
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2000 Proceedings European Conference on Information Systems
(ECIS)

2000

A Systematic Analysis of the Effect of Task Clarity
on Software Development Design
Werner Mellis
University of Cologne, mellis@informatik.uni-koeln.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2000

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Mellis, Werner, "A Systematic Analysis of the Effect of Task Clarity on Software Development Design" (2000). ECIS 2000 Proceedings.
79.
http://aisel.aisnet.org/ecis2000/79

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2000%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000/79?utm_source=aisel.aisnet.org%2Fecis2000%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


A Systematic Analysis of the Effect of Task Clarity on
Software Development Design

Werner Mellis

University of Cologne

Department of information systems

Pohligstr. 1, 50969 Köln, Germany

Tel. +49 221 470-5368

Email: mellis@informatik.uni-koeln.de

ABSTRACT

Two different types of development tasks are distinguished:
Clear and unclear development tasks. Based on hypotheses
from organizational theory two different designs of soft-
ware development are derived. The transformational design
is appropriate if the development task is clear. In case of an
unclear development task software development should
employ the adaptive design.

The transformational design conforms to the explicit rec-
ommendations and implicit assumptions of process oriented
software quality management, a software management style
considered by many authors to be the universally valid
paradigm of software development. Because of the funda-
mental differences between the two designs we conclude,
that process oriented software quality management is not
universally valid and should not be applied to unclear soft-
ware development tasks.

Keywords
Organizational design, software management, quality man-
agement, product development

1 THE CONTINGENCY APPROACH TO SOFT-
WARE DEVELOPMENT DESIGN

During the last decade process oriented software quality
management (PSQM) as represented by standards like
Capability Maturity Model (CMM), Bootstrap, ISO 9000,
SPICE (ISO 15504) etc. became the celebrated paradigm of
software production [3]. There is an almost perfect agree-
ment among experts that for a software producer’s success
the design of its software processes according to PSQM has
to be given highest priority. This conviction is usually
formulated as a universal recommendation which is given
independent of the type of software developed, the type of
customer, the type of application or the branch of industry
the organization belongs to.

Nevertheless some authors formulated a sharp criticism of
PSQM as even being a serious risk to a company’s com-
petitive potential. Case studies of some of the world’s most

successful software producers demonstrate, that they do not
follow the recommendations of PSQM.

Analyzing the empirical evidence for PSQM and its criti-
cism demonstrate, that there is empirical evidence for the
relevance of PSQM as well as for the software develop-
ment design found in case studies like [2] or [4]. Therefore
it is concluded, that neither PSQM nor the software devel-
opment design found in those case studies can be consid-
ered universal, but are appropriate in certain situations
characterized by some contingency factors. For a more
detailed discussion see [7].

In order to flesh out this contingency approach, three ques-
tions need to be answered.

1. Which contingency factors are effecting software devel-
opment design?

2. What are the essential characteristics of the different
software development designs?

3. Which hypotheses are relevant to justify or explain the
different software development designs?

In this paper three partial answers are given to the three
questions.

1. A contingency factor (task clarity) is described and it is
argued, that clear and unclear development tasks demand
different software development designs, called transforma-
tional and adaptive design of software development re-
spectively.

2. The transformational and adaptive design of software
development are described by well known dimensions of
organizational design. The transformational design con-
forms to the explicit recommendations and implicit as-
sumptions of PSQM. The adaptive design is in accordance
to the software development design found in case studies
e.g. [2] and [4].

3. The derivation of the two different designs of software
development is based on the well established hypotheses of
organizational design.



2 CLEAR AND UNCLEAR DEVELOPMENT TASKS
There are several different factors reducing the clarity of a
development task [10].

1. Unclearness of Requirements

Customer and technological requirements are unclear.

2. Dynamic Nature of Requirements

Customer and technological requirements change during
development time.

3. Technology Dynamics

Knowledge about software technology and software pro-
cess technology change during development time.

