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Abstract- According to literature, penetration pricing is 
the dominant pricing strategy for network effect markets. 
In this paper we show that diffusion of products in a net-
work effect market does not only vary with the set of pric-
ing strategies chosen by competing vendors but also strong-
ly depends on the topological structure of the customers’ 
network. This stresses the inappropriateness of classical 
"installed base" models (abstracting from this structure). 
Our simulations show that although competitive prices tend 
to be significantly higher in close topology markets, they 
lead to lower total profit and lower concentration of vendors’ 
profit in these markets. 

 

I. INTRODUCTION 

Positive network effects (said to be existent whenever the 
willingness to pay for a certain product depends on the number 
of other users of the same product) are an important character-
istic of modern information technology markets. These effects 
strongly influence the marketing strategies of vendors. Beside 
the product policy, e.g. choosing the degree of compatibility to 
other products, the communication policy, e.g. influencing the 
expectations about future success of a network effect product, 
the pricing strategy is most important for the success of net-
work effect products. Generally speaking, pricing is of great 
importance for all stages of the product life cycle ([22], pp. 5-
6). When introducing a product to the market suppliers must 
convince potential early consumers to buy although they do not 
experience any positive network effects yet. Typically they do 
so by low prices which later increase with growing market 
share. But even when a critical mass of users was successfully 
established, pricing remains a critical factor to build entry 
barriers against competitors since modern network effect mar-
kets tend to be very dynamic.  

Pricing models of traditional network effects theory gener-
ally focus on the installed base of a given product, i.e. the total 
number of users within the whole market, as the most impor-
tant factor for buying decisions. Contrary to this, we propose 
that the individual environment in the personal communication 
network of a potential consumer determines the buying deci-
sions and must therefore be taken into account when designing 
appropriate pricing strategies for network effect markets. 

In the remainder of this article we will first analyze existing 
pricing models of the network effect literature and identify 
existing insufficiencies (section 2). In section 3 we will present 
results of earlier research introducing our basic simulation 
model. Based on the findings we will conduct simulations of 
dynamic pricing strategies of competing vendors analyzing the 
implications of different market topologies. Concluding the 
paper, we will summarize our findings and give an outlook on 
further research.  

II. LITERATURE REVIEW 

There are various approaches in economic literature analyz-
ing the pricing of network effect goods. Estimating the hedonic 
price function some authors prove the existence of network 
effects for products like computer hardware [9], spreadsheet 
software [6], database software [15], and word processing 
software [7] and evaluate their influence on the market price 
empirically. The regression analysis shows that in network 
effect markets the price consumers are willing to pay is signifi-
cantly higher if product characteristics enable compatibility 
and therefore generate network effects [7].  

Focussing on optimal pricing in network effect markets two 
strategies have been distinguished in the literature. Personal 
price differentiation means that network effect goods like 
software are sold to different user groups for a different price if 
the market allows such a separation. In the context of positive 
network effects the idea is to sell the product cheaper (or even 
giving it away for free) to consumers with a low willingness to 
pay (students, seniors) to increase the installed base. With 
growing market share and growing network effects the sales of 
the product increase generating revenue from the groups with a 
higher price, e.g. companies ([22], [16]). This approach reflects 
the general assumption of most network effect models namely 
that the installed base of the whole market and not the personal 
network of a consumer influences the individual buying deci-
sion. Apart from the fact that today’s students might become 
full paying customers in the future, is obvious that this assump-
tion is unrealistic since students will rather communicate with 
other students and companies will rather communicate within 
their business networks devaluing the network effects of the 
respective other group. We will later show the implications of 
this aspect. Dynamic pricing is another strategy that is ana-
lyzed by many authors ([22], [11], [12], [13], [23], [3]). Gener-
ally, an increasing price path is proposed for network effect 
goods, meaning that a new product is free or sold very cheap in 
the beginning of its life cycle to gain an installed base big 
enough to overcome the start-up problem. With increasing 
positive network effects and therefore higher willingness to 
pay, in later periods the price will be raised generating suffi-
cient revenue. 

