
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2000 Proceedings European Conference on Information Systems
(ECIS)

2000

On Specifying Contract Negotiations
Hartmut Wedekind
University of Erlangen

Follow this and additional works at: http://aisel.aisnet.org/ecis2000

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Wedekind, Hartmut, "On Specifying Contract Negotiations" (2000). ECIS 2000 Proceedings. 45.
http://aisel.aisnet.org/ecis2000/45

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301342914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2000%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000/45?utm_source=aisel.aisnet.org%2Fecis2000%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1

Abstract -
eCommerce of the Business-to-Business (B2B) type requires

comprehensive contract negotiations depending entirely on a con-
tract schema, which must be developed in advance. Contract sche-
mas are modeled according to bill-of-materials. Undefined con-
tract parts are not allowed (Closed World Assumption). In the
focus of the discussions are implications, i.e. the contract parts
are not independent of one another. Negotiations are conducted
in question-answer and reasoning dialogs. A task-logic interpre-
tation of propositional logic due to Kolmogorov is introduced.
Contract schemas are specified by XML. It is suggested to imple-
ment contract negotiations on top of a modular workflow system.

1 Introduction: Contract and Negotation
Schemas

It is a main issue in the general framework of developing
electronic commerce (eCommerce) to support the forma-
tions of sales contracts. This holds in particular for a busi-
ness-to-business type (B2B) of contract with rather extensive
contract negotiations. Companies are the contracting parties
rather than private persons buying commodities on a cata-
logue basis (business-to-consumer, B2C). Three aspects are
brought into focus in a vast literature: First the communica-
tions among parties (buyer, seller, third parties like notaries,
auctioneers etc.) is outlined with all its technical implica-
tions. A second aspect is the contract and its schema as an
evidential, editable and structured document. The third, and
most difficult aspect pertains to contract negotiations and
their schemata. Negotiation is the way to reach the goal, the
contract. Contract negotiations are specifying procedures in
order to determine legal, engineering and commercial pa-
rameters. From this definition the difficulties of our topic is
apparent: "Specifying Contract Negotions" is a specifying
of specifying, i.e. a meta-specifying. A meta-language level
of conctracting requires two schemata: a contract schema,
form wich a negotiation schema is derived.

Some short terminological remarks are needed at this point:
A schema describes the universal aspects of an object and is
required to understand its instances (tokens, occurrences, in-
dividuals) describing singular (particular) aspects. The no-
tion of an object-language level (1. language level) and a
meta-language level (2. language level) is explained by an
example:

94051 is a zip_code

is a proposition on a object-language level.

"zip_code" is decimal-classificatory

is a proposition on a meta-language level. It is required in
the logical analysis of languages thatzip_codeis put in quo-
tations marks to indicate a schema as name and not a simple
name like 94051.

Decimal-classificatoryis a metapredicate, in general ex-
plained by a data model, i.e. a description of a decimal clas-
sification. Data models like the famous relational model are
always meta-models, distinct from object models, i.e. in our
case the postal zoning of a country. The naming 94051 in a
postal address is a specification, its decimal classification is
a meta-specification. Schemas like "zip_code" are some-
times called name space. Defined name spaces are very im-
portant in universal markup languages like XML.

2 Developing contract schemas

In the case of eCommerce a great number of contract sche-
mas must be developed, each one is the basis of a negotiation
schema, which in turn renders at the end a particular contract
as an instance. At the very beginning some assumptions are
made: Contracts are configured, i.e. they consists of defined
components called pieces of text (pt). Within the framework
of a contract schema everything is known in advance, noth-
ing is new, which would have to be constructed. In general
the term "Closed World Assumption" (CWA) is used for our
environment. It is a principle applied in many sciences to
facilitate the business of schematizing. What it means to
abandon CWA is discussed at the end of the section on ne-
gotations schemata.

The datatypes of pt’s – the components of a contract – re-
mained undefinied in this paper. pt’s may be composed by
connectives: Conjunction C (∧), Alternative (Exclusive Or)
A(∇) and Implication I (→). A pti is a schematized or syn-
tactical character string used in logic to express a form (gr.
schema =σχηµα). Hilbert, the famous mathematician, called
the characters "notifying characters" (Mitteilungszeichen) to
indicate that terms of an object level exist, but are not refer-
enced explicitly. Schematized or syntactical characters are
used for example, if p1, p2, …, pn are representing different
predicates on a meta-level without introducing specific
predicats like "green", "blue",…, "black" on an object level.