A development task is called unclear, if it is affected sig-
nificantly by these three factors. Else it is called clear.

In the following requirement refers to any request by a
customer, a partner, or the technical environment, that
some attribute of the software to be developed has a spe-
cific value.

A requirement is clear, if an attribute and its possible val-
ues are known (to the development personnel) and it can be
determined with acceptable effort independent of develop-
ment activities (analyzing design alternatives, reworking
the design, prototyping, implementation trials etc.), which
of the possible values ought to be realized. If the develop-
ment personnel have decided, which value ought to be
realized, the requirement is called known.

There are two different cases of unclear requirements.

1. A requirement is unclear, if some attribute of the soft-
ware to be developed and its possible values are known, but
with acceptable effort and without development activities it
cannot be decided, which value should be advantageous at
release time, because the consequences of the different
values are unknown or there are no criteria to estimate
these consequences.

2. In the other case only from development experience or
from customer feedback it is noticed that some attribute is
relevant.

If a requirement is clear but unknown, then it is possible
without development activities to make it known with an
acceptable effort. If a requirement is not clear, then without
experience from the development activities or without
application of development results the requirement can
only be determined with unacceptable effort.

Remark: 1. It should be clear, that in practical settings tasks
are always more or less clear. However, in order to ease
understanding the argument, here an idealized binary dis-
tinction is used. 2. There is a well known categorization of
programs into three categories: S-, P- and E-programs de-
pending on how they are related to reality. Here we are
concerned with E-programs only, which “mechanize a
human or societal activity” [5]. Lehman suggests, “that it is

always possible to continue the system partitioning process
until all modules are implementable as S-programs” [5]. In
[6] Lehman states an hypothesis under investigation, ex-
plaining the limited success of software process improve-
ment projects to realize this suggestion. Here we point out a
condition under which it is practically infeasible to follow
this suggestion and derive recommendations for the organi-
zation of software development under this condition.

3 SYSTEMATIC DERIVATION OF SOFTWARE
DEVELOPMENT DESIGN RECOMMENDA-
TIONS

There is a well established organizational theory, which has
been applied successfully in many other cases. See for
example [9]. In order to arrive at a justified proposal, we
apply this body of organizational knowledge to the problem
of software development design in case of clear and unclear
development task.

Design Dimensions and Design Procedure

For the development of a suggestion on software develop-
ment design with clear respectively unclear development
tasks among others the following design dimensions must
be considered:

• Process organization,

• Division of labor and organizational structure,

• Coordination,

• Planning and control,

• Leadership and motivation,

• Communication,

• Quality assurance,

• Communication interface to the customer.

For some of the dimensions listed above a substantial alter-
native is derived. Based on well established organizational
hypotheses we argue for a recommendation of software
development design for clear and unclear development
tasks.

The application of the organizational hypotheses is based
on a task analysis. This provides us with information about
the various subtasks of software development, possible
forms of the division of labor, interdependencies between
the subtasks and the obstacles to a reliable, complete and
efficient supply of information between them. This infor-
mation is necessary to decide between the alternatives of
process design and division of labor.

The task of software development can be broken down into
subtasks according to the activity or according to the
structure of the product. If both types of task break down
are combined the smallest tasks are the application of some
activity to some module, e.g. analysis of some feature,
design of some component, implementation of some com-
ponent. Further there are some tasks, which are not related
to individual components like e.g. configuration manage-



ment, project staffing, architecture design or component
integration.

In the following these tasks are called elementary subtasks
(see fig. 1) though they could further be broken down for
example according to work phases like planning and exe-
cution.

Information flows

Because of the complexity and immaterial nature of soft-
ware products the subtasks’ outputs are extensive amounts
of information, which need to be supplied as input for other
subtasks. Most of this information is transferred in coded
form, because it needs to be exchanged between people or
cannot be directly processed by humans. If it is transferred
in coded form it must be coded, transported and decoded.
The transportation is without any problem. But coding
(formulation) and decoding (understanding) can demand
huge effort and can cause significant risk of error, leading
to defects in a subtask’s input (lacking, false or irrelevant
information).