Taking the phenomenon of critical mass and the start-up 
problem into account these pricing strategies are analyzed for 
vendors in monopolistic ([22], [23], [3]), or competitive envi-
ronment ([22], [12]). Some authors also directly compare pric-
ing strategies and its implications for different market types 
(monopoly, duopoly, oligopoly) ([5], [22]). 

Other prominent areas of interest are pricing and licensing to 
competitors ([4]), pricing and switching costs ([13], [14]), 
pricing and timing of upgrades ([17], [23]), bundling strategies 
([1]). 



Most of the existing approaches use equilibrium analysis to 
analytically determine the results of pricing strategies in terms 
of market share. Network effects are considered in a rather 
general way, focussing only on the installed base of the whole 
market. The importance of personal communication networks 
are not taken into account which implies that the market is 
considered to be a completely connected graph in which every 
consumer is influenced by the buying decisions of every other. 
The more realistic assumption of bounded rationality is not 
modeled (every market participant knows the decisions of 
everyone else). However, since assuming bounded rationality 
usually implies the impossibility of determining analytical (ex 
ante) results for an aggregated entity - such as a whole network 
consisting of individually deciding agents - in terms of the 
existence and/or efficiency of equilibria, a recourse to empiri-
cal and simulative approaches seems unavoidable. Wiese [22] 
criticizes the simplifications of analytical models and develops 
a simulation model with the more realistic assumption of dis-
crete parameters (e.g. participants, number of sold products 
and time) replacing the simplification of continuous parameters 
and marginal results of analytical models. Defining price, het-
erogeneity of preferences and one- or double-sided compatibil-
ity as parameters his models allow for more complexity and a 
more detailed analysis of pricing and other marketing strate-
gies. While this approach can be seen as a step in the right 
direction, once again network effects are modeled by installed 
base neglecting structural determinants of the market which, as 
we will show in the remainder of this article, play an important 
role for the diffusion of network effect goods.  

III. STRUCTURE MATTERS: EARLIER RESEARCH RESULTS 

A Simulation Model 

In earlier research we analyzed the impact of structural char-
acteristics of markets (such as connectivity, centrality, and 
topology) on the diffusion of network effect goods. We got 
different results for high-price and low-price markets indicat-
ing that structural determinants might also be important for 
choosing the optimal pricing strategy in network effect mar-
kets. In the following we will shortly describe those parts of 
the simulation design and results that will be important for our 
further research described in the remainder of this article (for a 
comprehensive description see [19] and [21]). 

We based our simulations on a simple model of the individ-
ual buying decision in network effect markets. A participant 
buys a certain product exhibiting network effects whenever the 
expected benefits are larger than the expected cost whenever 
the benefits (sum of stand-alone benefits and network effect 
benefit; the latter depending on the number of other adopters 
that are linked to this participant) are larger than the costs. In 
case of competing products in a market, the consumer buys the 
product with the maximum surplus if this exceeds zero. The 
decision is discrete, meaning that it is not rational to buy or use 
more than one unit of the same product or even of different 
products. This is an assumption which especially makes sense 
for information goods like software or telecommunication 
products. The network effects in the utility function only de-
pend on decision behavior of the direct communication net-
work of the potential buyer. This assumption is confirmed by 
empirical research in the software markets [20] and also pays 
tribute to the bounded rationality of real-world actors.  

Network structure. The networks were generated as fol-
lows. First the n consumers are randomly distributed on the 
unit square, i.e. their x- and y-coordinates get sampled from a 

uniform distribution over [0; 1]. Then the network’s topology 
was determined by choosing a certain connectivity (number of 
connections to other consumers) and a certain closeness. The 
closeness ∈ [0; 1] is the continuous probability that a given 
node gets his c direct neighbors assigned to be the c consumers 
geographically closest to the node at stake. With the probabil-
ity (1- closeness) the direct neighbors get randomly selected. 
The extreme cases, i.e. all nodes get assigned to closest resp. 
random neighbors, are referred to as close topology or random 
topology, respectively.  

The graphs in figure 1 show sampled cases of the close to-
pology (exemplary for 100 consumers and a connectivity c of 
two, five and ten, respectively). As we see, a low number of 
neighbors may lead to a network structure which is not fully 
connected, i.e. its consumers can only experience network 
externalities within their local cluster. 

