
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2000 Proceedings European Conference on Information Systems
(ECIS)

2000

Modeling the Dialogue Aspects of an Information
System
M. Snoeck
K U Leuven, monique.snoeck@econ.kuleuven.ac.be

G. Dedene
K U Leuven, guido.dedene@econ.kuleuven.ac.be

Follow this and additional works at: http://aisel.aisnet.org/ecis2000

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Snoeck, M. and Dedene, G., "Modeling the Dialogue Aspects of an Information System" (2000). ECIS 2000 Proceedings. 7.
http://aisel.aisnet.org/ecis2000/7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301342942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2000%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000/7?utm_source=aisel.aisnet.org%2Fecis2000%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Modeling the dialogue aspects of an information system

M. Snoeck - G. Dedene
K.U.Leuven - Management Information Systems Group

Naamsestraat 69, 3000 Leuven, Belgium
email: {monique.snoeck, guido.dedene}@econ.kuleuven.ac.be

Abstract - In this paper we investigate techniques offered by
current object-oriented development methods for the
specification of the user-system dialogue aspect of a software
system. Current development methods do not give very
extensive guidelines on how to model this aspect and the
available techniques need some refinement and elaboration to fit
this particular task in the software specification process. The
paper first compares a number of approaches. The common
elements of these approaches are summarized and further
developed into one comprehensive set of techniques that
addresses the needs of functional requirements analysis.

I. INTRODUCTION

Current object-oriented development methods offer a
whole set of specification techniques for specifying the
various aspects of information systems. More specifically,
special attention is given to the static or structural aspects
(object-relationship diagram), the behavioral aspects (state-
charts) and the interaction aspects (sequence charts). Other
dimensions we have to consider are the business rules or
domain knowledge that are embedded in the information
system and the required user functionality. Current object-
oriented development methods spend a lot of attention to the
modeling of structural and behavioral aspects of the domain
with techniques such as object-relationship diagrams, state
charts and interaction diagrams. Much less attention is spent
to the modeling of user-system interaction. In addition the
techniques current methods offer, are not really sufficient.
For example, the specification of a conversation between
system and user is difficult to model only with statecharts and
object-relationship diagrams. Also sequence charts are not
completely adequate because they do not allow to represent
branching and iterations. UML proposes several techniques
that can be used to model system behavior. However, it is
not really clear how these techniques interact with each other
and how they can adequately be combined to model user-
system interaction. In addition, the techniques are either very
conceptual (and informal) or either very close to software
design. In this paper we investigate five current object-
oriented development methods and study the techniques they
propose for modeling system behavior, and more in particular
how these techniques can be used to model the dialogue part
of a system (section II). In section III we compare these
techniques, identify common elements and eventually, in
section IV, propose a theoretical framework of techniques
that range from conceptual requirements elicitation to
detailed specification for user-system interaction and indicate
how each technique can be used as a refinement of the more

conceptual technique. Section V gives a final conclusion and
outlines further research.

II. REVIEW OF CURRENT BEHAVIOR MODELING
TECHNIQUES

A. Modeling user functionality in UML

Use cases describe the functional requirements by
identifying actors and scenarios of system usage by these
actors. As such this technique is a valid candidate to model
the interaction between a user and the system. The technique
offers some possibilities for modularization by allowing use
cases to "include" and "extend" other use cases. The detailed
description of a use case mainly focuses on the main flow of
events and the possible alternative flows. In all methods
[1][6][9], use cases are mainly a support for system design:
they are used for finding objects and determining the systems
structure. The main problem with this technique is its
informal definition: there are no rigorous semantics for the
concepts of actor, use case, nor for the relationships
"includes" and "extends". Use cases are a good starting point
and useful for requirement elicitation, but we need another
technique for a more detailed analysis of the dialogue
components of a system.