This is especially true for the software specification (the
result of the analysis) in case of an unclear development
task. Because of the amount and unclearness of the re-
quirements and because of the dynamics of the require-
ments and the technology, the specification is incomplete
and unstable.

Good back-ground knowledge about the application and the
technology can partly compensate for the specification’s
incompleteness. But this knowledge is learnt from experi-
ence over a long time and must be comprehended as “tacit”
in the sense of Nonaka and Takeuchi. Typically it is ac-
quired by a person who intensively deals copes with the
application or the technology. It is “sticky” i.e. separating it
from one person and transferring it to another person de-
mands substantial effort.

This has to be taken into account in designing the division
of labor. If in case of an unclear development task analysis
on the one hand and design and implementation on the
other hand is not the same person’s responsibility, then we
have to face a very high effort to avoid incompleteness of
the specification or to transfer the back-ground knowledge
about the application or we have to face significant risk of
defects.

Interdependencies

Let us first distinguish horizontal interdependencies be-
tween the elementary subtasks on the same component, like
analysis, design, implementation and test of one compo-
nent, and vertical interdependencies between the elemen-
tary subtasks with the same activity, like implementation of
component a and implementation of component b.

Usually it is assumed, that there is a sequential horizontal
interdependency. I.e. results of one subtask are the basis of
the following. This sequential horizontal interdependency

among the subtasks broken down according to the activity
exists only under certain circumstances. The independence
of e.g. the analysis from the following subtasks presup-
poses, that every requirement is clear and that the technol-
ogy is well known.

In case of an unclear development task, there are reciprocal
interdependencies between analysis and design. I.e. results
of the subtask analysis is a necessary input for the subtask
design and results of the subtask design is a necessary input
for the subtask analysis [WaEC93]. The reason for the
reciprocal horizontal interdependencies is, that intensive
analysis of design alternatives is essential for the clarifica-
tion of requirements. “The discussion of requirements from
this point, however, was rooted in the context of specific
design alternatives (‚Plan A vs. Plan W‘)”.[12] Analysis of
design alternatives shows their different sets of features
allowing to learn about relevant requirements and limiting
the search for requirements to those necessary to discrimi-
nate between the design alternatives. Thus in case of un-
clear requirements analysis is not independent from design.

Further reciprocal horizontal interdependencies are rooted
in high technology dynamics. in order to be able to decide
design and implementation alternatives knowledge about
the technologies employed is necessary. If it lacks because
of the innovative nature of the employed technology it
needs to be generated by implementation trials (prototypes,
simplified versions) or usability test. I.e. results of the im-
plementation subtask respectively. of the test subtask is
needed as basis for analysis and design. Therefore there is a
reciprocal horizontal interdependency also between analy-
sis and design on the one side and test and implementation
on the other.

In case of a clear development task the various require-
ments are mapped on the modules of a hierarchical archi-
tecture. Since requirements and technology are stable, there
are no vertical interdependencies between the elementary
subtasks after architectural design.

In case of unclear development task there are reciprocal
vertical interdependencies between e.g. implementation of
component a and implementation of component b. If for
example an unclear requirement turns out to refer to several
components, this may lead to changing several compo-
nents, where one component’s change depends on the oth-
ers and vice versa. Similar reciprocal vertical interdepend-
encies may origin in the change of requirements and the
growing experience with the employed software technolo-
gies.

Fig. 1 is a simplified map of the information flows accom-
panied by the various interdependencies between the ele-
mentary subtasks.



Information flow in case of
unclear development task.

Information flow in case of 
clear developpment task.

