
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2002 Proceedings European Conference on Information Systems
(ECIS)

2002

Assessment of Intelligence Complexity in
Embedded Intelligent Real Time Systems
Erman Coskun
Le Moyne College, coskune@mail.lemoyne.edu

Martha Grabowski
Le Moyne College, grabowski@mail.lemoyne.edu

Follow this and additional works at: http://aisel.aisnet.org/ecis2002

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2002 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Coskun, Erman and Grabowski, Martha, "Assessment of Intelligence Complexity in Embedded Intelligent Real Time Systems" (2002).
ECIS 2002 Proceedings. 46.
http://aisel.aisnet.org/ecis2002/46

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301343141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2002%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2002?utm_source=aisel.aisnet.org%2Fecis2002%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2002%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2002%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2002?utm_source=aisel.aisnet.org%2Fecis2002%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2002/46?utm_source=aisel.aisnet.org%2Fecis2002%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

49

ASSESSMENT OF INTELLIGENCE COMPLEXITY

IN EMBEDDED INTELLIGENT REAL-TIME SYSTEMS

Erman Coskun

Le Moyne College Business Department

 Syracuse, NY 13214 USA

Phone: 315 445 4790 Fax: 315 445 4540

E-mail:coskune@mail.lemoyne.edu

Martha Grabowski

Le Moyne College Business Department

Syracuse, NY 13214 USA

&

Rensselaer Polytechnic Institute

Decision Sciences and Engineering Systems Department

Troy, NY 12180

E-mail:grabowsk@mail.lemoyne.edu

ABSTRACT

Intelligent systems and their applications are proliferating. Embedded Intelligent Real-Time Systems

(EIRTS) are one type of intelligent system. Defining and measuring the complexity of this kind of

system may help with better design, development, maintenance, and performance of EIRTS. In this

paper, we propose a set of evaluation criteria to measure the complexity of Embedded Intelligent

Real-Time Systems (EIRTS). We show an operationalization of the criteria with a sample EIRTS.

1. INTRODUCTION AND RESEARCH QUESTIONS

Many next generation real-time systems are expected to be large, complex, distributed,

intelligent, and able to operate in increasingly uncertain environments [Grosv & Davis, 1994; Stoyen,

Marlowe, Younis, and Petrov, 1999]. These real-time systems must be intelligent and flexible enough

to react and respond quickly to changing and unexpected system conditions, must evolve over time as

requirements change, and must keep development, testing, and verification costs low. Embedded

Intelligent Real-Time Systems (EIRTS) are one example of such systems. EIRTS process data

quickly, reason about the processed data, and use the results to provide decision support, system

monitoring, or system management capabilities. EIRTS have been deployed in a wide range of

systems to solve complex problems, to speed up data processing, and to enhance system reliability and

usability. One of these deployment areas is the realm of safety-critical large-scale systems. Examples

of these systems include intelligent highway systems, nuclear power plants, vessel traffic control

systems, distributed manufacturing systems, battle management, and patient monitoring systems.

Successful measurement and interpretation of complexity in intelligent systems can assist with the

development of more reliable and safer systems, significantly reduced cost of maintenance, and better

design and performance for both the EIRTS and for the large-scale safety-critical systems within

which they are embedded. In this study, we focus on assessing the complexity of EIRTS deployed in

safety-critical large-scale systems. We start with a literature review as background to this research.

After proposing a set of evaluation criteria, we operationalize the set with a sample EIRTS. The last

section includes conclusions and contributions of this study and a conference presentation plan.

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Erman Coskun, Martha R. Grabowski

50

2. THEORETICAL FOUNDATIONS

2.1 Software Complexity

Software complexity is a concept that has been defined in different ways by different

disciplines. Software complexity measures attempt to objectively associate a number with a program,

based on the degree of presence or absence of certain characteristics of software [Kokol, Brest, and

Umer, 1996]. These characteristics may change with the point of view. For example, for software

engineers, the complexity might mean the number of errors in the code, or the required development

cost and time, while for a cognitive scientist or for a human interface expert, the complexity might

have to do with difficulty in understanding the software. In this study, we view software complexity as

the complexity introduced into systems with embedded intelligence. This complexity therefore

includes errors in code, difficulty with understanding the software, and complexities related to the

system's intelligence.

Intelligent systems are the focus for our interest in software complexity. Intelligent systems

may be designed for different purposes and functionality. They may be designed to function as a

control unit of a large system, as a decision support system to help a decision-maker in a system, as a

monitor of components in a system, or as an intelligent part of a system.