Arcs to the conjunction (C) and alternative (A) denote a part-
whole relation. pt1,… , ptn are subschemas. The unsymmet-
rical implication node reads as follows: If subschema pti is
selected, then select subschema ptj. Often pti and ptj are com-

On Specifying Contract Negotiations
Hartmut Wedekind

University Erlangen-Nürnberg
Informatik 6 (Database Systems)

Martensstraße 3, D-91058 Erlangen
Germany

2

ponents of an alternative node A. Then pti belongs to a
premise node Ap and ptj is a selection out of a conclusion
node Ac. The significance of connectives is best demonstrat-
ed by showing an illustrative example: A contract may con-
sist of a General Part (GP), specifying the parties, data, place
of jurisdiction etc., an Engineering Part (EP) containing a
schematized bill of material of a product type to be sold, and
a Commercial Part (CP) on prices, discounts, and supply
conditions etc..

The conjunctive node C0 in Fig. 2.2 is the name of a contract
schema to be exemplified. In analogy to XML where the term
"Document Type Definition (DTD)" is used, we coin the
term "Contract Type Definition" (CTD). Certainly, a CTD
may be represented in a XML specification.

Fig. 2.3 describes the General Part (GP). We assume that
only one variant C1 exists.

The Engineering Part (EP) is assumed to be more complex.
Mechanical gears are supposed to be the subject of a contract
schema.

Fig. 2.4 is a schematical bill of material (BOM) with variants.
A1 represents a mandatory variant (must variant). A decision
has to be made between a shift gear type and an automatic
gear type. A2 is an optional variant (may variant). An oil
pump type may be selected or not. Null represents no piece
of text at all. The condition requires that from an engineering
point of view shift gear types need an oil pump type. If an
automatic type is chosen, one is free to select an oil pump
type or not.

Within the engineering part only variants of a final assembly
are discussed in contract negotiations. There is in general a
"confidential attitude" as far as details are concerned. "Con-
tract relations are relations of confidence." Distrust ruins any
contract negotiations.

The Commercial Part (CP) is simpler than the Engineering
Part. We assume constant supply conditions and three price
options. It is not amazing that a huge literature in eCommerce
is tackling the problem of competive bidding with respect to
pricing. Contract negotiations are reduced to price setting
and bargaining, which is a very narrow approach.

C A I

∧ ∇ →

pt1 ptn pt1 ptn pti ptj

 Fig 2.1:Connectives to compose a contract
C = Conjunction, A = Alternative, I = Implikation

… …

CTD:

Co

GP EP CP

Fig. 2.2:General Structure of a Contract Schema

GP:
C1

pt1 pt2 pt3 pt4

pt1: buyer, pt2: seller, pt3: place of
jurisdiction, pt4: date. The colon ":"
reads "is notifying with respect to"

Fig. 2.3: General Part (GP)

EP:

C2

pt5 pt6 A 1 A2

pt7 pt8 pt9 Null

subject to the condition N1:
N1

I:pt7→pt9

pt7

pt5: case upper part, pt6: case lower part, A1: alternative within
the decision areagear type, pt7 = shift gear type, pt8 = automatic
gear type, A2: alternative within the decision areaoil pump type,
pt9 = oil pump type for forced circulation, Null: no oil pump type
The colon ":" reads "is notifying with respect to"

Fig. 2.4:Engineering Part (EP) with constraints

pt9

3

The described example looks toyish. Indeed, it lacks the high
complexity of practical cases. The purpose of the example
is the description of schema variants in a part-whole rela-
tionship. If there are mi variants for an alternative i and n
alternatives, then there are

schema variants, if constraints like in Fig. 2.4 are neglected.

Take m=6 (constant) and n=6 then there are V=66=46656
schema variants; one of these is the schema of a committed
contract selected in contract negotiations. Practical schemata
are much more complicated in particular with respect to nest-
ed constraints, reducing the cardinality V, but increasing the
complexity of contract negotiations drastically. A main func-
tion of computer supported contract negotiations is to guide
the contract parties through a "jungle" of conditions.