Analyse
Module

1

Analyse
Module

x

Analyse
Module

2

Design
Module

1

Design
Module

x

Design
Module

2

Implem.
Module

 1

Implem.
Module

x

Implem.
Module

2

Test
Module

 1

Test
Module

x

Test
Module

2

M
od

ul
es

 1
- 

x

Development activities 

Figure 1: Subtasks and information flows

4 SOFTWARE DEVELOPMENT DESIGN RECOM-
MENDATIONS

Design recommendations can be given for any dimension
of software development design (for an extensive discus-
sion of development in case of unclear development task
see [8]). Here we are restricted to some design dimensions
essential to allow a clear cut contrast between the two de-
sign recommendations in case of clear and unclear devel-
opment.

Process Design

In process design elementary subtasks are combined to
process steps. In software development we build process
steps by combining those subtasks, where the same activity
is being performed on different components. The resulting
process steps are analysis, design, implementation, and test.

Depending upon the temporal arrangement of the process
steps, there are two different forms of process organization,
the sequential and the parallel process organization.

Beside the temporal arrangement of the process steps the
process organization can be distinguished according to the
number of increments. A process organization is called
incremental, if the product is developed in a sequence of
versions or increments, which differ in that each version
fulfills an increasing subclass of requirements. If there is
only one increment, the process organization is called
batch.

In a sequential process organization, the different process
steps are executed sequentially without overlap in time.
Software integration, i.e. the combination of the different
components of the product to the executable total product,
is generally carried out at a fixed time after the completion
of the development activities.

A process organization is sequential and incremental, if the
product is developed in several increments, which are de-
veloped sequentially each.

When employing a parallel process organization, the exe-
cution of the process steps analysis, design, implementa-
tion, and test is overlapping in time. Software integration is
done in parallel to those steps and is incremental. Early
during development, modules sufficient for a core system
with reduced functionality are developed and integrated
into an executable basic system. The further development
of existing modules occurs in small steps. If some require-
ments become known, as frequently as possible design,
implementation and the integrated system are updated and
tested. [2]. Therefore a parallel process organization is
always incremental.

Increments in a parallel and in a sequential process organi-
zation differ substantially. In a sequential and incremental
process organization there are few, substantial increments,
whose development can be considered as separately
planned projects, representing defined stages of functional-
ity. In a parallel and incremental process organization, there
is a vast amount of small increments, representing the daily
progress of the development work.

In case of a clear development task a sequential process
organization is recommended, while in case of an unclear
development tasks a parallel process organization should be
preferred.

Usually a sequential process organization is considered
advantageous in respect to productivity, product quality and
reliability of development planning. This is based on the
assumption, that the tasks of any process step can be
planned in detail and solved completely within time and
budget, if only at the beginning of the process step the
necessary input information is detailed, complete and reli-
able. In case of a clear development task the process step
analysis can deliver a detailed, complete and reliable result
and therefore – applying the assumption recursively – all
following steps can do so. Therefore, if the requirements do
not undergo change during development time, the perfect
satisfaction of requirements by the product, the avoidance
of rework and interrupt and the prevention of uncertainties
in planning is just a matter of the careful execution of the
various development activities.

In case of unclear development task on the other hand there
are reciprocal interdependencies between the development
tasks of analysis, design, implementation, and test. Since
none of two reciprocally interdependent subtasks can be
completed before the other begins, they must be executed
overlapping in time.

The higher the dynamics of requirements and technology
the more important is the amount of overlap. Let us intro-
duce the “concept freeze” to indicate the point in time,
from which on the definition of the product is no longer
changed, and the “response time” to indicate the period of



time from concept freeze up to the delivery of the product
[4]. Than the response time represents the period of time
during which the product cannot be adapted to the changing
requirements and technology. In case of a high dynamics of
requirements and technology the product will be outdated
to some extend, indicated by the response time: the shorter
the response time, the less outdated the product. Since in a
sequential process organization the response time extends
from the beginning of design to the product’s delivery, a
sequential process organization leads to a relatively out-
dated product.

