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Abstract 
Dimensional modelling is a conceptual modelling technique developed for designing data warehouse structures. 
It has become the predominant approach to designing data warehouses in practice and has proven to be highly 
successful in developing database structures that can be used directly by end users.  This paper examines the 
nature of dimensional modelling and its relationship to traditional Entity Relationship (ER) modelling.  It shows 
that a dimensional model is just a restricted form of an ER model, and that there is quite a straightforward 
mapping between the two.  Understanding the relationship between the two types of models can help to bridge 
the gap between operational system (OLTP) design and data warehouse (OLAP) design.  It also helps to resolve 
the difficult problem of matching supply (operational data sources) and demand (end user information needs) in 
data warehouse design.  Finally, it results in a more complete dimensional design, which is less dependent on 
the designer’s ability to choose the “right” dimensions.  The paper also reports some preliminary results from 
empirical testing of the approach. 
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INTRODUCTION 

Dimensional Modelling 

Dimensional modelling is a conceptual modelling technique developed for designing data warehouses (Kimball, 
1996; 1997; 2002).  Its objectives are to create database structures that end users can easily understand and write 
queries against, and to optimise query performance.  It has become the predominant approach to designing data 
warehouses in practice and has proven to be a major breakthrough in developing database structures that can be 
understood and used directly by end users.  Dimensional modelling is based on a single, highly regular data 
structure called a star schema.  A star schema consists of one central table called the fact table (which forms the 
centre of the star), surrounded by a number of dimension tables (which form the points of the star) (Figure 1): 
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Figure 1.  Star Schema Example 

Fact tables generally correspond to particular types of business events: for example, orders, shipments, 
payments, bank transactions, airline reservations, hospital admissions.  Such tables usually contain measures 
(e.g. dollar amounts, quantities), which may be analysed using numerical functions.  Dimension tables provide 
the basis for aggregating data in the fact table.  Dimensions typically answer “who”, “what”, “when”, “where”, 
“how” and “why” questions about the business events stored in the fact table.  

Why Dimensional Modelling “Works" Heading Minor 

Dimensional modelling is not based on any theory but has clearly been very successful in practice.  The main 
reasons for its success are(Moody and Kortink, 2003b): 

• 

• 

• 

• 

It organises large amounts of data into cognitively manageable “chunks”.  Each star schema consists of 
a small number of tables – typically less than “seven, plus or minus two” – which corresponds to the 
limits of human cognitive capacity(Miller, 1956; Baddeley, 1994).  This helps to reduce complexity 
and consequent problems of information overload.  
Star schemas impose a hierarchical structure on enterprise data.  This provides the ability to analyse 
data at different levels of detail, and to “roll up” and “drill down” in OLAP tools.  Hierarchy is one of 
the most common ways of organising complexity for the purposes of human understanding(Flood and 
Carson, 1993; Simon, 1996; Klir and Elias, 2003).   
It simplifies formulation of queries by minimising the number of tables and therefore the number of 
joins required.   
It optimises query performance.  A star schema has a fixed structure that has no alternative join paths, 
which greatly simplifies the evaluation and optimisation of queries(Raisinghani, 2000).   

Objectives of this Paper 

This paper examines the nature of dimensional modelling and its relationship to traditional Entity Relationship 
(ER) modelling.  It shows that an ER model can be transformed into a set of dimensional models by a process of 
selective subsetting, denormalisation and (optional) summarisation.  Understanding the relationship between the 
two types of models can help to bridge the gap between operational system (OLTP) design and data warehouse 
(OLAP) design.   