Sequence charts are used to model interaction by means of
message passing between objects. Whereas use cases are
fairly conceptual, this technique can be characterized as a
more detailed design technique. It identifies essential parts of
object-oriented program code: the objects and the messages
they interchange. It is however possible to use sequence
charts at a higher conceptual level, for example to model the
interaction between a user and the system as a whole. The
main shortcoming of this technique is that it does not allow to
model alternative scenarios (branching), iterations, … and so
on. To model these, UML [2] proposes activity diagrams.
Activity diagrams are akin to Petri nets and focus on the ac-
tivities that are performed by objects. They allow to model
branching, iterations and parallel threads. By organizing the
activities into swimlanes, one can partition the responsibili-
ties for activities according to organizational units or objects.
Activity diagrams can also be used to model workflows. It is
however not clear how to link sequence charts to activity
diagrams: for example, do we need to model one sequence
chart for each alternative scenario that can be identified in the
activity diagram? Such questions remain largely unanswered
in UML [2] and in the associated methods [1][6][9].

B. Fusion

In Fusion [3], the system interface is defined by (among
others) identifying scenarios of usage. Such scenarios show
the flow of communication between (external) agents and the
system, and they are documented by means of timeline
diagrams. These diagrams are graphically equivalent to
sequence charts, but are used at a higher conceptual level:
lifelines can be associated to more abstract concepts such as
"agent " and "system" and the communication arrows identify
high level communication "units". The analysis phase being
not concerned with internal messaging between objects,
communication is defined in terms of system operations only.
System operations are defined as input events and their
associated effect. They are invoked by agents only.
Responses of the system to the agent are called output
messages.

The interface model is formed by developing lifecycle
expressions that generalize the scenarios of usage. Lifecycle
expressions are defined as regular expressions built using
system operations, output messages and sub-lifecycle
expressions and the operators sequence, choice, iteration and
interleaving. Each system operation is further defined in the
data dictionary by means of an operation schema. Fig. 1 is a
small example of such a lifecycle expression ([3], p. 53). In
this expression, alternatives are separated by a '+' sign,
sequence is indicated by a dot '.', interleaving by a double bar
'||' and optional elements are between square brackets. Names
of lifecycle expressions are written in small capitals, system
operations in lower case and output messages names are
preceded by a "#".

Life cycle ECOSTORAGE = (DELIVERY + COLLECTION)* || STATUS
DELIVERY = load_bay_empty .

enter_manifest.
(check_in_drum.#drum_identifier)*
end_check_in.

[#discrepancy_in_delivery].
#delivery_allocation.
[#drums_to_be_returned]

COLLECTION = …
STATUS = …

Fig. 1. Lifecycle expression for ECOstorage

C. Syntropy

Syntropy [4] makes a difference between the real-world
model (called essential model) and the software model.
According to Syntropy, events are fundamental elements of
software specification. As such they are one of the building
blocks of the essential model. In the software model,
interaction between external agents and the software system
can be described by means of event scenarios. Such
scenarios are documented in a tabular form. In this table,
there is one column for each agent. Consecutive rows denote
consecutive events. On each row the event is marked in the

column of each involved agent as a stimulus from the user to
the system (indicated by a question mark '?') or a response of
the system to the agent (indicated by an exclamation mark '!').
Each column of the table is an event scenario, which
describes the software system's overall behavior from the
perspective of a single agent. Note that in this table the
software system is not explicitly modeled. This kind of table
is more or less equivalent to a timeline diagram or sequence
chart, in that it only can document straight sequences of
events: alternatives, repetitions, and other structures cannot
be represented. Syntropy does not offer a technique that
allows to model the structure of interaction. In fact the
complete interaction is partitioned between the system
objects that collaborate to realize the scenario. Statecharts of
individual objects are used to generalize the scenarios.