Since intelligent systems are relatively recent developments, much intelligent system research

has focused on system design and development issues. Recently, however, these systems have reached

maturity levels where research related to their evaluation is possible [Grabowski and Sanborn, 2001].

Thus, intelligent systems complexity research is also a relatively new area of research.

2.2 Previous Work

Marr [1982] provides an early framework for intelligent systems evaluation. He suggests that

intelligent systems should be evaluated at the task level, assessing what system does and why it does

it; at the representation level, focusing on the logical organization of coding structure used for

knowledge representation; and at the implementation level, examining the system's algorithms and

representations. In contrast, Reich [1995] identifies two types of knowledge in intelligent systems that

contribute to complexity -functional and structural knowledge. Functional knowledge cannot be

measured directly, but only indirectly by measuring the behavior of a system that has knowledge,

while structural knowledge is a static entity that includes facts, rules and models that represent real

world phenomena [Reich, 1995]. Strainieri and Zeleznikow [1999] follow a similar approach and

suggest qualitative and quantitative metrics of knowledge complexity: readability to the experts is

proposed as a qualitative metric for structural knowledge and the number of rules and rule correctness

are proposed as quantitative metrics. For functional knowledge, Strainieri and Zeleznikow propose

problem-solving behavior as a qualitative metric and comparisons with expert decisions, assessments

of user satisfaction, and user acceptance as quantitative metrics. Both functional and structural

knowledge contribute to the complexity of intelligent systems, and are important elements to consider

in evaluating the complexity of an intelligent system.

Chen and Suen [1994] focus on the complexity of rule-based expert systems and propose

metrics such as the number of rules, average depth of search space, and the number of matching

patterns contained in set of connected rules as complexity metrics. Barr [1999] proposed a graph

representation of the complexity of rule-based expert systems, claiming that other graph-based

metrics such as McCabe’s cyclomatic complexity [McCabe, 1976] cannot adequately determine the

number of execution paths in a rule base. Finally, Sharma and Conrath [1996] proposed a socio-

technical model for evaluating expert systems, using measures of user satisfaction, effectiveness, value

and utilization. Thus, a number of authors have identified qualitative and quantitative measures of

complexity for intelligent systems by using different perspectives.

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Assessment of Intelligence Complexity in Embedded Intelligent Real-Time Systems

51

2.3 Intelligence in EIRTS

Based on this literature review, we consider three intelligence in EIRTS from 3 perspectives.

First, the EIRTS reasoning can be considered intelligent. Second, the decision support provided by the

EIRTS can be considered intelligent. Finally, the user interface and the human-computer interaction

provided by the EIRTS can be considered intelligent. These three dimensions provide both functional

(decision support and human-computer interaction) and structural measure of complexity, utilizing

quantitative and qualitative measures.

EIRTS reasoning intelligence is related to data processing, result production and

interpretation, and use of the processed data to help users or decision-makers. EIRTS take raw data

from system components and/or the outside environment, process that data, produce results from data

by applying reasoning algorithms and strategies, and make necessary decisions (in automated control

systems) or display results to users (in decision support systems). The complexity of intelligent

reasoning can be measured by code analysis and functions and structures in the software can be used

to assess it.

A second part of EIRTS intelligence is related to the usability of EIRTS output. After an

EIRTS produces output, a user must understand its advisories, the logic behind the advice, and then

easily transfer this information to cognitive thinking and decision-making. Usability directly impacts

the decision quality and performance of users. The complexity associated with the intelligent human-

computer interface can be measured using metrics from the decision support systems, computer aided

decision-making, cognitive science, psychology, and human-computer interaction literature.

 EIRTS also provide information and support to users and/or decision makers. In order to

make good decisions, user should be well informed about the situation, alternative decisions should be

determined and evaluated, and the results of each alternative must be presented. EIRTS help users with

information, alternative determination, alternative testing, and result prediction stages. The decision

support provided by EIRTS can also therefore be considered intelligent. The complexity of decision

support intelligence can be measured by using metrics such as the timeliness of software advice, the

degree of users' understandings of software output, the users' ease of interpreting the advice provided

by the system, users' perceptions of the quality of their decisions, the efficiency and effectiveness of

users’ decision-making processes with the software, and the users’ perceptions of support provided for

different types of decisions.

