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ABSTRACT

Intelligent systems and their applications are proliferating. Embedded Intelligent Real-Time Systems 

(EIRTS) are one type of intelligent system. Defining and measuring the complexity of this kind of 

system may help with better design, development, maintenance, and performance of EIRTS. In this 

paper, we propose a set of evaluation criteria to measure the complexity of Embedded Intelligent 

Real-Time Systems (EIRTS). We show an  operationalization of the criteria with a sample EIRTS.  

1. INTRODUCTION AND RESEARCH QUESTIONS 

Many next generation real-time systems are expected to be large, complex, distributed, 

intelligent, and able to operate in increasingly uncertain environments [Grosv & Davis, 1994; Stoyen, 

Marlowe, Younis, and Petrov, 1999]. These real-time systems must be intelligent and flexible enough 

to react and respond quickly to changing and  unexpected system conditions, must evolve over time as 

requirements change, and must keep development, testing, and verification costs low. Embedded 

Intelligent Real-Time Systems (EIRTS) are one example of such systems. EIRTS process data 

quickly, reason about the processed data, and use the results to provide decision support, system 

monitoring, or system management capabilities. EIRTS have been deployed in a wide range of 

systems to solve complex problems, to speed up data processing, and to enhance system reliability and 

usability. One of these deployment areas is the realm of safety-critical large-scale systems. Examples 

of these systems include intelligent highway systems, nuclear power plants, vessel traffic control 

systems, distributed manufacturing systems, battle management, and patient monitoring systems. 

Successful measurement and interpretation of complexity in intelligent systems can assist with the 

development of more reliable and safer systems, significantly reduced cost of maintenance, and better 

design and  performance for both the EIRTS and for the large-scale safety-critical systems within 

which they are embedded. In this study, we focus on assessing the complexity of EIRTS deployed in 

safety-critical large-scale systems. We start with a literature review as background to this research. 

After proposing a set of evaluation criteria, we operationalize the set with a sample EIRTS. The last 

section includes conclusions and contributions of this study and a conference presentation plan.  
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2. THEORETICAL FOUNDATIONS  

2.1 Software Complexity  

Software complexity is a concept that has been defined in different ways by different 

disciplines. Software complexity measures attempt to objectively associate a number with a program, 

based on the degree of presence or absence of certain characteristics of software [Kokol, Brest, and 

Umer, 1996]. These characteristics may change with the point of view. For example, for software 

engineers, the complexity might mean the number of errors in the code, or the required development 

cost and time, while for a  cognitive scientist or for a human interface expert, the complexity might 

have to do with difficulty in understanding the software. In this study, we view software complexity as 

the complexity introduced into systems with embedded intelligence. This complexity therefore 

includes errors in code, difficulty with understanding the software, and complexities related to the 

system's intelligence. 

Intelligent systems are the focus for our interest in software complexity. Intelligent systems 

may be designed for different purposes and functionality. They may be designed to function as a 

control unit of a large system, as a decision support system to help a decision-maker in a system, as a 

monitor of components in a system, or as an intelligent part of a system.  

Since intelligent systems are relatively recent developments, much intelligent system research 

has focused on system design and development issues. Recently, however, these systems have reached 

maturity levels  where research related to their evaluation is possible [Grabowski and Sanborn, 2001]. 

Thus, intelligent systems  complexity research is also a relatively new area of research. 

2.2 Previous Work 

Marr [1982] provides an early framework for intelligent systems evaluation. He suggests that 

intelligent systems should be evaluated at the task level, assessing what system does and why it does 

it; at the representation level, focusing on the logical organization of coding structure used for 

knowledge representation; and at the implementation level, examining the system's algorithms and 

representations. In contrast, Reich [1995] identifies two types of knowledge in intelligent systems that 

contribute to complexity -functional and structural knowledge. Functional knowledge cannot be  

measured directly,  but only  indirectly by measuring the behavior of a system that has knowledge, 

while structural knowledge  is a static entity that includes facts, rules and models  that represent real 

world phenomena [Reich, 1995].  Strainieri and Zeleznikow [1999] follow a similar  approach and 

suggest qualitative and quantitative metrics of knowledge complexity: readability to the experts is 

proposed as a qualitative metric for structural knowledge and the number of rules  and rule correctness 

are proposed as quantitative metrics.  For functional knowledge, Strainieri and Zeleznikow  propose 

problem-solving behavior as a qualitative metric and comparisons with expert decisions, assessments 

of user satisfaction, and user acceptance as quantitative metrics. Both functional and structural 

knowledge contribute to the complexity of intelligent systems, and are important elements to consider 

in evaluating the complexity of an intelligent system.  