3 Negotiation Schema

3.1 The significance of a negotiation phase

Contract negotiations are the mutual work of parties on in-
gredients of a contract schema. A negotiation schema is gen-
erated from a contract schema by adding order relations:
"Negotiation_Schema = Contract_Schema + Order_Rela-
tions" is an easily remembered short version. In daily life
order relations are called agendas. Designer of agendas can
make only proposals. The final order is determined by the
parties. The term "dialog" is another word for the parties’
self-determination.

Form a generic point of view contract negotiations are work-
flows. Particularly, contract negotiations are procedures to
create documents. The high complexity of all aspects of a
general workflow [3] is out of scope. Three phases may be
distinguished [6]:

1. Initiation Phase

2. Negotiation Phase

3. Execution Phase

In the first phase the study of catalogues and the selection of
a representative of the other party (buyer or seller) is an im-
portant issue. It is not a trivial problem to find a competent
dialog partner within a structural organization on the other
side. In [2] the design and implementation of a generic se-
lection operation getAgent () is described in some detail.
However, the second phase is by far the most difficult one,
because schemas are subject to self-determination. The ne-
gotiation phase is important also with respect to the third
phase, because its result, the contract controls the execution.

3.2 An initial ordering

An order relation – denoted by a semicolon ’;’ – is in our
case an ordering of time (before or after, resp.) having the
properties "reflexive", "antisymmetrical" and "transitive".
The part-whole-relation describing the structure of a contract
schema is an order relation as well, with the same properties
mentioned above.

In our illustrative example it is straightforward to find an
initial ordering:

CTD: K0

R0: AT; TT; KT

AT: K1

R1: pt1; pt2; pt3

TT: K2

R2: pt5; pt6; A1; A2

KT: K3

R3: pt10; A3

CP:
C3

pt10 A3

pt11 pt12 pt13

pt10: supplyconditions,pt11: lowpriceconditions,

pt12: regular price conditions, pt13: high price

conditions.
The colon ":" reads "is notifying with respect to".

Fig. 2.5:Commercial Part (CP)

V mi
i 1=

n

∏=

• •

•

• • • •

• • • •

• • • •

• •

al
te

rn
at

iv
es 1

2

3

••
•
n-1

n

1 2 3 4 5 6

variations

Fig 2.6:Combinations of schema variants as paths
trough a network. Alternatives having a square
without a dot are optional

4

The General Part (GP) proceeds the Engineering Part (EP),
because the GP contains basics of contract law and its rami-
fications. If one fails in the GP, one should quit the negotia-
tions. The EP precedes the GP, because technical specifica-
tions are the foundation of commercial accounting.

The order relations are merely proposals. From a generalized
view the parties may change the order at any time (see section
3.5).

For teaching purposes – not to reflect practical complexity
– it is advantageous to describe the ordering by a well-known
structogram used in elementary programming. In Fig. 3.1 we
confine ourselves to the Engineering Part (EP)

3.3 Dialogs

The General Part (GP) in our example is particular simple,
in order to exhibit an easy contract editing in a question-
answer-dialog. One part (the buyer) asks, the other one (the
seller) answers. It is easy to imagine how a cursor is jumping
from one field to another. The question-answer-procedure is
highly efficient, but only applicable in simple cases.

Question-answer-dialogs, suitable to get informed about al-
ternatives, are distinct from reasoning (rational) dialogs.
These types of dialogs are required if constraints are met in
the contract schema using the full propositional logic (con-
junction,disjunction, implication, negation). If nested con-
straints are encountered, then a dialog monitor is definitely
needed to guide the parties through a "jungle". Reasoning
dialogs were designed and implemented within the frame-
work of the Dialogical Logic [4] and its pragmatic interpreta-
tion [1].

In Dialogical Logic a Proponent and an Opponent is intro-
duced. The Proponent (i.e. the seller) is an acting person,
who asserts something and gives reasons for a subject matter.

The opponent on the other hand (i.e. the buyer) may doubt
or agree. The roles of P and O may reverse.

In fig. 2.4 the constraint N1 was introduced. In propositional
logic it takes the form:

pt7 ≤ A1 → pt9 ≤ A2 ,

where ’≤’ is the sign of the part-whole-relation. In other
words: It pt7 in A1 is chosen, then pt9 in A2 is chosen.

In form of a table the dialog with respect to the above impli-
cation looks as follows:

A dialog with respect to A1 takes place

In step n-1 O agrees.