     

Figure 1. Typical networks with two, five or ten closest 
neighbors (close topology, i.e. closeness = 1.0). 

 

     

Figure 2. Typical networks with two, five or ten random 
neighbors (random topology, i.e. closeness = 0.0). 

 
The standardization processes in individual clusters cannot 

diffuse to any consumer of a different cluster. These "sub-
populations" evolve in total separation and it is therefore rather 
unlikely, that all the isolated regions evolve to the same global 
standard. With increasing connectivity (five or ten neighbors), 
the chances that a network is not connected gets rather small, 
i.e. every sub-group of consumers, agreeing on a specific prod-
uct, may "convince" their direct neighbor clusters to join them. 
The "domino effects" finally might reach every consumer even 
in the most remote area of the network. However, the number 
of "dominos" that have to fall before a standard which emerged 
far away in a certain area of the network reaches the local envi-
ronment of an actor and therefore influences the decision to 
adopt is typically much higher than in the corresponding graph 
with random topology. Speaking more formally, the average 
length of the shortest path connecting two arbitrarily chosen 
vertices of the graph (i.e. the number of neighbors you have to 
traverse) is smaller for the same connectivity if the graph has a 
random topology. 

Figure 2 shows the graphs with the same connectivity (2, 5, 
and 10) but random topology. The optical impression of a 
higher connectivity (which is an illusion) results from the fact 
that we selected "neighbors" to represent an asymmetric rela-
tion. That is, when consumer x gets positive external effects by 
a neighbor y, it is unlikely in the random topology that vice 
versa, y also gets positive effects from x. Of course, within the 
close topology symmetric neighborhood is more common 



meaning that there is a higher probability that if y is the closest 
neighbor from the perspective of x, at the same time x is also 
the closest neighbor from the perspective of y. In this case the 
two links are plotted on top of each other and that is why the 
close topology graphs look less connected.  

Of course, most real-world networks represent an intermedi-
ate version of these extreme types, but since the costs of bridg-
ing geographic distance get less and less important the more 
information technology evolves, the tendency is clear. Elec-
tronic markets will rather resemble the random type of struc-
ture (since we select our partners by other criteria than geo-
graphical distance), while in markets for physical goods (or 
face to face communication) the physical proximity is still a 
very important factor for selecting business partners and there-
fore, the close topology will be a good proxy to the real world 
network structure. 

Preferences, Prices, and Network Effects. Regardless of 
topology, in our simulation, every consumer can choose from 
all existing software products and knows all their prices. Ini-
tially, all consumers are (randomly) equipped with one soft-
ware product, which may be considered to be their "legacy 
software" that is already installed and does not cause any fur-
ther cost. 

The direct utility that each consumer draws from the func-
tionality of the v different products is then sampled from a 
uniform random distribution over the interval [0;util]. For each 
consumer and every software we use the same interval. Thus, a 
value of util=0 leads to homogeneous direct preferences (of 
zero) while the higher the exogenously given value of util, the 
more heterogeneous the preferences of the consumers get (with 
respect to the different software products as well as with re-
spect to the neighbors they communicate with). 

The weight of the positive network externalities deriving 
from each neighbor using the same software has been set to an 
arbitrary (but constant) value of 10,000 (for every consumer 
and every run). 

In order to isolate the network externalities and heterogene-
ity of consumer preferences from other effects, we decided to 
fix all prices for the products to a constant value and all mar-
keting expenditures to zero for the simulations presented here, 
i.e. consumers decide solely upon potential differences of di-
rect utility and the adoption choices of their neighbors. 

Dynamics of the decision process. In each iteration of the 
diffusion, every consumer decides whether to keep her old 
network effects product or whether to buy a new one based on 
the decision rationale described above. The old product is as-
sumed to be discarded once a new one is bought, i.e. it can 
neither provide the deciding consumer with direct utility nor 
the neighbors with positive externalities anymore. The adop-
tion decisions are made in a sequential order, i.e. all consumers 
may always be assumed to have correct knowledge about the 
product their neighbors are currently using. Although we have 
not yet established a formal proof, for our simulations this 
decision process always converged towards an equilibrium in 
which no actor wanted to revise his decision anymore. We did 
not experience any oscillation, although oscillation dynamics 
might not be surprising, when collusion is excluded and ven-
dors are mutually trying to outperform competitors. 