PREVIOUS RESEARCH 
Most of the previous research in dimensional modelling has focused on developing new conceptual modelling 
notations to represent multi-dimensional data.  For example, Cabibbo and Torlone (1998) define a formal 
mathematical model called the Multidimensional (MD) Model to represent multidimensional data.  Lehner 
(1998) proposes the Nested Multidimensional Data Model (NMDM), which represents data at two different 
(“nested”)  levels.  Sapia et al (1998) define an extension to the ER model called the Multidimensional E/R 
Model (ME/R).  Golfarelli et al (1998, 1999) define a graphical conceptual modelling technique called the 
Dimensional Fact Model (DFM), which is used to develop a complete data warehouse design methodology.  
Tryfona et al (1999) propose the StarER Model, which is an extension of the ER model to model 
multidimensional data.  Sanchez et al (1999) propose a conceptual model called IDEA to model 
multidimensional data, which is used as the basis for a CASE tool (IDEA-DWCASE) and a data warehouse 
design methodology (EINSTEIN).  Trujillo et al (1999, 2000) define an OO conceptual model called the Object 
Oriented Multidimensional Model (OOMD) based on a subset of UML.  Franconi and Sattler (2000) define an 
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extension to the ER model called the Data Warehouse Conceptual Model (CDWDM) based on description 
logics.  Husemann et al (2000) define a graphical technique for multidimensional modelling based on functional 
dependencies.   Schelp (2000) defines a multidimensional conceptual model called Kubenstrukturmodell (Cube 
Structure Model).  Nguyen et al (2000) define an object–oriented multidimensional data model and use UML to 
define the model for the purpose of representing multidimensional data using OO databases.  Lujan–Mora et al 
(2000) define an extension to UML to represent multidimensional data using the package construct. Finally (and 
rather appropriately!), Aballo et al (2000) propose a multidimensional conceptual model called Yet Another 
Multidimensional Model (YAM) based on UML.   

At a high level, most of the models proposed are quite similar, in that they define constructs to represent facts, 
measures, dimensions etc. However none have become widely accepted in practice, and most of them do not 
appear to have been applied outside a research environment.  There are also major practical and theoretical 
problems with the techniques proposed:  

• 

• 

• 

Complexity management: Most of the models proposed represent data at the level of individual 
attributes – that is, each node in the graphical notations corresponds to a single attribute.  This leads to 
an complexity explosion when dealing with real world data warehouses, where a single dimension may 
contain more a hundred attributes(Kimball, 2002).  Such techniques seem to re-introduce the problems 
of complexity that dimensional modelling was designed to solve.  Empirical studies show that people 
have difficulty understanding conceptual models when they exceed the limits of human cognitive 
capacity (seven, plus or minus two entities) (Moody, 2002).   
Ontological soundness: Wand and Weber (Wand and Weber, 1990; 1995; Weber, 1997) have proposed 
a theory of representation (referred to as the Bunge-Wand-Weber or BWW ontology) which defines a 
comprehensive set of ontological concepts needed to represent the real world.  This provides a 
theoretical basis for evaluating and comparing different modelling notations (Green and Rosemann, 
2000; Opdahl and Henderson-Sellers, 2002).  One of the fundamental requirements of the BWW 
ontology is the need to distinguish between “things” and their properties – failure to do so has been 
found to reduce understanding of models (Shanks et al, 2003).  Most of the multidimensional modelling 
methods proposed in the literature do not distinguish between entities and attributes, and are therefore 
ontologically incomplete.  

Finally, we question whether such models are really necessary. While it might be interesting for researchers to 
develop new conceptual modelling techniques, it is important to establish the case for why they are needed.  In 
this paper, we argue that new conceptual modelling techniques for dimensional data are unnecessary as a 
dimensional model is just a restricted form of ER model.  Also, end users appear to be able to understand star 
schemas quite easily: it is therefore difficult to justify the need for a conceptual modelling technique as a “front 
end” to designing a star schema. 

ER MODELS VS DIMENSIONAL MODELS 

A New Paradigm? 