The dialogical sense of pt7 ≤ A1 → pt9 ≤ A2 is the
following: P is committed to assertpt9 ≤ A2, if O is asserting
(agreeing) pt7 ≤ A1. This implication is called constructive
(intuitionistic); it is distinct from the classical implication,
where a→ b is equivalent to¬ a ∨ b.

A constructive implication suggests in our case the order A1;
A2. It makes no sense to decide at first on A2 and to jeopar-
dize this decision when a component of A1 is selected. Logic
is the theory of riskless transitions (Lorenzen).

The dialog with respect to A1 in the table above may be
understood as a question-answer-dialog. O is asking for al-
ternatives and P answers. Generally reasoning dialogs are
interspersed by question-answer-dialogs. Notice that every
information about instances belonging to a schema are sub-
ject to a question answer-dialog.

3.4 Negotation Logic as a Task Logic

At the beginning the author would like to appease the reader.
There is no new logic called negotiation logic. We just go
back to an interpretation of logic due to the famous mathe-
matician A. Kolmogorov [11]. In 1932 Kolomogorov arose
the interest of logic experts by specifying a "task logic", i.e.
not a logic with propositions, but with problems or tasks as
basic elements. The implication "a→ b" means: Reduce the

solution of task b to a solution of task a1. The implication of
our example

pt5

pt6

pt7 pt8

pt9

A 1
+ –

Null

A2+ –

7

Fig. 3.1:Initial order as a structogram

step O P

1. Ass (pt7 ≤ A1 → pt9 ≤ A2)

2. Doubt (pt7 ≤ A1)

3. Ass (pt7 ≤ A1)

n - 1. Ass (pt7 ≤ A1)

n. Ass (pt9 ≤ A2)

5

pt7 ≤ A1 → pt9 ≤ A2

appears in a different light. "pt7 ≤ A1" is a problem to be
solved by negotiations prior to the problem "pt9 ≤ A2". Ko-
mogorov’s interpretation of an implication was the starting
point for Lorenzen [12] to develop his constructive logic.
Lorenzen did not agree with the undefinied term "task". In
our context, however, the term "task" is well defined; it is
the treatment of a piece of text by contract parties in a dialog.

We would like to show how nested implications in a contract
schema are built (fig.3.2).

In case of common premises (ai) it is simpler to introduce
the logical OR(∨): a1 ∨ a2 ∨ ... ∨ an → b. Common conclu-
sions (cj) lead to logical AND’s (∧): b → c1 ∧ c2 ∧ ... ∧ cm.
If an implication (→) is introduced in a positive task logic,
then conjunctions (∧) and disjunctions (∨) are straightfor-
ward. Thus a nested situation is described by simple means.
If a conjunction is available then task b in fig. 3.2 may be
looked upon as a task composed of subtasks: b b1, b2, ...
,bp. Thus we can write: b1∧ b2 ∧ ... ∧ bp → c. There are
well defined rules how to treat conjunctions and disjunca-
tions in a dialog. It is beyond the scope of this paper to show
the dialogical treatment of "jungles" like the one in fig. 3.2.

3.5 Classification of Dialogs

There are three broad classes of dialogs:

A) Question-Answer-Dialogs

B) Rhetorical Dialogs

c) Rational Dialogs

Question-Answer-Dialogs are not further classified in this
paper.

Very close but substantial different from Rational Dialogs
with a reasoning component are Rhetorical Dialogs. A dialog
is called rhetorical or persuasive (in an evil-minded sense)

if an agreement is reached by appealing – against one’s own
knowledge – to a naive prejudice of some person (Friedrich
Kambartel). A well-known example of a Rhetorical Dialog
is the following story: In a sales situation a farmer buys a
milking machine and gives away his last cow for payment.
A Rhetorical Dialog is performed in a simple minded sense,
if the persuading person has no knowledge either. Rational
Dialogs are non-persuasive.

From a technical point of view Rhetorical Dialogs were de-
signed and implemented very early. One landmark in the
development was the Issue Based Information System (IBIS)
at MCC by the end of the 80th [13]. It is a hypertext system
supporting rhetorical dialogs even in a real time environment
(rIBIS) [13]. IBIS systems may traced back to two historical
sources. Once to Horst Rittel (1970) with his idea to structure
dialogs in state-transition-diagrams and secondly to the leg-
endary Vannegar Bush (1945), the ”father” of hypermedia
systems. Not linear texts but rather hierarchically structured
texts (hypertext) support our associative thinking more ade-
quately. Hyptertext systems today are elements of every-day
life. IBIS has shown that it is an ideal basis to support dia-
logs. Every node in a directed hypertext graph is a dialog
step in a formal or natural language. A directed link between
two nodes represents a speech action. IBIS is confined to
assertions.