Chen and Suen [1994] focus on the complexity of rule-based expert systems and propose 

metrics such as the number of rules, average depth of search space, and  the number of matching 

patterns contained in set of connected rules as complexity metrics. Barr [1999]  proposed a graph 

representation of the complexity  of rule-based expert systems, claiming that other graph-based 

metrics such as McCabe’s cyclomatic complexity [McCabe, 1976] cannot adequately determine the 

number of execution paths in a rule base. Finally, Sharma and Conrath [1996] proposed a  socio-

technical model for evaluating expert systems, using measures of user satisfaction, effectiveness, value 

and utilization. Thus, a number of authors have identified qualitative and quantitative measures of 

complexity for intelligent systems by using different perspectives.   
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2.3 Intelligence in EIRTS 

Based on this literature review, we consider three intelligence in EIRTS from 3 perspectives. 

First, the EIRTS reasoning can be considered intelligent. Second, the decision support provided by the 

EIRTS can be considered intelligent. Finally, the user interface and the human-computer interaction 

provided by the EIRTS can be considered intelligent. These three dimensions provide both functional 

(decision support and human-computer interaction) and structural measure of complexity, utilizing 

quantitative and qualitative measures.  

EIRTS reasoning intelligence is related to data processing, result production and 

interpretation, and use of the processed data to help users or decision-makers. EIRTS take raw data 

from system components and/or the outside environment, process that data, produce results from data 

by applying reasoning algorithms and strategies, and  make necessary decisions (in automated control 

systems) or display results to users (in decision support systems). The complexity of intelligent 

reasoning can be measured by code analysis and functions and structures in the software can be used 

to assess it.

A second part of EIRTS intelligence  is related to the usability of EIRTS output. After an 

EIRTS produces output, a user must understand its advisories, the logic behind the advice, and then 

easily transfer this information to cognitive thinking and decision-making. Usability directly impacts 

the decision quality and performance of users. The complexity associated with the intelligent human-

computer interface can be measured using metrics from the decision support systems, computer aided 

decision-making, cognitive science, psychology, and human-computer interaction literature.  

 EIRTS also provide information and support  to users and/or decision makers. In order to 

make good decisions, user should be well informed about the situation, alternative decisions should be 

determined and evaluated, and the results of each alternative must be presented. EIRTS help users with 

information, alternative determination, alternative testing, and result prediction stages. The decision 

support provided by EIRTS can also therefore be considered intelligent. The complexity of decision 

support intelligence can be measured by using metrics such as the timeliness of software advice, the 

degree of users' understandings of software output, the users' ease of interpreting the advice provided 

by the system, users' perceptions of the quality of their decisions, the efficiency and effectiveness of 

users’ decision-making processes with the software, and the users’ perceptions of support provided for 

different types of decisions.  

The roots of EIRTS intelligence - its reasoning, human-computer interface, and decision 

support capabilities- suggest that data and input for intelligence complexity measurements must come 

from three sources: user feedback, code analysis, and user and system performance assessments. In 

this study, we conduct  experiments using these 3 data sources to assess complexity levels in 

Embedded Intelligent Real-time Systems. 

3. THEORETICAL MODEL 

Following Marr [1982], we consider the intelligence complexity of EIRTS at the system’s 

task, representation, and implementation levels. The EIRTS tasks are the activities and functions that it 

performs; assessing task complexity, therefore, involves investigation of the EIRTS’ functionality and 

how well it performs those tasks. EIRTS generally perform three types of tasks in safety-critical large-

scale systems: data processing and interpretation, decision support, and system monitoring. Most 

EIRTS applications involve data processing and interpretation: gathering data and reasoning about 

that data using system knowledge. For instance, intelligent highway control systems measure traffic 

data on the highway, compare that data, and reason about the processed data to manage traffic on the 

highway [Dailey, Haselkorn, and Lin, 1993]. EIRTS also perform reasoning to support decision-

making. To accomplish this, EIRTS reason about collected data and provide the results of that 

reasoning and information to decision-makers.  
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EIRTS Level Description Types of Metrics Data Source 