There is a common misconception that dimensional modelling is fundamentally different to, and incompatible 
with, ER modelling.  This is a view which has been energetically promoted by Ralph Kimball, who is widely 
regarded as the originator of dimensional modelling(e.g. Kimball, 1995; Kimball, 1996; 1997; 2002).  As he 
says in his original book on data warehouse design (Kimball, 1996):  

“Entity relation models are a disaster for querying because they cannot be understood by users and cannot be navigated 
usefully by DBMS software.  Entity relation models cannot be used as the basis for enterprise data warehouses”  

As a result, the starting point for most data warehouse design approaches is that you must forget everything you 
ever learnt about traditional database design.  It is easy to understand Kimball’s motivation in promoting this 
view – the IT industry is driven by fads and fashions, and commercial success is driven by the ability to show 
that what one is promoting is “new”.  However it is more difficult to understand why the academic community 
has simply accepted this premise at face value, as evidenced by their willingness to create new conceptual 
modelling techniques and even to define new normal forms (e.g. Lehner et al, 1998; Lechtenborger and Vossen, 
2003; Levene and Loizou, 2003) for dimensional modelling.   

We believe it is important to dispel this notion, as it holds back the development of the data warehousing field in 
two ways: 

It acts as a barrier for people trained in traditional database design techniques (ER modelling and 
normalisation) to learn data warehouse design.  These techniques have been used to design database 
schemas for over two decades, and are a standard component of almost every university IT 
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curriculum(Thalheim, 2000).  Clearly, it would be better to build on this existing knowledge base than 
to simply discard it – people learn better by building on what they already know.   

• 

• 

• 

It acts as a barrier to building a “cumulative tradition” in the field(Kuhn, 1970; Keen, 1980; Weber, 
1997).  Rather than trying to establish a totally separate design discipline, data warehouse design 
should build on and link to existing body of knowledge in the database design field. 

Dimensional Models as ER Models 

As discussed earlier, most of the previous research in this area has focused on developing new conceptual 
modelling notations for dimensional data. However we argue that new conceptual modelling techniques are 
unnecessary, as a dimensional model is just a restricted form of ER model(Figure 2): 

There is a single entity called the fact table, which is in at least third normal form (3NF): violations to 
second normal form (2NF) would result in “double counting” in queries.  The fact table forms an n-ary 
intersection entity (where n is the number of dimensions) between the dimension tables, and includes 
the keys of all dimension tables. 
There are two or more entities called dimension tables, each of which is related to the fact table via one 
or more one-to-many relationships.  Dimension tables have simple keys, and are in at least 2NF: 
transitive dependencies (3NF violations) are allowed, but partial dependencies (2NF violations) and 
repeating groups (1NF violations) are not. 

As we will show in the next section, there is quite a straightforward transformation between a normalised ER 
model and a dimensional model.   
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Figure 2.  ER Representation of a Star Schema 

FROM ER MODELS TO DIMENSIONAL MODELS 
In this section, we describe how to derive dimensional models from normalised ER models.  This provides a 
way of repackaging data stored in operational systems into a form that end users can easily understand and write 
queries against.  Deriving dimensional models from an ER model provides a more structured approach than 
starting from first principles, which can help to avoid many of the pitfalls faced by inexperienced designers.   

“Dimensionalising “ an ER Model 

The transformation of an ER Model to a set of dimensional models takes place in four steps: 
1. Classify entities 
2. High level star schema design 
3. Detailed fact table design 
4. Detailed dimension table design 

Step 1  Classify Entities 

The first step in the transformation procedure is to classify entities into three distinct categories: 
• Transaction Entities: These are entities which record details of business events e.g. orders, shipments, 

payments, insurance claims, bank transactions, hotel bookings, airline reservations and hospital 
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admissions.  It is such events that most decision support applications are centred around, in order to 
identify patterns, trends, opportunities and potential problems in business operations.   

• 

• 

• 

• 

• 

Component Entities: These are entities which are related to a transaction entity by a one-to-many 
relationship.  These are entities which are directly involved in the business event, and define details of 
“who”, “what”, “where”, “how” and “why”.   
Classification Entities: These are entities which are related to a component entity by a chain of one-to-
many relationships.  These define embedded hierarchies in the data model.   