A total number of 6,000 independent simulations were run 
(3,000 for low-price and high-price markets, respectively) with 
1,000 consumers and 10 different products until an equilibrium 

was reached. We also tested our simulations for other network 
sizes without significant difference in the general results. The 
distribution in this equilibrium was then condensed into the 
Herfindahl1 index used in industrial economics to measure 
market concentration (e.g. [18]). In the following diagrams, 
every small circle represents one observation. All entities of 
our model were implemented in JAVA 1.1 and their behavior 
was simulated on a discrete event basis. 

 

 

 

Figure 3. Equilibria in close topology and random topology 
networks for low-price markets. 

 

                                                           
1  The Herfindahl index is calculated by summing up the 

squared market share for each vendor. If all market shares are 
evenly distributed among our ten alternative products, we get 
the minimal concentration index of 10*(0.1)^2 = 0.1 while we 
get a maximal concentration index of 1*1^2+9*0^2 = 1 if the 
diffusion process converges to all consumers using one identi-
cal software product. 

close 

random 



B Diffusion in Low-price and High-price Markets 

Prices were fixed to the same constant value for all products. 
For the low-price markets the price has been chosen to be 
$50, which means switching to another product is very cheap 
compared to the positive externalities from neighbors (worth 
$10,000) if they use the same product. 

The top diagram in figure 3 illustrates the strong correlation 
(0.756) of connectivity and equilibrium concentration for close 
topology in low-price markets. Despite of this strong correla-
tion it can clearly be seen that even in networks with 200 
neighbors per consumer (i.e. a connectivity of 200) the chances 
are still very low that one product completely dominates the 
market. For random topologies (figure 3, bottom) an even 
stronger correlation (0.781) is obtained. Note that all the corre-
lation illustrated in this paper are significant on the 0.01 level. 

The scale of connectivity is extremely different in the two 
graphs of figure 3. It is scaled from 1 to 10 neighbors in the 
bottom diagram (random topology). It can clearly be seen that 
already for 10 neighbors per consumer (1% of the total popula-
tion) it is almost certain that only one product will finally take 
over the whole market. It is obvious that in comparison to close 
topology markets the likelihood for total diffusion of only one 
product is very high in random topology networks even for 
very low connectivity. 

We also considered the heterogeneity of preferences in the 
analysis as a third dimension. We did not find any significant 
dependency of the sampled equilibria on this factor for close 
topologies (figure 3, top) and a slight but significant negative 
correlation for random topologies (-0.141) (figure 3, bottom). 

Comparing this with the top graph where the probability of 
reaching a concentration higher than 0.2 is almost zero for the 
same connectivity strongly supports our hypothesis that for a 
given connectivity the indirect domino effects are much 
stronger for random topology networks and thus the diffusion 
process shows much higher tendencies towards standardiza-
tion. To test this statistically, we ran a Kolmogorov-Smirnov 
test (e.g. [10]) rejecting the hypothesis that the concentration 
indices obtained for close and random topologies follow the 
same distribution on a significance level better than 0.0005 
(KS-Z of 2.261). This result substantiates our findings statisti-
cally.  

A second interesting phenomenon can be seen in the fact, 
that although the mean concentration for a random topology 
networks of connectivity 5 is about 0.5, there are hardly any 
equilibria with concentration indices between 0.2 and 0.8, i.e. 
either the diffusion process leads to one strong product or 
many products will survive. This is different for close topology 
models where intermediate solutions with two or three strong 
products can be stable equilibria, obviously being the result of 
sub-groups of consumers (with strong intra-group communica-
tion and fewer links to other groups) collectively resisting 
external pressure to switch their selected product.  

