
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2005 Proceedings Americas Conference on Information Systems
(AMCIS)

2005

Practical Complexity in Adapting Object Oriented
Approach of Systems Analysis and Design
Mohammad A. Rob
University of Houston - Clear Lake, rob@cl.uh.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2005

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2005 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Rob, Mohammad A., "Practical Complexity in Adapting Object Oriented Approach of Systems Analysis and Design" (2005). AMCIS
2005 Proceedings. 507.
http://aisel.aisnet.org/amcis2005/507

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301342887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2005%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005?utm_source=aisel.aisnet.org%2Famcis2005%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2005%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2005%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005?utm_source=aisel.aisnet.org%2Famcis2005%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005/507?utm_source=aisel.aisnet.org%2Famcis2005%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Rob Practical Complexity of Object-Oriented Approach

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA, August 11th-14th 2005

Practical Complexity in Adapting Object-Oriented
Approach of Systems Analysis and Design

Mohammad A. Rob
School of Business

University of Houston-Clear Lake
rob@cl.uh.edu

ABSTRACT

Recently, there has been a surge of interest in adapting object-oriented (OO) concepts, UML, and Unified Process of system
development in the Systems Analysis and Design texts. However, there is a question of how to best fit these concepts with
the existing coherent discussion of structured approach. This paper addresses some of the intricacies of OO concepts such as
complexity of diagrams and models, weak links between phases, and lack of support for designing system components. We
would like to recommend that there should be a separate text for the OO methodology and it should not present various OO
models according to the phases of the traditional structured approach, rather it should focus on the evolution of the models
leading to the design of system components. Furthermore, there should be a standard set of models for the OO methodology
as well as a clear definition of steps as an analyst moves from one set of models to the next.

Keywords

Systems development life cycle, SDLC, systems analysis and design, structured development, object-oriented design, OO
analysis, complexity.

INTRODUCTION

Systems Development Life Cycle (SDLC) outlines the necessary processes that include some phases and activities to
successfully develop an information system. Almost all texts used for the Systems Analysis and Design (SAD) course
typically discuss and elaborate a structured approach of systems development commonly known as Waterfall model (Dennis
and Wixom, 2000, Hoffer, et al., 2000; Kendall and Kendall, 2001; Shelly, et al., 2003; Satzinger, et al., 2004; Whitten, et al.,
2003). These texts also organize their chapters sequentially according to the phases (planning-analysis-design-
implementation) and activities of the SDLC as followed in the Waterfall model. In recent years, there has been a rush of
including Object-Oriented (OO) approach of systems development in the SAD texts. Some texts adopt OO models and
techniques in various chapters in a comparative manner along with the structured approach (Satzinger, et al., 2004; Whitten,
et al., 2003), while others include them at the end of the texts as an introduction to a new methodology (Dennis and Wixom,
2000; Shelly, et al., 2003). Some authors even came up with an OO version of their SAD texts (Dennis et al., 2002; George,
et al., 2004). There is a dilemma of how to best fit the object-oriented topics with the existing coherent discussion of
structured approach. The question is whether the OO methodology should be included along with the traditional approach in
the same text or they should be addressed separately. This paper tries to find some answers to this question by addressing
some of the intricacies of OO methodology that are prohibiting authors as well as practitioners to adopt this methodology as
the primary approach of systems analysis and design. First, we will provide a brief overview of the OO concepts and the
Unified Process of systems development as compared to the traditional approach. Then we put forward several reasoning for
not accepting OO methodology as the latest and greatest method of systems development. Next we provide a brief
perspective to the reader regarding the approaches of teaching systems analysis and design in the Software Engineering
program as compared to the MIS program. Finally, we conclude with some specific recommendations.

RESEARCH BACKGROUND

In a recent study, conducted in three consecutive semesters (Fall, 2002 - Fall, 2003), graduate students in a traditional SAD
course were asked to write a paper on a topic related to the activities of the systems analysis and design but that are not
discussed in detail in the course. The majority of the students wrote on topics related to the object-oriented approach of

 3075

mailto:rob@cl.uh.edu

Rob Practical Complexity of Object-Oriented Approach

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA, August 11th-14th 2005

systems analysis and design. According to studies by Hardgrave and Douglas (1998), more and more Information Systems
departments are teaching OO topics in their curricula. Employers are also looking for analysts with knowledge on object-
oriented analysis and design (Hotjobs, 2004; Monster, 2004). Thus object-oriented methodology cannot be ignored in
teaching Systems Analysis and Design.