A Rhetorical Dialog may be formalized as follows (fig. 3.3).

Fig. 3.3 describes that a source node x asserts a proposition
A with respect to a node y. A may be arbitrarily complex. x
and y are variable names for nodes. If the nodes are persons
then x is called the author’s and y the addressee’s node. Fig.
3.3 represents the speech action: ”x asserts with respect to y
that A”. ”Assert” may be viewed as a three-place predicate:
Ass(x,y,A).

Opposed to a Rhetorical Dialog a Rational Dialog is speci-
fied by a five-place predicate (fig. 3.4).

In Reas(x,y,A,B,R) A is called conclusion, B the premise,
and R a class of rules. If documents (D) are explicitely in-
troduced,then a six-place predicate is given:
Reas(x,y,A,B,R,D).

1. If negation (¬) is available, then
 (a→ b) → (¬ b → ¬a)
 holds as well.

a1

a2

an

b

c1

c2

cm

a1 → b b → c1
a2 → b b→ c2

: :
an → b b→ cn
__________________ ________________

•
•
•

•
•
•

Fig. 3.2:Various premises (ai) and various

conclusions (cj) with respect to task b

x y

Ass(x, y, A)

Fig. 3.3: An element of an IBIS structure

A

A, B, R

x y

Reas (x, y, A, B, R)

Fig. 3.4: ”Reasoning” as an extension of ”asserting”

6

Most important in contract negotiations are rational dialogs,
although rhetorical ones can never be excluded. Rhetorical
dialogs are in general not recorded and therefore fugitive.
Advertisement is a monological category.

We procede now in classifying Rational Dialogs and its mon-
itors referring to Gethmann and his classificatory work [1].

1) Productive (progressive), horizontal dialogs

The described dialog is called productive, because it is start-
ed at the beginning without any specification of an instance.
The dialog procedes piece by piece progressively. The or-
dering (rule system) remains untouched. Thereby a horizon-
tal direction is taken.

2) Reductive (regressive), horizontal

One starts at the end, i.e. there are pattern of complete con-
tract schemata. Pieces of text are stepwise changed, if nec-
essary.

Productive and reductive dialogs are entirely different. A
productively working dialog monitor should be developed
seperately from a reductive one.

3) Productive (progressive), vertical

The opponent (buyer) is allowed in a productive dialog, to
attack the ordering. Thus the opponent may determine the
"agenda".

4) Reductive (regressive), vertical

Like under 3), however in a reductive mode. Type 3) and 4)
are leading to a new schema, because schemata are changed,
if the ordering is changed. Ordering relations are only un-
committed proposals.

All four dialog types may be extended, if unknown ingredi-
ents are allowed. Dialogs without the CWA assumption
should be dialog definite, i.e. there are definite rules guaran-
teeing a definite termination [4].

4 Implementation Issues

4.1 Implementing a Contract Schema

As mentioned in section 2 an arbitrary contract schema can
be formulated using the extensible markup language (XML).
The current paragraph sketches the structure of a possible
document type definition (DTD) thus setting up a grammar
for writing valid contract schemas. It is a general concept of
XML (and SGML) that a new markup language - in our case
for articulating general contract schemas - is created by de-
fining a DTD that itself is positioned on the next higher lan-
guage level. So the DTD to be developed in the following is
part of the meta-meta level.

The necessary elements of the desired DTD can be seen di-
rectly in fig. 2.1: the leaves of the schema trees are pieces of
text comprising arbitrary data, e.g. single clauses of a con-
tract. Furthermore it can be thought of a special null schema
for constructing optional alternatives as shown in fig. 2.4.

With regard to implication nodes it is necessary to add a
unique identifying attribute (ID) to both, pieces of text and
null schemas.

In the next step connectives like conjunctions, alternatives
and implications are to be implemented. The first ones are
very similar in structure: both contain at least two substruc-
tures which themselves can be pieces of text, conjunctions
or alternatives again. For alternatives also the existence of
one null schema is allowed (null schemas do not make sense
as members of conjunctions). The notation for specifying
these requirements in the DTD is a mixture of EBNF and
regular expressions. Finally the implication consists of one
premise and one conclusion both referring to a piece of text.
Thus they are modeled as IDREFs, i.e. as references to IDs
mandatory for each piece of text (see above).