Task What the EIRTS 

does and 

how/why it does 

it

Functional Performance

Data Processing 

Decision Support 

Decision quality 

CODE ANALYSIS 

USER OPINION 

Representation Logical 

organization of 

coding structures 

used for 

knowledge 

representation 

Algorithmic complexity 

# of If-Else Statements 

Cyclomatic complexity

Number of include 

statements

Coupling between objects

CODE ANALYSIS 

Implementation Adequacy and 

architecture of 

built system 

Performance as 

built 

Structural complexity 

Number of functions, classes, 

methods

Response time

Reliability of output 

Accuracy of output

User understandability

User perception of support 

level

-Support for situation 

Monitoring 

-Support for Threat 

Determination 

-Support for threat Avoidance 

-Support for Maneuvering  

Difficulty to use 

Cognitive skill requirement

CODE ANALYSIS

USER and SYSTEM 

PERFORMANCE

Table 1. EIRTS Intelligence Complexity Evaluation Metrics 

One example of this type of EIRTS application is an intelligent shipboard piloting system, which 

gathers data, reasons about that data, and provides advice and recommendations for ship control to the 

ship’s master and pilot [Grabowski & Sanborn, 2001]. Assessing the task complexity of an EIRTS, 

therefore, requires the use of functionality metrics, such as the number of methods and number of 

functions supported, as well as process and outcome metrics such as user satisfaction and user 

confidence with the EIRTS’ data processing, and decision support (Table 1). To gather this data, both 

code analysis and user opinion are required. 

Representation-level complexity evaluations focus on the complexity of the algorithms, 

knowledge structures, control mechanisms, and feedback systems in the EIRTS. The algorithmic 

complexity of intelligent systems has been much studied, with a variety of metrics devised (i.e., 

McCabe’s cyclomatic complexity [McCabe, 1976]). For representation-level metrics, the studies 

mentioned previously propose metrics related to the size, depth, type, and content of knowledge. 

Assessing the complexity of an EIRTS’ representation, therefore, requires use of metrics that focus on 

the algorithms, knowledge structures, control mechanisms and feedback systems in the EIRTS.  This 

is primarily determined through the use of code analysis. 

Implementation-level complexity evaluations focus on the adequacy and architecture of the 

built system, and its performance as built. Evaluating the implementation complexity of an EIRTS 

requires the use of metrics that evaluate the structural complexity of the EIRTS (eg., numbers of 

functions, classes, methods, interfaces) as well as the performance of the EIRTS (eg., time and speed 

of data processing, decision support, task support level, difficulty, cognitive skill requirements, and 
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understandability).  Implementation level complexity is primarily determined by code analysis, as well 

as assessments of user and system performance. Assessing the complexity of an EIRTS, therefore, 

requires the use of several types of metrics, at the task, representation, and implementation levels, as 

shown in Table 1. 

4. RESEARCH VEHICLE 

As a way of operationalizing the proposed Table 1 evaluation criteria, we use as a research 

vehicle the Navigation and Piloting Expert System (NPES), an operational EIRTS developed by 

Rensselaer Polytechnic Institute as part of the Lockheed Martin SmartBridge  initiative [Spotts and 

Castellano, 1997]. The NPES is a real-time intelligent ship’s piloting system that provides intelligent 

decision support to masters, mates on watch, and ship’s pilots navigating the restricted waters of San 

Francisco Bay. The NPES was embedded within a real-time ship control system known as the 

SmartBridge , which provides navigational and piloting support to ship’s bridge watch teams.  

Two versions of the NPES were developed, NPES-1 and NPES-2. NPES-1 was the original 

implementation of the EIRTS that was deployed aboard a tankship in the U.S. West Coast oil trade, 

the Chevron Colorado. After NPES-1 was deployed, additional design, functionality, reasoning, and 

structural changes were made, resulting in a subsequent version of the EIRTS, named NPES-2.  

For instance, the NPES-2 reasoning algorithm was changed from that used in NPES-1 by 

adding target clustering technology, and by improving multiple-target collision avoidance algorithm. 

Also some new functionality was added to provide more detailed information such as ownship 

position and maneuvering limitations. These changes resulted in changes in file numbers, sizes of 

files, numbers of classes, numbers of attributes, and numbers of public, private, and protected methods 

between the two versions. The data processing/reasoning/functionality changes between NPES-1 and 

NPES-2 mostly focused on the NPES maneuver generating algorithm and data processing areas. 

NPES-2 has better control of the time for maneuver generation. It automatically stops the 

recommendation  generation if a predefined time is passed, so that NPES is reasoning about "current" 

targets and problems.  