D. OO-SSADM

Also OO-SSADM [8] is one of the few methods that make
an explicit separation between modeling the domain (called
entity-event model) and the required user functionality
(called external model). OO-SSADM defines a User function
as a composite of events and enquiries organized to support
the user in carrying out some task or procedure. JSP is
proposed as a technique for dialogue design. One JSP-
structure is identified for user input and one for system
responses. Using the JSP-technique, both structures can be
combined to a single structure that identifies the user-system
dialogue. OO-SSADM explicitly states that this JSP-structu-
re is not necessarily the best program structure. But it
remains of course a valid specification of the dialogue
structure. In addition, OO-SSADM also offers a framework
for event-driven interface design. This frameworks identifies
a number of template user interfaces for different types of
events (creation, deletion, modification). These can then be
combined into four mini-dialogue patterns. The main
characteristic of these dialogue patterns is their linear
structure: they have only one scenario and no branching or
looping.

E. The Hierarchical Use Case Model

The combination of use cases and sequence charts to model
user functionality is far from ideal: there is a significant gap
between the conceptual levels of both techniques. It is not
really obvious how to refine a use case into one or more
sequence charts. Even when the flow of events is described
in a structured way, e.g. by means of pseudocode, the
transition to a description of user-system interaction is not
straightforward. The Hierarchical Use Case Model proposed
in [7] is one attempt to close this gap. Fig. 2 summarizes this
approach.

Adding a technique of "episode" modeling between use cases
and sequence charts closes the gap. Use cases are refined by
specifying the process as an episode structure. Such a
structure is a combination of episodes using the operators
sequence, choice, iteration, exception and interrupt. Each

episode can in its turn be decomposed into a new episode
structure. The leaf nodes in this episode decomposition are
refined by means of sequence charts. Although it is not
explicitly defined in [7], we assume that it is the authors''
intent that such leaf-episodes have no branching or
repetitions, in other words, that they have a linear sequential
structure.

System A

Service S

X

Episode Z

A B

pre

post

Z

Use Case X

Episode A

Structure

Level

Environment

Level

Event

Level

Relates and gives

names to Actors, Use

Cases and Services.

Defines pre- and

Postconditions and

episode structure of each

Use Case.

Episodes can be

decomposed into new

episode structures.

Orders events by

sequencing and special

operations.

Service T

Fig. 1. Overview of the hierarchical use case model

III. COMPARISON

Table 1 summarizes the techniques used in the different
methods that were studied. Events are identified as the basic
building blocks in four methods: the behavior of a use cases
is described as a "flow of events" ([2], p.227-228), system
operations in Fusion are defined as input events and their
associated effect ([3], p.45), and in Syntropy and OO-
SSADM events are already identified during the domain
modeling phase and are then used as building blocks during
the external or software modeling phase.

It should however be noticed that only Syntropy and OO-
SSADM identify real-world events during the domain
modeling phase. It are these real-world events that are used
to express system behavior from a user's perspective. Also
Fusion thinks in this direction in that a system operation is
defined as an input event invoked by an agent. In UML and
in the HUM however, the events to which use cases and
sequence charts refer can both be real- world and
information-system events.

All methods also express the need for structuring the
behavior according to the basic operations of sequence,
choice (branching) and iteration. The need for identifying
parallel threads is accounted for in UML by means of
Activity diagrams, in Fusion by means of the interleaving
operator. In the other methods, parallelism is discussed as a
separate topic, but not necessarily related to the notion of
parallel threads in a dialogue. It is however a typical feature
of advanced user interfaces that users are allowed to perform
several tasks in parallel using a single software system.
Current windowing systems offer all necessary technological
support for achieving such parallelism. Hence, we believe
parallelism to be an essential feature in dialogue modeling.

Table 1. Comparison of behavioral specification techniques.