Example 
To illustrate the approach, we use an example ER model for a conference/event organiser(Figure 3).  This 
consists of 34 entities, which is only about a third of the size of the average operational data model, but large 
enough to illustrate the main principles of the approach. Even in a model of this size, the problems of 
complexity are clearly evident.  Most end users would find such a schema incomprehensible as it exceeds human 
cognitive capacity many times over.  Even quite simple queries will require multi-table joins, which are beyond 
the capability of most end users.   

The classification of entities is shown in Figure 3.   
Transaction entities: these are usually relatively easy to identify.  In the example, there are two: Event 
Registration (on the demand/revenue side) and Speaker Engagement (on the supply/cost side).   
Component entities: Event Registration has five components(Delegate, Booking Method, Discount Type, 
Promotion and Event) while Speaker Engagement has four components (Speaker, Event, Payment Level, 
Session Type).  One of the component entities (Event) is shared by both transactions.   

Classification entities: There are 17 classification entities in the model, which define separate but 
partially overlapping hierarchies in the model.  

Note that some entities do not fit into any of these categories.  Such entities do not fit the hierarchical structure 
of a star schema, and therefore cannot be represented in dimensional form.  The process of “dimensionalising” 
an ER model effectively “weeds out” non-hierarchical data.   
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Figure 3. Classification of Entities 

Step 2: High Level Star Schema Design 

In this step, relevant star schemas are identified and their high level structure defined (entity level design). 
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2.1 Identify Star Schemas Required 
Each transaction entity is a candidate for one or more star schemas.  Each star schema should be centred around 
a single business event, so that it represents a manageable sized “chunk” of data.  However there is not a one-to-
one correspondence between transaction entities and star schemas: 

• 

• 

• 

• 

• 
• 

• 

Not all transactions may be important for decision support purposes: user input will be required to 
choose which transactions are relevant.   
Multiple star schemas at different levels of detail may be required for a particular transaction.   

2.2 Define Level of Summarisation 
One of the most critical decisions in star schema design is to choose the appropriate level of granularity, which 
is the level of detail or summarisation at which data is stored(Inmon, 1996).  At the highest level, there are two 
main options in choosing the level of granularity: 

Unsummarised (transaction level granularity): this is the highest level of granularity, where each fact 
table row corresponds to a single transaction or line item.   
Summarised: transactions may be summarised by a particular subset of dimensions or dimensional 
attributes.  In this case, each row in the fact table corresponds to multiple transactions. 

The lower the level of granularity (the higher the level of summarisation), the less storage space required and the 
faster queries will be executed.  However the downside is that summarisation loses information and therefore 
limits the types of analyses that can be carried out.  Transaction level granularity provides maximum flexibility 
for analysis, as no information is lost from the original normalised model.  However for performance reasons or 
to simplify the view of data for a particular group of decision makers, some level of summarisation may be 
required.  In practice, multiple star schemas at different levels of granularity are generally created for each 
transaction entity, to suit the needs of different users.   

2.3 Identify Relevant Dimensions 
The component entities associated with each transaction entity represent candidate dimensions for the star 
schema.  However there is not a one-to-one correspondence between component entities and dimensions: 

Not all components may be relevant for purposes of analysis, or for the level of granularity chosen.   
If a component entity has no dependent attributes, its key will be included in the fact table but it will 
not be represented by an explicit dimension table.  This is called a degenerate dimension. 
Explicit dimensions are required to represent Date and/or Time, to support different levels of historical 
analysis.  Date and Time are not normally explicitly represented in operational systems, as they are 
handled by built-in DBMS functions.  These correspond to data types rather than entities at the 
operational level.   