The roots of EIRTS intelligence - its reasoning, human-computer interface, and decision

support capabilities- suggest that data and input for intelligence complexity measurements must come

from three sources: user feedback, code analysis, and user and system performance assessments. In

this study, we conduct experiments using these 3 data sources to assess complexity levels in

Embedded Intelligent Real-time Systems.

3. THEORETICAL MODEL

Following Marr [1982], we consider the intelligence complexity of EIRTS at the system’s

task, representation, and implementation levels. The EIRTS tasks are the activities and functions that it

performs; assessing task complexity, therefore, involves investigation of the EIRTS’ functionality and

how well it performs those tasks. EIRTS generally perform three types of tasks in safety-critical large-

scale systems: data processing and interpretation, decision support, and system monitoring. Most

EIRTS applications involve data processing and interpretation: gathering data and reasoning about

that data using system knowledge. For instance, intelligent highway control systems measure traffic

data on the highway, compare that data, and reason about the processed data to manage traffic on the

highway [Dailey, Haselkorn, and Lin, 1993]. EIRTS also perform reasoning to support decision-

making. To accomplish this, EIRTS reason about collected data and provide the results of that

reasoning and information to decision-makers.

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Erman Coskun, Martha R. Grabowski

52

EIRTS Level Description Types of Metrics Data Source

Task What the EIRTS

does and

how/why it does

it

Functional Performance

Data Processing

Decision Support

Decision quality

CODE ANALYSIS

USER OPINION

Representation Logical

organization of

coding structures

used for

knowledge

representation

Algorithmic complexity

of If-Else Statements

Cyclomatic complexity

Number of include

statements

Coupling between objects

CODE ANALYSIS

Implementation Adequacy and

architecture of

built system

Performance as

built

Structural complexity

Number of functions, classes,

methods

Response time

Reliability of output

Accuracy of output

User understandability

User perception of support

level

-Support for situation

Monitoring

-Support for Threat

Determination

-Support for threat Avoidance

-Support for Maneuvering

Difficulty to use

Cognitive skill requirement

CODE ANALYSIS

USER and SYSTEM

PERFORMANCE

Table 1. EIRTS Intelligence Complexity Evaluation Metrics

One example of this type of EIRTS application is an intelligent shipboard piloting system, which

gathers data, reasons about that data, and provides advice and recommendations for ship control to the

ship’s master and pilot [Grabowski & Sanborn, 2001]. Assessing the task complexity of an EIRTS,

therefore, requires the use of functionality metrics, such as the number of methods and number of

functions supported, as well as process and outcome metrics such as user satisfaction and user

confidence with the EIRTS’ data processing, and decision support (Table 1). To gather this data, both

code analysis and user opinion are required.

Representation-level complexity evaluations focus on the complexity of the algorithms,

knowledge structures, control mechanisms, and feedback systems in the EIRTS. The algorithmic

complexity of intelligent systems has been much studied, with a variety of metrics devised (i.e.,

McCabe’s cyclomatic complexity [McCabe, 1976]). For representation-level metrics, the studies

mentioned previously propose metrics related to the size, depth, type, and content of knowledge.

Assessing the complexity of an EIRTS’ representation, therefore, requires use of metrics that focus on

the algorithms, knowledge structures, control mechanisms and feedback systems in the EIRTS. This

is primarily determined through the use of code analysis.

Implementation-level complexity evaluations focus on the adequacy and architecture of the

built system, and its performance as built. Evaluating the implementation complexity of an EIRTS

requires the use of metrics that evaluate the structural complexity of the EIRTS (eg., numbers of

functions, classes, methods, interfaces) as well as the performance of the EIRTS (eg., time and speed

of data processing, decision support, task support level, difficulty, cognitive skill requirements, and

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Assessment of Intelligence Complexity in Embedded Intelligent Real-Time Systems

53

understandability). Implementation level complexity is primarily determined by code analysis, as well

as assessments of user and system performance. Assessing the complexity of an EIRTS, therefore,

requires the use of several types of metrics, at the task, representation, and implementation levels, as

shown in Table 1.

4. RESEARCH VEHICLE

As a way of operationalizing the proposed Table 1 evaluation criteria, we use as a research

vehicle the Navigation and Piloting Expert System (NPES), an operational EIRTS developed by

Rensselaer Polytechnic Institute as part of the Lockheed Martin SmartBridge initiative [Spotts and

Castellano, 1997]. The NPES is a real-time intelligent ship’s piloting system that provides intelligent

decision support to masters, mates on watch, and ship’s pilots navigating the restricted waters of San

Francisco Bay. The NPES was embedded within a real-time ship control system known as the

SmartBridge , which provides navigational and piloting support to ship’s bridge watch teams.