Conceptual level Behavior Structure Detailed design Basic building block

UML Use Cases Pseudocode, structured English or
Natural language

Sequence Chart
Activity diagram

Event

Fusion Usage scenario
Time line diagram

Life-cycle expression
Operators: sequence, choice,
repetition, interleaving

Operation model System Operation (input
event)
Output message

Syntropy Event scenarios _ Event (stimuli and
responses)

OO-
SSADM

User function standard mini-dialogues,
JSD-diagrams
operations: sequence, choice, repetition

_ Event
Enquiry

HUM Use Case Episode structure
Operators: sequence, choice,
repetition, exception, interrupt

Sequence chart message

IV. A THEORETICAL FRAMEWORK FOR USER-
SYSTEM INTERACTION MODELING

During the elicitation phase we need techniques that allow us
to identify all required user functions. A possible information
source is to look at business processes, refine these to the
level of elementary tasks (see Fig. 3). These tasks can then be
categorized as either completely manual, fully automated or
interactive. Both automated and interactive tasks will require
some user function in the software system. Such complex
user functions can be specified as use cases and refined to the
suitable granularity using the "includes" and "extends"
relationships.

In order to obtain a formal and unambiguous specification
of the behavioral aspect of a user function, each use case or
complex user function must be defined as a composition of
simple user functions. This composition must be defined
using sequence, choice, iteration and parallel composition.
Complex functions must be decomposed until a granularity of
"simple" user functions is obtained. Simple user functions
are characterized by the fact that they have a linear dialogue
without alternative scenarios, iterations or parallel threads.
Typically, such a simple function can be realized by one
window in a graphical user interface, or by means of
sequence of modal windows. The relationships "includes"
and "extends" can be formalized accordingly: the relationship
"includes" refers to a substructure, whereas an extension
refers to an optional structure, that is the choice between "do
nothing" and performing the use case. Finally, each simple
function is further documented by means of a finite set of
scenarios: one for the basic sequence and one for each
possible exception (see further).

Business
Process

Task Task Task

Subtask Subtask Subtask

Elementary
Task

Elementary
Task

Elementary
Task

Fig. 3. Business process refined to identify tasks

Both in OO-SSADM and in Syntropy, real-world events
are identified as basic components of the domain model or
real world model. Events are atomic units of action: they
represent things that happen in the world. Without events
nothing would happen: they are the way information and
objects come into existence (creating events), the way
information and objects are modified (modifying events) and
disappear from our universe of discourse (ending events).
Events are not objects. However, we might choose to record
the fact that an event has happened by recording the
occurrence of this event as an object. For example in a
banking environment, "withdraw money" is an event that
modifies the state an object "BANK ACCOUNT". We can keep
track of all withdrawals by defining "WITHDRAWAL " as an
additional object type. An event withdraw will from then on
have a double effect: it will modify the state of an account and
create a withdrawal. During the analysis stage, it would be
irrelevant to determine how both objects will be notified from
the occurrence of the withdrawal event. We therefore assume
(just as in Syntropy and in OO-SSADM) that events are
broadcasted.

The separation of real-world events from information-
system events allows a more user-oriented and task-oriented
view of information system design. Real-world events are
those events that occur in the real-world, even if there is no
information system around. Information-system events are
directly related to the presence of a computerized system.
They are designed to allow the external user to register the
occurrence of or invoke a real-world event. For example, the
use of an ATM-machine to withdraw money from one's
account will invoke the real-world event "withdraw" by
means of several information-system events such as "insert-
card", "enter PIN-code", "enter amount", and so on.

Once events have been identified in the domain model, the
whole domain model can be considered as one component,
which interface is the set of all events that allow to create,
modify and update the information contained in the domain
model. User functions are then nothing more than a way to
invoke these real-world events. The user function will
translate information system events such as mouse clicks and
keystroke actions into the invocation of one or more domain
model event.

The meta-model in Fig. 4 represents the components of a
specification and identifies the suitable modeling techniques
for each specification component. The following simplified
banking example shows how the proposed techniques are
used to model a complex user function. The (simplified)
domain model of the bank contains the object types
CUSTOMER and ACCOUNT related by a one-to-many
association: a customer holds zero to many accounts and an
account is hold by exactly one customer. Business events for
CUSTOMER are create_customer, modify_customer,
end_customer, and for ACCOUNT are open, deposit, withdraw,
close.