A parallel process organization with parallel software inte-
gration provides a first product version early during devel-
opment, which afterwards develops gradually to the final
version. This allows a result oriented control of the devel-
opment progress and a continuous feedback from custom-
ers. While continuous feedback is important in case of an
unclear development task, result oriented control is also of
interest in case of a clear development task.

Design of Positions and Organizational Structure

There are two different approaches to combine elementary
subtasks into higher-level tasks and to assign them to or-
ganizational units (positions, groups, departments etc.),
which result in two distinct forms of division of labor [9].

In an activity oriented division of labor elementary subtasks
with the same activity are combined to the higher-level
tasks analysis, design, implementation, and test, which are
assigned to different organizational units on the same level
of hierarchy. In this case there are units specialized on the
tasks analysis, design, implementation, or test.

In a product oriented division of labor elementary subtasks
with the same component are combined to higher-level
tasks like development of component a or development of
component b. If those higher-level tasks are assigned to
different organizational units on the same level of hierar-
chy, than there are units specialized on the development of
different components.

In case of a clear development task the activity oriented
division of labor is recommended. This has two main rea-
sons. Firstly, because of the sequential interdependency the
tasks analysis, design, implementation and test can be di-
vided among different organizational units without causing
coordination need. Secondly, the different units can spe-
cialize in the different activities, which therefore can be
performed faster, more efficient and with less risk of fail-
ure.

In the case of unclear development tasks, a product-
oriented division of labor is recommended, i.e. the com-
plete task of developing a piece of software be divided and
assigned to organizational units in accordance with the
modular structure of the product's architecture. While a
single organizational unit develops each module, it is pos-
sible for one organizational unit to be responsible for the

development of several architectural modules. This ap-
proach is called modular product development [11].

Analysis of the information flows and interdependencies
between the elementary tasks in cases of unclear develop-
ment tasks has shown that the transfer of information be-
tween the activities of analysis, design, implementation,
and testing is costly and prone to error.

On the other hand, the necessity for the bilateral transfer of
information between the elementary tasks within the con-
text of a certain activity can be kept to a minimum through
the use of a modular product architecture.

Usually, it is assumed that there is a more intensive ex-
change of information within organizational units than
between different units [9]. For this reason, during unclear
development tasks, the product-oriented division of labor is
better suited to dealing with the required exchange of in-
formation between elementary tasks and more effective in
reducing the risk involved with this exchange.

The increase of development costs as a result of the fre-
quency of requirements changes is higher in the case of a
process-oriented division of labor than in the case of a
product-oriented one, because the costs of every single
change are higher. This results from the fact, that, given a
product-oriented division of labor, ideally only one organ-
izational unit is involved in the change, as opposed to all or
several as in a process-oriented one.

Quality Assurance

We distinguish four dimensions of the design of quality
assurance: type, centralization, formalization and timing.

There are two different types of quality assurance: verifica-
tion, i.e. checking whether the product conforms to explic-
itly given specifications, or validation, i.e. checking
whether the product is useful, when applied under realistic
application conditions.

Centralization refers to the extend to which decision mak-
ing power is distributed. [9] Quality assurance is called
centralized, if one person has all the power of decision
making concerning quality assurance. It is called distrib-
uted, if part of the decision making power, for example
decisions about the quality of individual modules of the
product, is delegated e.g. to their developers.

Quality assurance is called formal, if the procedures of
quality assurance are regulated by detailed rules. It is called
informal, if there is only little regulation by rules.

Finally quality assurance can be distinguished according to
its timing. The timing is final, if quality assurance is or-
ganized as a final phase of a process step, the output quality
of which it has to assure. It is called integrated, if it takes
place concurrently during the process.