Another difference between the two versions can be seen in the user interface and screen 

design. On the user interface side, the changes in NPES-2 were mostly done to provide better 

information to the users. The first difference between the two versions' user interface was the chart 

used. NPES-1 uses a raster image digital chart,  which looks like the charts used in daily life by pilots 

and navigators. NPES-2 uses a fully vectorized electronic chart display information, which gives a less 

real-life chart image. There were also changes in message display style to provide better and more 

noticeable information to the users. Blinking  and red colored warnings, alerts, and  alarms were used 

in NPES-2, while NPES-1 used regular characters and black color for displaying these information. In 

terms of information content, both NPES-1 and NPES-2 display the same one sentence warning for 

alerts/alarms. However, in NPES-2, if the user wants to learn more details about that situation, 

additional information is available by clicking on the warning, alert/alarm sentence. NPES-2 also 

provides  additional operator information on the bottom of the NPES screen about ownship's current 

location, speed, bearing, and CPA information to the users. NPES-1 does not have this feature.  The 

main screen designs also have some differences in NPES-1 and NPES-2 . In NPES-1, there are two 

main menu items located on the SmartBridge menu. These are "NPES" and  "ADVISORIES". The 

NPES choice opens the NPES recommendations screen, and shows alerts/alarms, recommendations. 

The ADVISORIES choice opens three windows and shows "required tasks", "environmental 

conditions", and "local/pilot knowledge" advisories simultaneously. The user may select and view 

either NPES or ADVISORIES screen. However, if ADVISORIES screen is open, users cannot see any 

alert/alarm warning unless they switch to the NPES screen.  In NPES-2, alerts/alarms information  is 

displayed in a fixed window and always available. In NPES screen, there are 4 menu items. They are 

"NPES Alert Info" which shows warnings, alerts/alarms, recommendations, "Local/Pilot Knowledge", 

"Required Tasks", and "Environmental Info"  which show advisories. The user may select any of 

them, and can switch between them depending on situation and information need.  
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           Another display difference between NPES-1 and NPES-2 is the display of ownship and target 

vessels. NPES-1 shows ownship and target vessels without any direction arrow. This display may 

confuse users, since they cannot be sure about the direction of  ownship and targets. In NPES-2,  

arrows are added to ownship and target displays. The tip of arrow shows the direction and heading of 

vessels. The last difference between NPES-1 and NPES-2 is the NPES On/Off switch. In NPES-2, if 

the user does not want to see NPES information, they may click on this button and turn NPES off. 

This button is not available in NPES-1.

5. DATA COLLECTION AND MEASUREMENTS

Three types of data at the task, representation, and implementation levels were obtained based 

on the Table 1 evaluation criteria. Three types of experiments were run to test the model: User 

feedback and code analysis to determine task level complexity; code analysis for representation level 

complexity; and code analysis and user and system performance measures for implementation level 

complexity. 

For user performance 3 experienced navigation users were run through a total of 8 scenarios 

comparing the two NPES versions. For code analysis, appropriate metric values for code complexity 

were collected for both NPES versions. For system performance measures, 8 different scenarios were 

run with both systems and performance-related data collected for the system and for the users.  

6. RESULTS 

Based on the Table 1 evaluation criteria, we calculated intelligence complexity metric values 

for both NPES versions and present their summary in Table 2. As can be seen in that table, for most of 

the metrics, NPES-2 is more complex on all three levels of complexity. For the task level complexity, 

metrics both coming from user evaluations and from code analysis were used. The metrics show that 

users' confidence is significantly higher with NPES-1, while functional and decision support 

differences are not significant between NPES-1  and NPES-2. The users believe that the quality of 

their decision will be higher with using NPES-1, and they report that they are more satisfied with 

NPES-1 functionality and decision support. This significant preference of NPES-1 by users is not 

because of better intelligence of it, but because of other complexities such as usability and decision 

support/explanation complexities.  

The results for representation level complexity are gathered mostly from code analysis. They 

suggest that the architecture and reasoning structure of NPES-2 is more complex than NPES-1, but not 

significantly. This complexity is mainly the result of changes and additions between the two versions, 

and the results are parallel to users' and developers' feedback. However, although NPES-2 values for 

all selected representation metrics are greater than NPES-1 metric values, the differences between 

metric values are not significant for any of the metrics. Thus, although the  NPES-2 representation is 

slightly more complex than NPES-1, the differences are  not statistically significant. 