TRADITIONAL VS. OBJECT-ORIENTED APPROACH TO SYSTEMS DEVELOPMENT

A systems development project goes through a sequence of some fundamental phases such as planning, analysis, design, and
implementation. Each of these phases can be divided into a series of steps or activities that rely on some models and
techniques to produce required deliverables. Even though all projects cycle through some common phases or activities, but
how they are approached by the systems development group can be different – the project team might move through the
phases or steps logically, consecutively, incrementally, or iteratively (Dennis, et al., 2002; Satzinger, et al., 2004).

The Traditional Approach

The most common approach to system development is a structured methodology based on Waterfall model. It adopts a
formal step-by-step approach to the SDLC phases and activities – the activities of one phase must be completed before
moving to the next phase. The structured approach looks at a system from a top-down view. At the center of this approach is
the process model, which depicts the business processes of a system, and the primary model that presents the processes is the
data-flow diagram (DFD). Various levels of DFD are developed to understand the details of business processes. The DFDs
and their associated data dictionary contain information about the systems components (inputs, outputs, processes, and data
storage) that need to be designed and ultimately built. The structured approach has been around for many years and almost all
SAD texts describe this model in detail – the sections and chapters of these texts logically follow the phases and activities of
SDLC (Dennis and Wixom, 2000, Hoffer, et al., 2000; Kendall and Kendall, 2001; Satzinger, et al., 2004; Whitten, et al.,
2003; Shelly et al., 2003).

The Object-Oriented Approach

Another approach to systems development that is widely discussed in recent years is the object-oriented (OO) methodology
(Booch, et al., 1999; Brown, 2002; Dennis et al., 2002; Schach, 2004). It is developed by the software engineering
professionals who deal with large and complex systems in domains such as aerospace and process control (Schach, 2004).
Business system is only one domain that is typically addressed in the SAD texts.

The object-oriented approach views a system as a bottom-up approach to systems development. To start with, it describes the
system through a set of business processes it performs as well the object classes that these processes deal with. It uses a set of
diagrams or models to represent various views and functionality of a system which are commonly known as the Unified
Modeling Language or UML. When these models are used along with a particular method of systems development, the OO
approach became known as the Unified Process (Schach, 2004). Unified Process follows an iterative and incremental
approach to systems development. The systems development life cycle is viewed as consisting of several increments or
phases: inception, elaboration, construction, and transition (Booch, et al., 1999; Dennis, et al., 2002; Schach, 2004). In each
increment or phase, the developers move through the activities of gathering requirements, analyzing the requirements,
designing the system, implementing the design, and testing the system. Thus the Unified approach is a two dimensional
model as compared to the one-dimensional traditional waterfall model. See Figure 1. As shown, the phases of the traditional
systems development approach do not match with those of the Unified Process; but in each increment, all phases of the
SDLC (requirements, analysis, design, implementation, and testing) are visited until the developers satisfy the requirements.
However, in each increment, activities of one phase predominate over the others – causing the systems development effort to
move from the inception to elaboration, from elaboration to construction, and from construction to transition.

It is important to note that many authors use the terms object-oriented approach and UML interchangeably, as UML covers
universally accepted OO models, notations, and steps to develop an information system. UML focuses on three architectural
views of a system: functional, static, and dynamic. The functional view describes the external behavior of the system from
the perspective of the user. Use cases and use-case diagrams are used to depict the functional view. The static view is
described in terms of attributes, methods, classes, relationships, and messages. Class-responsibility-collaboration (CRC)
cards, class diagrams, and object diagrams are used to portray the static view. The dynamic view is represented by sequence
diagrams, collaboration diagrams, and statecharts. All diagrams are refined iteratively until the requirements of a proposed
information system are fully understood, and the design is laid out. Finally, the information system is developed through a
combination of traditional relational database and object-oriented programming language. Due to factors such as a large
number of models, the relationships of these models in various viewpoints of the systems architecture, a new approach to

 3076

Rob Practical Complexity of Object-Oriented Approach

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA, August 11th-14th 2005

system development, and a large vocabulary of UML, most authors present only a subset of UML knowledge in their texts,
and it is presented as the object-oriented methodology.