In case of a clear development task a verifying, centralized,
formalized, final quality assurance is recommended. The



verifying, final design of quality assurance is well known
under the name V-model of testing coined by Boehm. The
advantage of the V-model of testing in case of a clear de-
velopment task is, that it allows to certify, that the product
conforms to the specification. It further is very efficient, in
that it identifies defects as early as possible and searches
different types of defects only once in its various steps.
Since product quality in case of a clear development task
means conformance to specification, it is important to be
able to carefully control the application of quality assur-
ance. In order to achieve this, the procedures of quality
assurance are formalized in detailed. The reason to cen-
tralize the decision making power lies in the fact, that cen-
tralization is the tightest means of coordination of decision
making, which therefore supports the controlled and con-
sistent application of quality assurance.

In case of an unclear development task a validating, decen-
tralized, informal, integrated quality assurance is recom-
mended. In case of an unclear development task a verifying
quality assurance is possible only in case the specification
is written after the product is developed. Since this would
increase response time substantially, a verifying quality
assurance is impossible. Further the validating, integrated
quality assurance, as for example in form of usability tests,
has the advantage, that it helps to identify and understand
requirements at a time, when it still can help to guide de-
velopment. The decentralized and integrated quality assur-
ance means, that a developer, responsible for some feature,
receives direct feedback about his work and the value it has
for a customer. This is usually seen as a stimulus to moti-
vation. [2] Further in case of an unclear development task,
the feedback given by an early validation of the work is
essential in order to identify or clarify requirements. It is
assumed, that the person, who developed the validated
version or prototype, has the best knowledge of admissible
alternative designs of his feature. If the developer and the
quality assurance person are different people, then there is
further the risk of defects in communicating the feedback.
In case of an unclear development task the quality of qual-
ity assurance depends more on the creative construction of
test scenarios than on a careful execution of a prescribed
procedure. Since formalization may have a negative effect
on creativity, it is not recommended.

Interface to the Customer

We distinguish three dimensions of the design of the analy-
sis, which are not already treated above: centralization,
formalization and communication. Analysis is called cen-
tralized, if one person has all the power of decision making
concerning requirements. It is called distributed, if part of
the decision making power, concerning for example deci-
sions about the detailed requirements on most features of
the product, is delegated e.g. to their developers. Analysis
is called formal, if the procedures of analysis are regulated
by detailed rules. It is called informal, if there is only little
regulation by rules. The dimension of communication is

structured in accordance with Clark and Fujimoto’s classi-
fication of the intra-organizational communication relations
[1] by means of three dimensions (the other dimensions are
irrelevant or covered elsewhere):

• Frequency of information transmission: A single re-
quirement is considered once vs. is dealt with fre-
quently.

• Direction of communication: unidirectional, only pro-
viding information vs. bi-directional, exchanging in-
formation.

• Richness of information media: written, impersonal vs.
verbal, personal.

In case of a clear development task a centralized and for-
malized analysis is recommended, where the communica-
tion is intended as a unidirectional, written, complete in-
formation transmission touching on any requirement only
once.

A centralized and formalized analysis supports to achieve a
complete, reliable and consistent specification, which is of
prior importance, if a clear development task is given. If
requirements change, what cannot be prevented completely,
such organization helps to maintain requirements’ consis-
tency, which is essential. Since the requirements are clear,
they can be written down formally. The information trans-
mission can be unidirectional, because the requirements can
be derived from a well understood application context. No
specific input about the possible technical solutions is nec-
essary. Unless a requirement changes during development,
it needs only be stated once.

In case of an unclear development task a decentralized and
informal analysis is recommended. The information trans-
mission should be bidirectional, much of it in form of a
presentation of a version or prototype and feedback by the
customer. Feedback should not be given by formal, written
statements, but by observing and discussing the use a cus-
tomer makes of a version or prototype. Thus communica-
tion is rich and informal. The same requirements may be
dealt with frequently in order to communicate partial or
preliminary information.