Elementary
TASK

Manual
TASK

Automated
TASK

Interactive
TASK

Complex User
FUNCTION

*

*
*

*

requires

includesextends

*

*

*

*
requires

modelled
with
 Use Cases

Simple
FUNCTION

Real-world
EVENT

*

*
 composed of

*

*
 invokes

Composition
modelled with
 JSP, regular
expressions, or
flow charts

Basic scenario and
exception scenarios
modelled with
sequence charts

Fig. 4. Meta-model for functionality requirements

The withdrawal of cash by means of an ATM is a complex
user function that will eventually invoke a withdraw event.
Fig. 5 Represents the behavioral structure of this function
according to the notations of the HUM. Fig. 6 represents the
same structure with a regular expression, such as in Fusion.
Notice how this definition uses a recursive definition of the
sub-expression SECOND_PASS. The recursive definition can
however be avoided by using the empty episode denoted by
'1', as shown in Fig. 7.

Use_ATM = Enter_card.(check_pin_code)1..5.Menu.
(View_balance.SECOND_PASS

+ withdraw_cash.SECOND_PASS

+ exit)

SECOND_PASS = Menu.
(View_balance.SECOND_PASS

+ (check_pin_code)1..5.withdraw_cash.SECOND_PASS

+ exit)

Fig. 6. Function structure of cash withdrawal with an
ATM specified with (recursive) regular expressions

Enter
Card

Menu

Check
Pin Code

1..5

Withdraw
Cash

View
Balance

Exit

Check
Pin Code

1..5

Menu

Withdraw
Cash

View
Balance

Exit

+

+

Fig. 5. Episode structure of cash withdrawal
with an ATM

Use_ATM = Enter_card.(check_pin_code)1..5.Menu.
(View_balance + withdraw_cash + 1)
.SECOND_PASS*
.exit

SECOND_PASS = Menu.
(View_balance + (check_pin_code)1..5.withdraw_cash + 1)

Fig. 7. Function structure without recursive definitions

As to be expected, the specification of behavioral structure
by means of flowcharts tends to be less structured than the
equivalent description by means of regular expressions.
Notice also how the formal specification of the dialogue
structure allows easily to identify reusable parts of the
dialogue.

Refinement of the dialogue aspects of each episode can be
done by using a high-level sequence chart. In such a
sequence chart, we include all external agents, the function
and the domain model. In such a diagram, we can make a
clear distinction between "information system events" and
"domain events". Events of the first type are those that cross
the information system's boundary. The latter are the events
generated by the function and broadcasted to the domain
objects. Fig. 8 shows a sequence diagram for the simple
function Withdraw_Cash. In this example, it is assumed that
the withdrawal is successful. A further refinement of simple
functions is the specification of all possible exceptions to the
basic linear sequence of events. This means that each
exception will identify an additional exit point in case some
action fails. In the given example, a possible exception is the
refusal of the withdrawal operation by the domain model
according to some business rule (e.g. insufficient balance).
The exception can be specified as an alternative scenario for
the basic scenario. In principle, each simple function will
have one basic scenario and any number of "exception
scenarios", each documented by means of a sequence chart.
The exception scenario for Withdraw_cash is given in Fig. 9.

The specification process given above was presented in a
top-down manner. Following the philosophy of the event-
driven design method of OO-SSADM, the same result can be
achieved by first identifying basic event calling functions and
basic enquiries. For the given domain, this means that a
simple function is defined for each of the six domain events.
View_balance, Search_customer and View-customer can be
identified as simple enquiries.

customer ATM -
machine

Withdraw
cash

domain
model

amount

withdraw(amount)

take (amount)

eject(amount)

System boundary

Fig. 8. Sequence chart for Withdraw_Cash

customer ATM -
machine

Withdraw
cash

domain
model

amount

withdraw

withdrawal refused (reason)

System boundary

refusal (reason)

Fig. 9. Exception scenario for Withdraw_Cash

These basic building blocks can then be reused to form
more complex dialogues. In the given example, View_ balance
and Withdraw_Cash are the simple functions that are reused in
the complex function Use_ATM. A service that allows to
withdraw money at the counter would reuse the same
building blocks and maybe additionally the View_ customer
function.