DILEMMA BETWEEN THE TWO METHODOLOGIES

There is a common misunderstanding that the object-oriented approach is the latest methodology of systems analysis and
design. The OO methodology promises many benefits, but excessive hype has lead to unrealistic expectations among
executives and managers (Shah, et al., 2004). Even software developers often miss the subtle but profound differences
between the OO approach and the classic systems development approach. Thus, it is not clear whether we all should move
towards the OO methodology of systems development or not. According to a report by Sircar et al. (2001), IT managers
revealed that 39% of organizations have adopted OO methodology in some form; nevertheless, only 5% of IT projects are
developed in OO methodologies. According to Schach (2004) the Unified Processes are intended for use in developing large
and complex information systems; however, handling many intricacies of the UML might be far more complex than the
development of the most information systems in business.

There have been some studies on the use of OO methodology as compared to structured approach; although most of these
were performed in the classroom setting. Johnson (2002) provides an excellent overview of 12 empirical studies that report
advantages and disadvantages of using OO methodology as compared to structured methodology. These studies include
subjects from both classroom setting as well as IT professional arena. Most studies show that OO methodology is difficult to
learn than conventional methodology; however, it produces increased quality and productivity. Sim and Wright (2002)
performed a study on a group of students regarding their understanding of basic OO concepts in three categories, namely the
structural, behavioral, and modeling. They concluded that the students can grasp the structural concepts such as objects and
classes easily as compared to dynamic aspects of objects such as operations, message passing, object models, object
interaction diagrams, and so on.

It is also important to mention that most of the studies mentioned above were performed only on the learning difficulty of OO
concepts and models used for the analysis and design activities – not for the complete life cycle activities, such as the
designing and implementing the system components. These studies were also limited to a set of concepts and models – not all
the concepts and models used in the OO paradigm were addressed. Most authors suggest that more research is necessary on
the subject, especially in industrial settings with real-life projects rather than semester-long student projects. The following
discussions focus on some of the intricacies of adapting the OO methodology as compared to the structured approach in a
systems development project.

Figure 1. Iterative and Incremental Model of the Unified Process

 3077

Rob Practical Complexity of Object-Oriented Approach

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA, August 11th-14th 2005

Figure 2. Relationship between the various models of the OO approach

Complexity of Diagrams and Models

There has been some discussion of UML complexity in the literature. Grossman et al. (2004) performed a web-based survey
to understand how UML users perceive the overall technology to fit with their understanding and knowledge. They
concluded that there is still much to be learned about UML to perceive its benefit and users still do not have enough of a
feeling of how this technology fits with the tasks they are trying to perform. Erickson and Siau (2004) tried to explain the
user perception of UML complexity by considering individual OO diagrams and their associated constructs (such as classes,
objects, methods, roles, etc.) that constitute a diagram. Through a measure of relative importance for nine OO models, they
have concluded that Object Diagram is the most complex and Class Diagram is the least complex. The survey results also
conclude that users consider four OO diagrams (Class, Use Case, Sequence, and Statechart) as most important, indicating that
practitioners use OO methodology mainly for the analysis and design stages of a system development effort and not for the
coding and testing stages. In this paper, we try to present the UML complexity by considering the relationship between the
various OO models used in various stages of systems development, and we present this in comparison to that of the models
used in the structured approach.

There are mainly three diagrams or models used in the structured methodology: a data- flow diagram, an entity-relationship
diagram, and a structure chart. The relationships between these models are very simple; and the latter two diagrams are
developed from the data-flow diagram. For example, the entity-relationship diagram is developed from the data stores used in
the data-flow diagram, while the program modules and data-flows are used to develop the structure chart. In the OO
methodology, there are about thirteen diagrams and models to deal with, namely: essential use case description, use case
scenarios, use case diagram, collaboration diagram, CRC cards, classes, class diagram, object diagram, sequence diagram,
CRUD matrix, state chart diagram, package diagram, use scenarios, real use cases, and windows navigation diagrams
(Dennis et al., 2002). Whitten et al. (2003) consider nine diagrams including activity diagrams, component diagrams, and
deployment diagrams. Understanding the evolution of these models and their relationships with each other is important for
the successful design and development of an information system.