While the low-price model may be correct for competing 
shareware e-mail tools, or free internet-based phone or meeting 
software, for many other network effect products the ratio of 
price towards positive network externalities is less extreme. 
Therefor, we also conducted simulations in high-price mar-
kets. Increasing the prices (while still being identical for all 
products) will of course lead to higher inertia of the consumers 
to buy a new product despite all of the neighbors using it. If we 
select too high a price everyone sticks to his initial solution and 

there is no diffusion process at all. Therefore, after some test 
simulations we tried to select a "critical value" as the constant 
price by fixing it to the consumer’s expected direct utility. 
Thus, whenever we sample direct utility from the interval 
[0;util] we fix the price of every products to 0.5*util. This 
means that for about half of the consumers the direct utility 
from owning a specific product would not compensate for the 
costs as long as there are no neighbors yielding any network 
effects. The high number of processes that end in a low con-
centration equilibrium even for high connectivity (fig. 4) sup-
ports this rationale when we compare our results to the proc-
esses obtained for low price software (fig. 3). Note, that in the 
bottom graph of figure 4 the x-axis only scales up to 100 
neighbors.  

 

 

Figure 4. Equilibria in close and random topology networks for 
high-price markets. 

 
We still get more 1.0 concentration equilibria (total diffusion 

of one product) for random topologies than for close topolo-
gies. Nevertheless, even for random topologies the inertia ef-
fect is very strong. However, for both topologies there still is a 

random 

close 



significant positive correlation of connectivity and concentra-
tion (0.120 for close and 0.231 for random) although much 
weaker than for the low price markets.  

Another very interesting effect can be observed if we addi-
tionally consider heterogeneity of preferences. In contrast to 
figure 3, we find a much higher negative correlation, signifi-
cant for both, close (-0.611) and random (-0.500) topologies. 
Although higher heterogeneity has the positive effect of in-
creased utility surplus for some consumers, others get even 
more reluctant to pay the high price, when there are no 
neighbors yet sharing this products. 

 
IV. SIMULATION OF PRICING STRATEGIES 

The influence of topology on the diffusion of innovations in 
networks is obvious. While the close topology generally is the 
basis for a greater diversity of products since cluster or groups 
of consumers can be relatively independent from diffusion 
processes in the rest of the market, the random topology tends 
to market dominance of one or few products.  

Up to now all prices got fixed once, identical for all vendors 
and kept constant over all periods of the diffusion process. In 
this section of the paper we will now relax this assumption and 
explore the interplay of diffusion processes and pricing strate-
gies of the vendors. 

A Simulation Design 

For reasons of computing time we restricted the length of the 
diffusion process (which was twenty) to five periods, not really 
posing a restriction since most diffusion processes reached an 
equilibrium earlier than period five. 

Our ten vendors are assumed not being able to directly ob-
serve the prices of their competitors but only the reaction of 
the customers, reacting to their own pricing strategy by com-
paring the price and benefits of their products to those of their 
competitors. 

In the sequel, a pricing strategy is considered to be a vector 
of five discrete integer prices, one for each period, not re-
stricted to be positive, since we do not want to exclude the 
possibility to subsidize the use of a product in an early period 
(i.e. investing in a higher installed base) in order to "skim" the 
revenue from followers in later periods. 

For every set of ten price strategies we obtain a specific dif-
fusion process of a given network and thus a specific revenue 
(being equal to profit since we do not consider any cost at the 
vendors’ side) for a given network topology for a given initial 
endowment and a specific order of decisions. 

As before, we sample a topology and initial endowment and 
run the diffusion process (for 1000 customers with connectivity 
of 10, centrality fixed to zero), but not only once as before but 
10,000 times with different pricing strategies, allowing the 
vendors to "learn how the market behaves" in response to their 
strategies and of course trying to find the strategy that maxi-
mizes their individual profit accounted for over the five peri-
ods. 

At the start of the "pricing battle" all vendor have a constant 
price of 100 for each of the five periods. In the first simulated 
diffusion process this set of strategies yields a vector of 10 
total profits. In each of the 10,000 diffusion runs another ven-
dor gets the chance to adapt her pricing strategy in order to 

increase profit (in most cases at cost of other vendors). This 
chance is taken by simply adding a random vector of five price 
"deltas" (drawn from a normal distribution of mean zero and 
variance) to the old strategy and then testing the new strategy 
by simulating a diffusion. Whenever the new strategy outper-
forms the old one or yields the same profit, the old strategy 
gets replaced by the new one, otherwise the old one is kept and 
modified with another delta vector when it is this vendor’s turn 
again. 