Figure 4 shows the transaction level star schema for the Event Registration entity.  Each row in the fact table 
corresponds to an individual event registration (transaction level granularity).  The star schema has five 
dimension tables, corresponding to four of the five component entities plus a time dimension (Date).  There are 
multiple relationships to the date dimension corresponding to the different dates recorded for each registration.  
One of the component entities (Discount Type) is a degenerate dimension as it contains no dependent attributes.  
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Figure 4. Transaction Level Star Schema for Event Registration Transaction 

When non-transaction level granularity is chosen, the dimensions required will be determined by how the 
transactions are summarised.  This will generally be some subset of the dimensions used in the transaction level 
star schema, although dimensions may be subsets of the transaction level dimension tables.   

Step 3: Detailed Fact Table Design 

In this step, we complete the detailed (attribute level) design for fact tables in each star schema.   

3.1 Define Key 
The key of each fact table is a composite key, consisting of the keys of all dimension tables plus any degenerate 
dimensions.   

3.2 Define Facts 
The non-key attributes of each fact table are measures (facts) that can be analysed using numerical functions.  
These are derived from attributes in transaction entities.  A key concept in defining facts is that of additivity 
(Kimball, 1996; 2002): 

• 

• 

Fully additive facts: these are facts that can be meaningfully added across all dimensions.  In the Event 
Registration example, Registration Amount ($) can be added across any combination of dimensions to 
get total sales for a particular day, event, delegate or booking channel. 
Semi-additive facts: these are facts that can be meaningfully added across some dimensions but not 
others (usually time).   

Non-additive facts: these are facts that cannot be meaningfully added across any dimensions.  In the Event 
Registration example, Discount Percentage (%) cannot be added across any dimensions.   

Wherever possible, additive facts should be used to prevent errors in queries.  This means converting semi- and 
non-additive facts to additive facts.  In the example, Discount Percentage (%) (a non-additive fact) can be 
converted to an additive fact by multiplying it by Registration Amount ($) to form Discount Amount ($).  Note 
that this transformation does not lose information: Discount Percentage can be derived by dividing Discount 
Amount price by Registration Amount.   

Figure 5 shows the transaction level fact table for the Event Registration transaction entity.  The key of the table 
is a composite key, consisting of the keys of all dimension tables plus the degenerate dimension.  Each row in 
the fact table corresponds to an individual event registration and contains all attributes in the original transaction 
entity.  In this case, no data is lost from the original (normalised) data model.  However two non-additive facts 
(Discount Percentage and Refund Percentage) have been converted to additive facts.   
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Figure 5. Event Registration Fact Table 

Step 4: Detailed Dimension Table Design 

In this step, we complete the detailed (attribute level) design for dimension tables in each star schema.   

4.1 Define Dimensional Key 
The key of each dimension table should be a simple (single attribute) key.  In most cases, this is just the key of 
the underlying component entity.  However sometimes the operational key may need to be generalised, to ensure 
that it remains unique over time.  Operational systems often only require uniqueness at a point in time, which 
may cause problems in the data warehouse environment when performing historical analysis.  Another situation 
where the key may need to be generalised is the case of slowly changing dimensions, in which different “states” 
of the component entity are recorded over time (Kimball, 1996; 2002). 

4.2 Collapse Hierarchies 
Dimension tables are formed by denormalising hierarchies (defined by classification entities) into component 
entities.  The resulting dimension table consists of the union of all attributes in the original entities – as many 
descriptive attributes as possible should be included to support analysis of data in different ways.  This process 
introduces redundancy in the form of transitive dependencies, which are violations to third normal form (3NF) 
(Codd, 1970).  This means that the resulting dimension table is in second normal form (2NF).   

4.3 Augment or Replace Codes and Abbreviations by Descriptive Text  
To make the star schema as understandable as possible, codes and abbreviations in the source data should be 
augmented or replaced by descriptive text(Kimball, 1996; 2002).  While codes and abbreviations play an 
important place in efficient processing of transactions at the operational level, they generally obfuscate things in 
the data warehouse environment – they place additional cognitive load on the end user to remember what they 
mean. 