V. CONCLUSION

User-system dialogue modeling is not very much
elaborated in current object-oriented modeling methods. In
practice, the user dialogue is probably often directly designed
by means of prototyping. We believe however, that a more
systematic approach, independent of the eventual
implementation technology can improve the design of user-
system interaction.

Although the set of methods that was studied is far from
exhaustive, all investigated methods show a similar pattern.
In addition to the identification of events, some formal
specification method is required for establishing the dialogue
structure. Dialogue structure has to be decomposed until
simple dialogue components are defined that have a basic
linear event sequence. To this basic event sequence one can
then add the possible exceptions as alternative paths. As a
result of this, each simple function can be described by a
finite set of sequence charts: one for the basic scenario and
one for each possible exception. The identification of such
basic dialogue components is encouraging reuse. If real-
world events are identified as basic elements of a domain
model, one can build complex functions in a bottom-up way.
each domain event will give rise to the definition of one
simple function that allows to invoke this event. In addition
basic enquiries must be identified, typically at two per
domain object: one to view the list of objects in a domain
object class and one to view the details of a single object.
The simple functions that have been identified in this way can
then be composed to form more advanced user dialogues.

Notice that although the proposed techniques were
elaborated to model on-line dialogues, they can to some
extent be used to model off-line services as well. Further
research should assess the usability of the techniques in this
area.

Our fist concern will however be the mathematical
elaboration of the proposed techniques by means of process
algebra. In [10] it has been demonstrated that domain
modeling can successfully be formalized by means of a
process algebra similar to CSP [5]. It would be interesting to
elaborate this process algebra to allow it to formalize
functionality modeling techniques as well. In parallel a more
advanced practical evaluation of the techniques by means of
real-world examples is planned.

VI. REFERENCES

[1] Grady Booch, Object Oriented Analysis and Design with
Applications. Second Edition, Benjamin/Cummings,
Redwood City, CA, 1994.

[2] Grady Booch, James Rumbaugh, Ivar Jacobson, The unified
modeling language user guide, Addison Wesley, 1999

[3] Derek Coleman et al, Object-oriented development: The
FUSION method, Prentice Hall, 1994

[4] Steve Cook, John Daniels, Designing object systems:
object-oriented modeling with Syntropy, Prentice Hall,
1994

[5] C.A.R. Hoare, Communicating Sequential Processes,
Prentice-Hall International, Series in Computer Science,
1985

[6] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, Object-
Oriented Software Engineering, A use Case Driven
Approach, Addison-Wesley, 1992

[7] Björn Regnell, Michael Andersson, Johan Bergstrand, A
hierarchical use case model with graphical
representation, Proceedings of the IEEE international
symposium and workshop on engineering of computer-
based systems, March 1996

[8] Keith Robinson, Graham Berrisford, Object-oriented
SSADM, Prentice Hall, 1994

[9] Rumbaugh, J., Blaha M., Premerlani, W., Eddy, F.,
Lorensen, W., Object Oriented Modeling and Design,
Prentice Hall International, 1991

[10] M. Snoeck, G. Dedene, Existence Dependency: The key to
semantic integrity between structural and behavioural
aspects of object types, IEEE Transactions on Software
Engineering , Vol. 24, No. 24, April 1998, pp.233-251

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Modeling the Dialogue Aspects of an Information System
	M. Snoeck
	G. Dedene
	Recommended Citation

	Microsoft Word - Ecis.doc

	search: search