Two versions of the NPES were developed, NPES-1 and NPES-2. NPES-1 was the original

implementation of the EIRTS that was deployed aboard a tankship in the U.S. West Coast oil trade,

the Chevron Colorado. After NPES-1 was deployed, additional design, functionality, reasoning, and

structural changes were made, resulting in a subsequent version of the EIRTS, named NPES-2.

For instance, the NPES-2 reasoning algorithm was changed from that used in NPES-1 by

adding target clustering technology, and by improving multiple-target collision avoidance algorithm.

Also some new functionality was added to provide more detailed information such as ownship

position and maneuvering limitations. These changes resulted in changes in file numbers, sizes of

files, numbers of classes, numbers of attributes, and numbers of public, private, and protected methods

between the two versions. The data processing/reasoning/functionality changes between NPES-1 and

NPES-2 mostly focused on the NPES maneuver generating algorithm and data processing areas.

NPES-2 has better control of the time for maneuver generation. It automatically stops the

recommendation generation if a predefined time is passed, so that NPES is reasoning about "current"

targets and problems.

Another difference between the two versions can be seen in the user interface and screen

design. On the user interface side, the changes in NPES-2 were mostly done to provide better

information to the users. The first difference between the two versions' user interface was the chart

used. NPES-1 uses a raster image digital chart, which looks like the charts used in daily life by pilots

and navigators. NPES-2 uses a fully vectorized electronic chart display information, which gives a less

real-life chart image. There were also changes in message display style to provide better and more

noticeable information to the users. Blinking and red colored warnings, alerts, and alarms were used

in NPES-2, while NPES-1 used regular characters and black color for displaying these information. In

terms of information content, both NPES-1 and NPES-2 display the same one sentence warning for

alerts/alarms. However, in NPES-2, if the user wants to learn more details about that situation,

additional information is available by clicking on the warning, alert/alarm sentence. NPES-2 also

provides additional operator information on the bottom of the NPES screen about ownship's current

location, speed, bearing, and CPA information to the users. NPES-1 does not have this feature. The

main screen designs also have some differences in NPES-1 and NPES-2 . In NPES-1, there are two

main menu items located on the SmartBridge menu. These are "NPES" and "ADVISORIES". The

NPES choice opens the NPES recommendations screen, and shows alerts/alarms, recommendations.

The ADVISORIES choice opens three windows and shows "required tasks", "environmental

conditions", and "local/pilot knowledge" advisories simultaneously. The user may select and view

either NPES or ADVISORIES screen. However, if ADVISORIES screen is open, users cannot see any

alert/alarm warning unless they switch to the NPES screen. In NPES-2, alerts/alarms information is

displayed in a fixed window and always available. In NPES screen, there are 4 menu items. They are

"NPES Alert Info" which shows warnings, alerts/alarms, recommendations, "Local/Pilot Knowledge",

"Required Tasks", and "Environmental Info" which show advisories. The user may select any of

them, and can switch between them depending on situation and information need.

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Erman Coskun, Martha R. Grabowski

54

 Another display difference between NPES-1 and NPES-2 is the display of ownship and target

vessels. NPES-1 shows ownship and target vessels without any direction arrow. This display may

confuse users, since they cannot be sure about the direction of ownship and targets. In NPES-2,

arrows are added to ownship and target displays. The tip of arrow shows the direction and heading of

vessels. The last difference between NPES-1 and NPES-2 is the NPES On/Off switch. In NPES-2, if

the user does not want to see NPES information, they may click on this button and turn NPES off.

This button is not available in NPES-1.

5. DATA COLLECTION AND MEASUREMENTS

Three types of data at the task, representation, and implementation levels were obtained based

on the Table 1 evaluation criteria. Three types of experiments were run to test the model: User

feedback and code analysis to determine task level complexity; code analysis for representation level

complexity; and code analysis and user and system performance measures for implementation level

complexity.

For user performance 3 experienced navigation users were run through a total of 8 scenarios

comparing the two NPES versions. For code analysis, appropriate metric values for code complexity

were collected for both NPES versions. For system performance measures, 8 different scenarios were

run with both systems and performance-related data collected for the system and for the users.