In case of an unclear development task requirements analy-
sis to a great extend depends on the analysis of design al-
ternatives and implementation experience. The developer’s
creativity and their ability to receive and interpret feedback
and his ability to realize obscured hints concerning the
application conditions is essential for the quality of re-
quirements engineering. Therefore requirements engineer-
ing is informal. The same requirement may be dealt with
frequently, since several steps may be necessary to clarify it
or since it may change.

In order to receive feedback developers must confront the
users with early versions or prototypes, thus information
transmission is bidirectional. Feedback may be received as
formal written statement. But since it can not be assumed



that the user is able to express his requirements easily,
other forms of receiving feedback, like for example by
observing a users behavior in a usability test, are recom-
mended.

In order to allow a fast reaction to the changing require-
ments and technology analysis is decentralized. The deci-
sion making power concerning the requirements on some
module is largely delegated to the developer responsible for
this module.

Coordination

Usually five different coordination mechanisms are distin-
guished: standardization of work process, standardization
of work product, standardization of qualification, direct
supervision and mutual adjustment. The three standardiza-
tion mechanisms allow to do the coordination before the
work is actually done, while the last two are ad hoc coordi-
nation mechanisms, used if during the work is actually
done coordination turns out to be necessary.

In case of a clear development task it is recommended to do
the coordination in advance by employing the three stan-
dardization mechanisms. This is generally advantageous,
because it improves the reliability of planning. Usually all
three standardization mechanisms are employed. Of spe-
cific importance in case of software development is stan-
dardization of work product by use of an architecture. This
is done by mapping the requirements on to the various
modules given by the architecture and formally describing
the interfaces between the different modules. Further stan-
dardization of work process, which is the essence of quality
management, is of significant importance, to prevent the
need for ad hoc coordination.

In case of an unclear development task coordination in
advance by standardization is limited. Standardization of
work process is limited, since in case of an unclear devel-
opment task a much higher degree of variation of the vari-
ous processes is necessary. Further there are no written
requirements, which can be used for coordination early
during development.

While in case of a clear development task ideally no ad hoc
coordination is necessary, it plays a significant role in case
of an unclear development task. In order to reduce the co-
ordination need, the division of labor is based on a modular
architecture as described above. But because of the con-
tinuous clarification and change of requirements in case of
an unclear development task even with a modular archi-
tecture many decisions of software design, implementation
and test need to be coordinated ad hoc between the organ-
izational units responsible for the development of the dif-
ferent software modules.

To satisfy the need for ad hoc coordination the two mecha-
nisms direct supervision or mutual adjustment can be em-
ployed. In case of an unclear development task mutual
adjustment is of prior importance.

The employment of direct supervision as a coordination
mechanism means that coordinating decisions are made by
some decision maker hierarchically above the organiza-
tional units whose work needs to be coordinated. Most of
the relevant information on which the decision has to be
based, will be accumulated in the organizational units be-
low. Much of this information is technically complicated or
tacit knowledge e.g. background knowledge acquired over
a longer period of time, which cannot easily be completely
codified and communicated. Therefore frequently extensive
amounts of complicated, sticky information need to be
communicated and understood by the decision maker, who
will most likely turn out to be a severe bottleneck. For this
reason coordination is based on mutual adjustment, which
under the conditions of an unclear development task leads
to faster decisions of better quality.

5 CONCLUSION
Two different software development designs have been
described as opposing designs in respect to some well
known dimensions of organizational design.

Therefore naming of the two designs of software develop-
ment is arbitrary to some extend. They differ in any of the
described design dimensions. Therefore the naming could
be based on various design dimensions. Stressing the con-
trariety in process organization they could be named: Se-
quential and parallel or concurrent development. If it is
intended to stress the differences in the division of labor,
they could be distinguished as process oriented develop-
ment versus product oriented or modular development.

Here it is intended to emphasize the different approaches to
satisfying requirements. The name transformational design
should point to the fact, that the model assumes explicitly
stated requirements, which are transformed into a software,
with certified conformance to the requirements.