Since all vendors exhibit this behavior, we might expect the 
"price battle" to lead to a Nash equilibrium, i.e. a set of price 
strategies, which makes it impossible for any vendor to im-
prove his own profit when all other vendors stick their current 
strategy. Unfortunately, although many battles reached an 
equilibrium in the sense that no vendor successfully tried to 
modify his strategy for some thousands of iterations, this does 
not mean that this equilibrium is a Nash equilibrium, since 
there still might be a delta vector we just didn’t sample yet and 
we can neither enumerate all possibilities nor analytically 
prove that there cannot exist such a superior strategy, since our 
diffusion process may itself only be simulated. On the other 
hand, it might be possible to establish theorems, proving that 
under specific circumstances the negative effects of rising or 
lowering a price x in an early period may not be compensated 
by any adaption of prices in a later period thus showing that x 
is part of a Nash equilibrium if (and only if) we can prove the 
same for all prices of consecutive periods (and all other ven-
dors).  

B Results 

Nevertheless, our results once again show that the equilibria 
resulting from this collective learning process leads to pricing 
strategies which again (indirectly) depend on the network’s 
structure, influencing the customers’ reaction to a given set of 
price strategies. 

 

Figure 5. Summed total profit of all 10 vendors. 
 

We see from figure 5 that the total cumulated profit over all 
vendors (almost linearly with a correlation of -0.67) falls with 
the chosen closeness of the customers’ network topology 
while, as expected, this total profit concentrates on less ven-
dors in random topology markets than it does in close topology 



markets where many vendors survive with a substantial market 
share. Once again, the Herfindahl index was used to illustrate 
this concentration (c.f. figure 6). 

Although we might expect this to result from lower equilib-
rium prices in close topology markets, the following set of 
price charts (one for each of the five periods) clearly refutes 
this hypothesis: For all five periods the price positively corre-
lates with topological closeness (with correlations of 0.23, 
0.46, 0.76, 0.78 and 0.77 respectively). 

 

Figure 6. Concentration of total profit. 
 

Of course, if profits fall despite increases in prices, the an-
swer lies in the number of customers buying the product: In 
close topology markets most customers only buy a product 
once, leading to stable clusters of local standards, while in the 
more “global” markets with random topology the first choice 
made to align the own endowment with ones neighbors turns 
out to be erroneous, forcing me (and my neighbors) to buy a 
new product in a subsequent period (like most owners of beta 
VCRs finally bought a VHS recorder too and owners of Word-
Perfect bought MS Word). Therefore, in a close topology mar-
ket, vendors have the chance to behave like “local monopo-
lists”, each of them having their stable groups of customers 
crystallizing, but in most cases only have one chance to charge 
them. On the other hand, in random topologies there is a higher 
potential of selling, but also higher competition and thus the 
danger of losing at least those “follow up” sales to the competi-
tor having turned out to be the standard in a later period. But 
nevertheless, also those vendors “loosing the battle” may de-
rive a substantial share of total profit from the “wrong” initial 
decisions, which explains why even for random topologies the 
average concentration of total profit (over all periods) is only 
0.6 although the market is taken over completely by one prod-
uct and thus the concentration measured by number of users is 
1.0 in those random topology cases. 

As we see from the first two charts in figure 7 and figure 8 
(the latter explicitly shows the price difference between the 
first two periods) penetration pricing indeed turns out to be the 
dominant strategy for all vendors, no matter whether the topol-
ogy is close or random. 

 

 

 

 



 

 

Figure 7. Average equilibrium prices for different 
periods of the diffusion process. 