After the definition of leaves and nodes of the schema tree
a contract schema representing the root of our tree is the
combination of at least one conjunction followed by an ar-
bitrary number of implications. So the DTD developed above
looks like this:

<!ELEMENT Piece_of_Text ANY>
<!ATTLIST Piece_of_Text

Name CDATA #IMPLIED
id ID #REQUIRED>

<!ELEMENT Null_schema EMPTY>
<!ATTLIST Null_schema

Name CDATA #IMPLIED
id ID #REQUIRED>

<!ELEMENT Alternative
((Piece_of_Text|Alternative|Conjunction|

Null_schema),(Piece_of_Text|
Alternative|Conjunction)+)>

<!ATTLIST Alternative
Name CDATA #IMPLIED>

<!ELEMENT Conjunction
((Piece_of_Text|Alternative|Conjunction),

(Piece_of_Text|Alternative|
Conjunction)+)>

<!ATTLIST Conjunction
Name CDATA #IMPLIED>

<!ELEMENT Implication EMPTY>
<!ATTLIST Implication

Name CDATA #IMPLIED
Premise IDREF #REQUIRED
Conclusion IDREF #REQUIRED>

<!ELEMENT Contract_schema
(Conjunction+,Implication*)>

<!ATTLIST Contract_schema
Name CDATA #IMPLIED>

Using this meta-meta level DTD a meta level contract sche-
ma can be instantiated obeying to the rules explained above.

7

The following example represents the XML encoding of the
contract schema developed in section 2 of this paper:

<?xml version='1.0'?>
<!DOCTYPE Contract_schema SYSTEM "ctd.dtd">
<Contract_schema Name="Contract_schema">

<Conjunction Name=" General_Part ">
<Piece_of_Text Name="buyer" id="pt1"/>
<Piece_of_Text Name="seller" id="pt2"/>
<Piece_of_Text

Name="place of jurisdiction"
id="pt3"/>

<Piece_of_Text Name="date" id="pt4"/>
</Conjunction>

<Conjunction Name=" Engineering_Part ">
<Piece_of_Text

Name="case upper part" id="pt5"/>
<Piece_of_Text

Name="case lower part" id="pt6"/>

<Alternative Name="gear type">
<Piece_of_Text

Name="shift gear type"
id="pt7"/>

<Piece_of_Text
Name="automatic gear type"
id="pt8"/>

</Alternative>

<Alternative Name="oil pump type">
<Null_schema id="n1"/>
<Piece_of_Text

Name="forced circulation"
id="pt9"/>

</Alternative>
</Conjunction>

<Conjunction Name=" Commercial_Part ">
<Piece_of_Text

Name="supply conditions" id="pt10"/>
<Alternative Name="pricing">

<Piece_of_Text
Name="low price conditions"
id="pt11"/>

<Piece_of_Text
Name="medium price conditions"
id="pt12"/>

<Piece_of_Text
Name="high price conditions"
id="pt13"/>

</Alternative>
</Conjunction>

<Implication
Premise="pt7"
Conclusion="pt9"/>

</Contract_schema>

The single parts of the contract schema are emphasized for
better orientation. The distinction between the structure of
the contract on the one hand and the implication(s) on the
other can be seen clearly. Obviously implications can only
be defined after the definition of the pieces of text they refer
to. The implication in the example schema above indicates
that if the piece of text called ’pt7’ is chosen, also ’pt9’ has
to be included into the contract schema.

The contract schema formulated in XML in turn can be used
as the basis of a contract that is located one language level
below that of the schema. For that the XML document above
has to be transformed into a DTD to be used as grammar for
another markup language. It is not sure if this can be achieved
using the extensible stylesheet language (XSL) that offers
possibility to transform XML document trees. Anyway the
transformation can be performed by an application program
making use of the DOM API for accessing XML documents.
But this process is out of the scope of this publication.

4.2 A sketch of Implementing Contract
Negotiations

Non-routine contract negotiations are in general an intricate,
sometimes tough business. Implications and Kolmogorov’s
interpretation give rise to look upon contract negotiations as
a very particular type of workflow. If this is accepted, then
an impessive gate opens into a big arsenal of well-conceived
implementation aids.

