also been applied to a variety of application domains, such as sales/marketing, 
quality control, cost/utilization, and fraud detection to support decision making in these domains.  The 
incorporation of extra-database information into the data mining process in this way uses two well-
known techniques (AHP, a decision making technique, and data mining) that dovetail with each other 
to support a broad class of decision making problems, especially when dealing with large datasets.  
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