 

 

But interestingly enough, although we started each “battle” 
with an initial prices of 100, the vendors collectively (but 
without any chance for collusion!) rose this price up to a much 
higher level of about 10,000. This is exactly the utility drawn 
from a neighboring consumer using the same product. Why 
this is a critical value gets clear when we imagine a customer 
currently using product A and having e.g. three neighbors 
using the same product but four using product B (the remaining 
three neighbors using one or more other products): As long as 
the price of B is smaller than 10,000 the customer will be bet-
ter off buying the new product, otherwise it will stick to A. 
Therefore, offering a price slightly below this threshold may in 
fact speed up diffusion of a product. That the average prices lie 
above the threshold is explained by the fact that once a vendor 
has to fight a competitor with a penetration strategy, it might 
turn out to be rational rather to “give up” the fight and rather 
select a skimming strategy by charging a higher price in the 
first period(s). 

 

Figure 8. Concentration of total profit. 
 

We also notice that after period 2 equilibrium prices fall 
again. That they may even fall below zero seems completely 
irrational for period five, since there is no future period in 
which such a subsidization could pay off. But since price 
changes get accepted as long as they yield the same (or a 
higher) profit, the vendors do not “notice” this, as long as there 
is no customer actually switching to their product and thus 
“asking” for the subsidy, i.e. this can only happen when diffu-
sion has reached an equilibrium in an earlier period. 

 

V. CONCLUSION AND FUTURE RESEARCH 

Our simulations have shown that diffusion of products in a 
network effect market does not only vary with the set of pric-
ing strategies chosen by competing vendors but also strongly 
depends on the topological structure of the customers' network. 
This stresses the inappropriateness of "installed base" models 
(abstracting from the topological structure). Although competi-
tive prices tend to be significantly higher in close topology 
markets, they lead to lower total profit and lower concentration 
of profit for these markets. 

Despite these interesting results many open questions re-
main. Our ongoing research mainly concentrates on answering 
the following: 

• Under which assumptions could a given solution be 
proven to be a Nash equilibrium? Are these assumptions 
plausible for real-world markets? 

• How do the strategies of (ex post) "winners" of the 
competition game differ from those of "losers" and what 
may the "losers" learn form this? (Simply copying the 
winners' strategy cannot make the losers better off since 
if it did, their current strategy would not be an equilib-
rium.) 

• Of course, optimizing one's individual pricing strategy 
by this type of "learning by simulating the market and 
simulating the competitors" may heavily depend on how 
well the customer's decision model reflects their real 
decision function and thus we may not derive a direct 



recommendation for pricing a product since it might be 
better to run a less profitable pricing strategies which is 
more robust to variation in customer’s behavior. This 
robustness will also be evaluated in future simulations. 

• All customers were assumed to face the identical price 
for a given product. Although neglecting price discrimi-
nation might be suitable in many markets, another prob-
lem remains: the effective cost of implementing the 
given product might be dominated by other factors than 
the price (e.g. training of personnel, new hardware re-
quirements) strongly depending on the individuals for-
mer decisions. Basing our decision on the individually 
effective cost may thus be a valuable extension. 

• Why are there very few real-world examples of penetra-
tion strategies with significant price increases in later 
periods? Netscape completely failed when trying to im-
plement this strategy for its browser, but nevertheless 
free beta releases could be considered to represent a ba-
sic form of penetration pricing. On the other hand it 
might be argued that the markets for most software 
products are still growing that fast, that the “penetration 
phase” has not come to its natural end yet. 

 

ACKNOWLEDGMENTS 

This work is part of the research project "Economics of 
Standards in Information Networks" of the interdisciplinary 
research program "Competitive Advantage by Networking - 
the Development of the Frankfurt and Rhine-Main Region". 
We thankfully acknowledge the financial support from the 
German National Science Foundation. 

 

REFERENCES 

[1] Bakos, Y./Brynjolfsson, E. (1999): Bundling Information 
Goods: Pricing, Profits and Efficiency, Working Paper 
(1999), Stern School of Business, New York University, 
forthcoming in Management Science. 

[2] Brynjolfsson, E./Kemerer C. F. (1996): Network External-
ities in Microcomputer Software: An Econometric Analy-
sis of the Spreadsheet Market, in: Management Science, 
vol. 42, Dec. 1996, 1627-1647. 

[3] Clarke, F. H./Darrough, M. N./Heineke, J. M. (1982): 
Optimal Pricing Policy in the Presence of Experience Ef-
fects, in: Journal of Business, Vol. 55, No. 4, 517-530. 