Workflow-Management-Systems try to span spheres of con-
trol over arbitrary complex working processes. Dataflow,
controlflow, assignment of people and application software
to processes, archiving, etc. [3] are just a few aspects to spec-
ify a schematized division of labor. Workflow Systems are
represented by complex networks with many attributes.

Opponent Proponent

applications:

• business rules
• bill of material
• job shop scheduling
• inventory

 :

applications:

• business rules
• bill of material
• job shop scheduling
• inventory
 :

Fig. 4.1: Contract Negotiations as Workflow

= Controlflow = Dataflow,

8

Fig. 4.1 shows the rather simple version of an negotiation
workflow.

As in all workflows, control and dataflow are separate. To
fulfill a task in general a support of various application mod-
ules is needed.

At this time it is too early to go into more details and to
present an archtiecture of a dedicated negotation workflow.
However, on top of a aspect-modular system like MOBILE
[3] the implementation is an achievable task. Modular de-
composition pays off.

Conclusion
Although eCommerce may be considered as a young disci-
pline two generations are distinguishable. The first genera-
tion is described by independent contract ingredients. Ques-
tion-answer-dialogs suffice to conduct the negotiations. The
independence may be achieved by factoring out restrictive
implications. For every product a separate contract schema
is provided which may result in myriads of schemas. The
decision which product to select is out of system. In this
paper we presented a system of the second generation with
compact conditional schemas providing more selection sup-
port for the contract parties.

Acknowledgement
The author would like to thank Wolfgang Hümmer for his
support in particular for his help regarding the XML speci-
fication.

References

[1] Gethmann, C. F.: Zur formalen Pragmatik der
Normenbegründung. In: Mittelstraß, J. (Hrsg.):
Methodenprobleme der Wissenschaften vom ge-
sellschaftlichen Handeln, Suhrkamp Taschenbuch
Wissenschaften, Frankfurt, 1979, S. 46-76.

[2] Jablonski, S., Schlundt, M., Wedekind, H.: Con-
cepts and Implementation of Computer Supported
Structural Organizations (to be published).

[3] Jablonski, D., Bussler, C.: Workflow Management.
Modeling, Concepts, Architecture and Implemen-
tation. International Thompson Publishing, Bonn,
1996.

[4] Lorenzen, P.: Constructive Philosophy. The Uni-
versity of Massachusetts Press, Amherst, 1987.

[5] Milosovic, Z., Bond, A.: Electronic Commerce on
the Internet. What is still missing? (http://
www.isoc.org/HMP/PAPER/096/html/096.html).

[6] Merz, M.: Electronic Commerce. Marktmodelle,
Anwendungen und Technologien, dpunkt verlag,
1999.

[7] Merz, M., Tu, T., Lamersdorf, W.: Electronic
Commerce, Technologische und organisatorische
Grundlagen. In: Informatik Spektrum, Band 22,
Heft 5, Oktober 1999, S 328-343.

[8] Merz, M., e.a.: Supporting Electronic Commerce
Transactions with Contracting Services. In: Inter-
nat. Journal of Cooperative Information. World
Scientific Publishing Company, 1998.

[9] Tolkersdorf, R.: XML und darauf basierende
Standards. Die neue Auszeichnungssprache des
Web In: Informatik Spektrum, Band 22, Heft 6,
Dezember 1999, S. 407-421.

[10] Wedekind, H.: Konstruktionserklären und Kon-
struktionsverstehen. In: Zeitschrift für wirtschaft-
liche Fertigung (ZwF), Band 84, Heft 11, 1989,
S. 623-629.

[11] Kolmogorov, A.: Zur Deutung der intuitionistischen
Logik. In: Mathematische Zeitschrift, Jahrgang 35,
Heft 8, 1932, S. 58-65.

[12] Lorenzen, P.: Einführung in die operative Logik
und Mathematik, Springer Verlag, 2. Auflage, 1969,
S. 48 ff.

[13] Conklin, J. und Begeman, M.: gIBIS: A Hypertext
Tool for Explanatory Policy Discussion, in: Proc.
on CSCW’88, Portland, Oregon, Sept. 88, S. 140-
152.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	On Specifying Contract Negotiations
	Hartmut Wedekind
	Recommended Citation

	epistomolÉ

	search: search