Implementation level complexity calculations were derived from code analysis and system 

performance measurements. These calculations show that for some metrics, the NPES-2 

implementation is more complex than NPES-1, primarily because of additional design, functionality, 

data processing, reasoning, and structural changes on NPES-1. This result also supports the coders' 

and implementers' opinions with respect to NPES-2 functionality, code structure design, and 

algorithms. Average response time and maximum response time values are significantly higher for 

NPES-2. This is because of more required processing time, more complex algorithms, and more 

complex reasoning. However, the user acceptance rate of NPES recommendations is higher for NPES-

1. This is contrary to expectations, and it shows that since implementation complexity is higher for 

NPES-2, these users prefer less complex implementations. The results from user interface complexity 

also supports these findings.

These findings are consistent with the post-experiment interviews, where subjects reported 

that since NPES-1 user interface and especially the NPES-1 chart provided more raw data, they felt 

they were making decisions with more information with NPES-1. The  results also show that NPES-1 
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recommendations were accepted  by subjects at a significantly higher rate than NPES-2 (p-value

0.0416), indicating that subject decisions were supported better with NPES-1. The subjects' ratings 

also show that NPES-1 support for  situation monitoring, threat avoidance, and maneuvering tasks -- 

the key elements of navigation decision support-- are significantly better (p-values=0.0026, 0.008, 

0.046 respectively), also indicating better decision support for users.

Level Metric Metric 

Values

NPES-1
1

Metric

Values

NPES-2
1

t-value
2
 p-value

2

Task Level 

Complexity
Functional Performance

Data Processing 

   Size of Knowledge-base classes 

   Number of changes made in   

   intelligence classes 

   Number of functions in   

    intelligence classes   

Decision Support  

           Number of Advisories

1487

16.61

110

1685

15.3

114

.384

.354

-1.095

0.705

0.727

0.353

Representatio

n Level 

Complexity

Algorithmic complexity 

Number of IF statements 

Number of ELSE statements 

Cyclomatic complexity

Number of include statements 

Coupling between objects

56.5

15.8

121.33

10.5

22.07

74

18.44

183.6

11.81

23.27

-0.759

-0.584

-0.541

-0.965

-0.218

0.457

0.566

0.595

0.345

0.830

Implementati

on Level 

Complexity

Structural complexity 

Number of methods, 

Number of attributes

Average response time

Maximum response time 

Acceptance rate for 

recommendations

Accuracy of output

User understandability

User perception of support level

-Support for Situation Monitoring 

-Support for Threat Determination 

-Support for Threat Avoidance 

-Support for Maneuvering  

Difficulty to use 

Cognitive skill requirement

16.6

8.77

4.27

8.85

4.95

5.13

5.67

6.67

5.67

6.33

6.0

4.0

6.33

15.45

8.10

8.85

18.85

3.25

3.90

4.67

3

4

3.33

3.66

3.66

6.33

.736

.746

-5.96

-2.11

0.815

2.789

1.061

5.5

0.945

4.025

2.21

0.5

0

0.342

0.380

0.001

0.028

0.041

0.021

0.174

0.0026

0.199

0.008

0.046

0.322

0.5

1Likert Scale questions designed as 1 less desirable 7 most desirable 
2Bold number show statistically significant results

Table 2. Sample Results 

7. CONTRIBUTION, CONCLUSIONS AND CONFERENCE PRESENTATION 

This paper proposes a set of evaluation criteria to measure the intelligence complexity of 

EIRTS. Our comparison of two versions of an operational EIRTS highlights the differences in 

intelligence complexity at the user, code, and system performance levels. The results help us to 

understand the complexity of EIRTS intelligence better, which can be used for different purposes such 

as increasing system performance, decreasing complexity, and providing better decision support and 

usability to operators. 

Also, all 3 users reported that they prefer to work with NPES-1 because it was better 

supporting their decisions, less complex, and easy to use. Since our preliminary results show that 

NPES-2  has a higher intelligence complexity, further analysis are required (being conducted) in order 
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to explain the relationship between intelligence complexity and user preferences as well as  impacts of 

intelligence complexity on user performances. 

We strongly believe that our results can be easily used as a framework and could be applied to 

all kind of intelligent systems such as decision support systems and expert systems. Of course each 

individual system should be studied based on its characteristics and constraints, and this would affect 

metric selections and methodology slightly but the framework from this study can be easily adjusted. 

Practitioners interested in studying their systems can use the developed model, and follow the 

presented methodology to determine details of their study.     

Currently, system performance measurements and further analysis are underway. We are also 

applying this framework to another intelligent system in order to determine intelligence complexity. 

The details of evaluation criteria, metrics, and results, along with system performance measurements, 

will be presented during our conference presentation. 
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