The name adaptive design on the other hand should stress
the fact, that early during development according to the
adaptive model a version of the product is developed and
gradually adapted to the application conditions, without the
use of explicitly stated requirements. For this purpose soft-
ware development according to the adaptive design is or-
ganized in a way to support receiving feedback and to
quickly improve the fit of the existing version to the real
needs. For this reason changes to the software are inte-
grated into the running version as quickly as possible. This
allows to base testing, analysis of detailed requirements,
but also project controlling on the running version of the
product, without being forced to explicitly state require-
ments in an early closed phase of software development.

The two designs are recommended in case of a clear and an
unclear development task respectively. This recommenda-
tion is justified on basis of well established hypotheses of
organizational design. From the derivation of the two de-
signs of software development it is also evident, that the
two different designs cannot replace each other. In case of



an unclear development task, early termination of require-
ments analysis would not lead to clear, complete and stable
requirements, but to badly understood requirements. There-
fore, if applied under time pressure, it would produce an
unsatisfactory product. On the other hand in case of a clear
development task, employing the adaptive model most
likely yields inferior predictability in respect to time and
costs and also inferior quality in the sense of conformance
to explicitly stated requirements.

6 REFERENCES
[1] Clark, Kim B.; Fujimoto, Takahiro: Product Devel-

opment Performance: Strategy, Organization, and
Management in the World Auto Industry. Harvard
Business School Press, Boston 1991.

[2] Cusumano, Michael. A.; Selby, Richard W.: Micro-
soft Secrets. The Free Press, New York 1995.

[3] Fox, C.; Frakes, W.: The Quality Approach: Is It
Delivering? in Communications of the ACM, 40
(1997) 6, pp. 25-29.

[4] Iansiti, Marco; MacCormack, Alan: Developing
Products on Internet Time. In: HARVARD BUSI-
NESS REVIEW 75 (1997) 5, pp. 108-117.

[5] Lehman, Meir M.: Programs, Life Cycles, and Law
of Software Evolution. Proceedings of the IEEE,
Vol. 68, No. 9, 1980, pp. 1060-1076.

[6] Lehman, Meir M.: Feedback in the software evolu-
tion process. Information and Software Technology
38, 1996, pp. 681-686.

[7] Mellis, Werner: Software Quality Management in
Turbulent Times - Are there Alternatives to Process
oriented Software Quality Management? Accepted
for publication in: SOFTWARE QUALITY JOUR-
NAL

[8] Mellis, W., Herzwurm, G., Müller, U., Schlang,H.,
Schockert, S., Trittmann, R.: Concurrent Software
Development. Shaker, Aachen 2000

[9] Mintzberg, Henry: The Structuring of Organiza-
tions. A Synthesis of the Research. Prentice-Hall,
Englewood Cliffs/ N.J. 1979.

[10] Picot, Arnold; Reichwald, Ralf; Nippa, M.: Zur
Bedeutung der Entwicklungsaufgabe für die
Entwicklungszeit: Ansätze für die Entwick-
lungsgestaltung. In: ZEITSCHRIFT FÜR BE-
TRIEBSWIRTSCHAFT-Sonderheft 23: Zeitman-
agement in Forschung und Entwicklung (1998), pp.
112-137.

[11] Sanchez, Ron; Mahoney, Joseph T.: Modularity,
Flexibility and Knowledge Management in Product
and Organization Design. In: IEEE ENGINEERING
MANAGEMENT REVIEW 25 (1997) 4, pp. 50-61.

[12] Walz, Diane .B.; Elam, Joyce J.; Curtis, Bill: Inside
a Software Design Team: Knowledge Acquisition,
Sharing , and Integration. In: Communications of
the ACM 36 (1993) 10, pp. 63-77.


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	A Systematic Analysis of the Effect of Task Clarity on Software Development Design
	Werner Mellis
	Recommended Citation


	

	search: search