6. RESULTS

Based on the Table 1 evaluation criteria, we calculated intelligence complexity metric values

for both NPES versions and present their summary in Table 2. As can be seen in that table, for most of

the metrics, NPES-2 is more complex on all three levels of complexity. For the task level complexity,

metrics both coming from user evaluations and from code analysis were used. The metrics show that

users' confidence is significantly higher with NPES-1, while functional and decision support

differences are not significant between NPES-1 and NPES-2. The users believe that the quality of

their decision will be higher with using NPES-1, and they report that they are more satisfied with

NPES-1 functionality and decision support. This significant preference of NPES-1 by users is not

because of better intelligence of it, but because of other complexities such as usability and decision

support/explanation complexities.

The results for representation level complexity are gathered mostly from code analysis. They

suggest that the architecture and reasoning structure of NPES-2 is more complex than NPES-1, but not

significantly. This complexity is mainly the result of changes and additions between the two versions,

and the results are parallel to users' and developers' feedback. However, although NPES-2 values for

all selected representation metrics are greater than NPES-1 metric values, the differences between

metric values are not significant for any of the metrics. Thus, although the NPES-2 representation is

slightly more complex than NPES-1, the differences are not statistically significant.

Implementation level complexity calculations were derived from code analysis and system

performance measurements. These calculations show that for some metrics, the NPES-2

implementation is more complex than NPES-1, primarily because of additional design, functionality,

data processing, reasoning, and structural changes on NPES-1. This result also supports the coders'

and implementers' opinions with respect to NPES-2 functionality, code structure design, and

algorithms. Average response time and maximum response time values are significantly higher for

NPES-2. This is because of more required processing time, more complex algorithms, and more

complex reasoning. However, the user acceptance rate of NPES recommendations is higher for NPES-

1. This is contrary to expectations, and it shows that since implementation complexity is higher for

NPES-2, these users prefer less complex implementations. The results from user interface complexity

also supports these findings.

These findings are consistent with the post-experiment interviews, where subjects reported

that since NPES-1 user interface and especially the NPES-1 chart provided more raw data, they felt

they were making decisions with more information with NPES-1. The results also show that NPES-1

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Assessment of Intelligence Complexity in Embedded Intelligent Real-Time Systems

55

recommendations were accepted by subjects at a significantly higher rate than NPES-2 (p-value

0.0416), indicating that subject decisions were supported better with NPES-1. The subjects' ratings

also show that NPES-1 support for situation monitoring, threat avoidance, and maneuvering tasks --

the key elements of navigation decision support-- are significantly better (p-values=0.0026, 0.008,

0.046 respectively), also indicating better decision support for users.

Level Metric Metric

Values

NPES-1
1

Metric

Values

NPES-2
1

t-value
2
 p-value

2

Task Level

Complexity
Functional Performance

Data Processing

 Size of Knowledge-base classes

 Number of changes made in

 intelligence classes

 Number of functions in

 intelligence classes

Decision Support

 Number of Advisories

1487

16.61

110

1685

15.3

114

.384

.354

-1.095

0.705

0.727

0.353

Representatio

n Level

Complexity

Algorithmic complexity

Number of IF statements

Number of ELSE statements

Cyclomatic complexity

Number of include statements

Coupling between objects

56.5

15.8

121.33

10.5

22.07

74

18.44

183.6

11.81

23.27

-0.759

-0.584

-0.541

-0.965

-0.218

0.457

0.566

0.595

0.345

0.830

Implementati

on Level

Complexity

Structural complexity

Number of methods,

Number of attributes

Average response time

Maximum response time

Acceptance rate for

recommendations

Accuracy of output

User understandability

User perception of support level

-Support for Situation Monitoring

-Support for Threat Determination

-Support for Threat Avoidance

-Support for Maneuvering

Difficulty to use

Cognitive skill requirement

16.6

8.77

4.27

8.85

4.95

5.13

5.67

6.67

5.67

6.33

6.0

4.0

6.33

15.45

8.10

8.85

18.85

3.25

3.90

4.67

3

4

3.33

3.66

3.66

6.33

.736

.746

-5.96

-2.11

0.815

2.789

1.061

5.5

0.945

4.025

2.21

0.5

0

0.342

0.380

0.001

0.028

0.041

0.021

0.174

0.0026

0.199

0.008

0.046

0.322

0.5

1Likert Scale questions designed as 1 less desirable 7 most desirable
2Bold number show statistically significant results

Table 2. Sample Results

7. CONTRIBUTION, CONCLUSIONS AND CONFERENCE PRESENTATION

This paper proposes a set of evaluation criteria to measure the intelligence complexity of

EIRTS. Our comparison of two versions of an operational EIRTS highlights the differences in

intelligence complexity at the user, code, and system performance levels. The results help us to

understand the complexity of EIRTS intelligence better, which can be used for different purposes such

as increasing system performance, decreasing complexity, and providing better decision support and

usability to operators.