[4] Economides, N. (1996): Network Externalities, Comple-
mentarities, and Invitations to Enter, in: European Journal 
of Political Economy, Vol. 12, No. 2, 211-232.  

[5] Economides, N./Himmelberg, C. (1995): Critical Mass 
and Network Size with Application to the US FAX Mar-
ket, Discussion Paper EC-95-11, Stern School of Business, 
New York University. 

[6] Gandal, N. (1994): Hedonic price indexes for spreadsheets 
and empirical test for network-externalities, in: Rand 
Journal of Economics, Vol. 25 (1994), No. 1, 160-170.  

 
 
 
 
 
 
 

[7] Gröhn, A. (1999): Netzeffekte und Wettbewerbspolitik. 
Eine ökonomische Analyse des Softwaremarktes, Kieler 
Studien 296, Tübingen. 

[8] Harhoff D./Moch D. (1996): Price Indexes for PC Databa-
se Software and the Value of Code Compatibility, Discus-
sion Paper 96-17, Zentrum für Europäische Wirtschafts-
forschung (ZEW), Mannheim. 

[9] Hartmann, R. S./Teece, D. J. (1990): Product emulation 
strategies in the presence of reputation effects and network 
externalities: some evidence from the minicomputer indus-
try, in: Economics of innovation and new technology, Vol. 
1-2, 157-182. 

[10] Hartung, J. (1989): Statistik: Lehr- und Handbuch der 
angewandten Statistik, München; 520-524. 

[11] Katz, M. L./Shapiro, C. (1986): Technology Adoption in 
the Presence of Network Externalities, Journal of Political 
Economy, August 1986, 94, 822-841. 

[12] Katz, M. L./Shapiro, C. (1994): Systems Competition and 
Network Effects, in: Journal of Economic Perspectives, 
Vol. 8, Spring 1994, 93-115. 

[13] Klemperer, P. (1987a): The competitiveness of markets 
with switching costs, in: Rand Journal of Economics, Vol. 
18, No. 1, Spring 1987, 138-151. 

[14] Klemperer, P. (1987b): Markets with Consumer Switching 
Costs, in: The Quarterly Journal of Economics, May 1987, 
375-393. 

[15] Moch, D. (1995): Ein hedonischer Preisindex für PC-
Datenbanksoftware: Eine empirische Untersuchung, in: 
Harhoff, D./Müller, M. (Hrsg.): Preismessung und techni-
scher Fortschritt, Baden Baden. 

[16] Rohlfs, J. (1974): A theory of interdependent demand for a 
communications service, in Bell Journal of Economics, 5 
(1974), 16-37. 

[17] Thum, M. (1995): Netzeffekte, Standardisierung und staat-
licher Regulierungsbedarf, Tübingen. 

[18] Tirole, J (1993): The theory of industrial organization, 6th 
ed., Cambridge, Mass. 

[19] Wendt, O./Westarp, F. v. (2000): Determinants of Diffu-
sion in Network Effect Markets, forthcoming in: Proceed-
ings of the 2000 IRMA International Conference, Anchor-
age. 

[20] Westarp, F. v./Buxmann, P./Weitzel, T./König, W. (1999): 
The Management of Software Standards in Enterprises - 
Results of an Empirical Study in Germany and the US, 
SFB 403 Working Paper, Frankfurt University, Jan. 1999, 
http://www.vernetzung.de/eng/b3. 

[21] Westarp, F. v./Wendt, O. (2000): Diffusion Follows Struc-
ture - A Network Model of the Software Market, forth-
coming in: Proceedings of the 33nd Hawaii International 
Conference on System Sciences (HICSS-33), 2000.  

[22] Wiese, H. (1990): Netzeffekte und Kompatibilität, Stutt-
gart. 

[23] Yang, Y. (1997): Essays on network effects, Dissertation, 
Department of Economics, Utah State University, Logan, 
Utah.  


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Pricing in Network Effect Markets
	Oliver Wendt
	Falk von Westarp
	Wolfgang Koenig
	Recommended Citation


	

	search: search