CONCLUSION 

Summary 

This paper has described an approach for deriving dimensional models from ER models.  This provides a 
“bridge” between operational system (OLTP) design and data warehouse (OLAP) design.  It also helps to 
resolve the difficult problem of matching “supply” (operational data sources) and “demand” (end user 
information needs) in data warehouse design.  Finally, it results in a more complete dimensional design, which 
is less dependent on the designer’s ability to choose the “right” dimensions.  

We have challenged the widely accepted view that dimensional modelling is fundamentally different to and 
incompatible with ER modelling.  We have shown that a dimensional model is just a restricted form of ER 
model and there is quite a straightforward transformation between the two.  An ER model can be transformed 
into a set of dimensional models by a process of selective subsetting, denormalisation and (optional) 
summarisation: 

• Subsetting: The data contained in the ER model is partitioned into a set of separate star schemas, each 
centred around a single business event (transaction entity).  This reduces complexity through 
“chunking”. 
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• 

• 

Denormalisation: Hierarchies in the ER model are collapsed to form dimension tables.  This further 
reduces complexity by reducing the number of tables.   
Summarisation: The most flexible dimensional structure is one where each fact represents a single 
transaction or line item.  However summarisation may be required for performance reasons, or to suit 
the needs of a particular group of users.  

Validation of the Approach 

It is essential for IS design methods to be validated in practice – ultimately, the scientific merit of any method is 
an empirical rather than a theoretical question (Rescher, 1973; Ivari, 1986).  However IS design research tends 
to emphasise the development of new methods while addressing the use and evaluation of methods in only a 
limited fashion (Bubenko, 1986; Curtis, 1986; Fitzgerald, 1991; Westrup, 1993; Wynekoop and Russo, 1997; 
Moody and Shanks, 1998).  The method described in this paper has been empirically tested in three ways. 

Field Testing:  Action Research 

Action research provides a method for testing and refining research ideas by applying them in 
practice(McCutcheon and Jurg, 1990; Jönsson, 1991; Baskerville and Wood-Harper, 1996; Hatten et al, 1997).  
Using this approach, the method has been applied over a three year period in data warehousing projects in a 
range of industries including health, banking, insurance, manufacturing and utilities.  These projects have 
provided real world tests of the effectiveness of the method. The method was originally defined in (Moody and 
Kortink, 2000) but has been refined considerably since this time.  Most of the refinements have been to deal 
with exceptions and special cases that arise in practice (e.g. non-hierarchical data, slowly changing dimensions, 
minidimensions, heterogeneous star schemas).  For reasons of space, the method is only presented in simplified 
form here but is described in detail in (Moody and Kortink, 2003b; 2003a). 

Field Testing:  Teaching to Practitioners 

The method has also been taught to practitioners via public courses.  This is an important step in the evolution of 
any method: from a method that the authors can use to one that anyone can use.  Feedback from teaching 
experiences has been used to improve the method, particularly in making the details of the transformation 
approach more explicit.  Teaching practitioners is more likely to result in useful feedback than teaching 
university students, as students lack the knowledge and experience to evaluate the practical applicability of a 
method and identify potential weaknesses.  

Laboratory Testing:  Practitioner Acceptance Testing 

Regardless of the potential benefits of design methods, unless they are used in practice, these benefits cannot be 
realised.  Adoption in practice is an important pragmatic measure of method “success” and of the impact of 
research on practice (Fitzgerald, 1991; Moody, 2003).  A laboratory experiment was conducted in which 
experienced practitioners were trained to use the method, applied it to a range of problems and asked to provide 
their perceptions of it via a post-task survey.  This provides a form of “practitioner acceptance testing” of the 
method, analogous to user acceptance testing which is routinely conducted for information systems.  The study 
showed significantly positive results for perceived ease of use, perceived usefulness and intention to use, which 
suggests that the method has a high likelihood of being adopted in practice. 
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