Also, all 3 users reported that they prefer to work with NPES-1 because it was better

supporting their decisions, less complex, and easy to use. Since our preliminary results show that

NPES-2 has a higher intelligence complexity, further analysis are required (being conducted) in order

ECIS 2002 • June 6–8, Gdańsk, Poland — First — Previous — Next — Last — Contents —

Erman Coskun, Martha R. Grabowski

56

to explain the relationship between intelligence complexity and user preferences as well as impacts of

intelligence complexity on user performances.

We strongly believe that our results can be easily used as a framework and could be applied to

all kind of intelligent systems such as decision support systems and expert systems. Of course each

individual system should be studied based on its characteristics and constraints, and this would affect

metric selections and methodology slightly but the framework from this study can be easily adjusted.

Practitioners interested in studying their systems can use the developed model, and follow the

presented methodology to determine details of their study.

Currently, system performance measurements and further analysis are underway. We are also

applying this framework to another intelligent system in order to determine intelligence complexity.

The details of evaluation criteria, metrics, and results, along with system performance measurements,

will be presented during our conference presentation.

REFERENCES

Barr, V. (1999) Applications of Rule-base Coverage Measures to Expert System Evaluation

Knowledge-Based Systems 12 pp.27-35

Chen, Z. and Suen, C.Y. (1994) Complexity Metrics for Rule-Based Expert Systems International Conference

on Software Maintenance 94 pp.382-391

Dailey, D.J. Haselkorn, M.P. and Lin, P. (1993) Traffic Information and Management In A

Geographically Distributed Computing Environment. Proceedings of the Pacific Rim Trans Tech

Conference on Object-Oriented Programming Systems, Languages and Applications Jul 25-28

1993 1993 Seattle, WA, USA, Published by ASCE New York NY USA pp: 159-165 ASBN : 0-87262-916-3

Grabowski, M.R., & Sanborn, S.D. "Evaluation of Embedded Intelligent Real-Time Systems,"

Decision Sciences, 32:1, Winter 2001, pp. 95-123.

Grosv, B. and Davis, R. (1994). A Report to ARPA on Twenty-First Century Intelligent

Systems. AI Magazine. 15(3). pp. 10-20

Kokol, P., Brest, J., and Umer, V., Software Complexity – An Alternative View, ACM

SIGPLAN notices, ACM Press, Volume 31, Num. 2 (1996) pp. 35-41

Leveson (1995) Safeware: System Safety and Computers, Addison-Wesley, 1995

Marr, D. (1982) Vision: A Computational Investigation into the Human Representation and

Processing of Visual Information. W.H. Freeman and Company. San Francisco.

McCabe, T.J. (1976) A Complexity Measure, IEEE Transactions On Software Engineering, Vol.

SE-2, No.4 (December 1976) pp.308-320.

Reich, Y. (1995) Measuring The Value of Knowledge International Journal of Human-

Computer Studies vol.42 pp.3-30

Sharma, R.S. and Conrath, D.W. (1996) Some Soft Measures for Performance Analysis: The

“Core” Dimensions of Expert System Quality Microelectronic Reliability vol.36 no.6, pp.775-

796

Spotts, T.E.; Castellano, C. (1997) SmartBridge - Navigation safety Sea Technology v 38 n 11

Nov 1997 Compass Publ Inc. pp. 58-62

Stoyen, A.D.; Marlowe, Th.J.; Younis, M.F.; Petrov, P.V. (1999) Development environment for

complex distributed real-time applications, IEEE Transactions on Software Engineering,

Volume 25, Issue 1, January - February 1999, pp. 50-74

Stranieri, A. and Zeleznikow, J. (1999) The Evaluation of Legal Knowledge-based Systems

Proceedings of the seventh international conference on artificial intelligence and law June 14 -

17, 1999, Oslo Norway pp.18-24 ACM

Wong, S.K. and Kalam, A. (1995). Development of A Power Protection System Using An Agent

Based Architecture. Proceedings of International Conference on Energy Management and
Power Delivery. pp. 1, 433-438.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2002

	Assessment of Intelligence Complexity in Embedded Intelligent Real Time Systems
	Erman Coskun
	Martha Grabowski
	Recommended Citation

	Assessment of Intelligence Complexity in Embedded Intelligent Real-Time Systems