In Figure 2, we have organized these models in a workflow diagram to demonstrate the complexity of the evolution of
various diagrams in the OO analysis and design. The gray smoothed rectangles represent the essential diagrams or models
drawn in the analysis phase and the black smoothed rectangles represent those in the design phase. It is important to note how
one model is developed from several models and descriptions. Dennis et al. (2002) contend in their object-oriented SAD text
that because of the complexity of the Unified and Open approaches, they have followed a minimalist style of presenting a
generic approach of OO analysis and design. On top of the complexity of the models, one has to consider the iterative nature
of the OO methodology – that is, each of these models and descriptions change as more and more requirements are gathered.
Each different style of model needs a different style of thinking for someone to create one or to work with it (Brown, 2002).

 3078

Rob Practical Complexity of Object-Oriented Approach

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA, August 11th-14th 2005

Figure 3. Evolution of the design of system components in the
structured approach

Relationship between the Phases

While the structured approach provides clear-cut steps in moving between the phases from the beginning to the end of the
systems development life cycle, the OO approach does not; or the steps are so complex and time-consuming that most
authors fail to clarify them. The iterative and incremental nature of object-oriented approach refers to continuous testing and
refinement of the system throughout the project lifecycle. The same UML diagramming techniques are used throughout all
phases of the SDLC, although some diagrams are more important in some phases than the others. Some authors discuss a
model in the analysis phase, while others discuss it in the design phase. For example, Dennis et al. (2002) discuss about
collaboration diagram and statechart diagram in the analysis phase while they are in the design phase according to Satginger
et al. (2004). According to Dennis et al., (2002), the system design models in the OO perspective simply refine the system
analysis models by adding system environment or solution domain details to them and refining the problem domain
information already contained in the analysis models. As the developers move through the SDLC activities, the diagrams
gradually become more detailed, blurring the separation between the analysis and design phases. Understanding the
continuous analysis of a problem through Use Cases is fine, but when it comes to design, it becomes very complex – many
models to deal with (Schach, 2004). What we need is a clear understanding of how the models evolve; rather than dividing
them into analysis and design phases.

Most authors who present OO methodology in SAD texts spend considerable amount of time discussing various models to
analyze user requirements, but often present poor discussion of design phase or provide poor correlation between the models
used in the analysis phase and those used in the design phase. Dennis et al. (2002) mention that ‘packages’ are based on use
case diagram, class diagram, sequence diagram, collaboration diagram, activity diagram, and so on, but they do not provide
any step-by-step process of evolving the packages from these diagrams – making OO methodology an overwhelming effort
to understand not only by the analysts but also by the authors. Brown (2002) just mentions that a package or subsystem is a
group of classes, subsystems and the like, that have a well-defined small interface to the rest of the system and are treated as a
unit. Understanding the requirements of a system through OO approach seems to be clear and logical, but when it comes to
designing a system, the OO methodology seems to be confusing. Satizinger and Jackson (2003), who introduced OO
concepts in their SAD text (Satizinger et al., 2004), contend that fundamental OO concepts and techniques are addressed in
systems development texts; however, a glaring weakness is the lack of useful guidelines and strategies of taking the high
level OO requirements models into implementable architecture and detailed design.

Designing System Components

The ultimate goal of any systems development approach is to effectively design the system components such as inputs,
outputs, program modules, and database, so that programmers can develop those components. Figure 3 illustrates how the
design of the system components evolves from the DFDs in the structured approach. Once the data flow diagrams are
completed, a data dictionary is developed; and based on the DFDs and data dictionary, design of various system components
evolves logically. This is illustrated in Figure 4 through the dissection of a data-flow diagram. As shown, data stores are
moved out of the DFD, and the data storage is designed using the entity-relation diagram. Similarly, the DFD processes and
internal data flows are used to design program modules using structure charts. The input/output screens and reports are
developed from the definitions of input/output data flows.

 3079

Rob Practical Complexity of Object-Oriented Approach

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA, August 11th-14th 2005

Figure 4. Evolution of the design of system components from a Data Flow Diagram in the case of the
structured approach

It is not easy to draw diagrams like Figures 3 and 4 for the OO design. The only information that is easily extractable is the
data storage definition from the class diagram; although a class diagram contributes to both program design and data storage
design. The input/output information is extracted from many sequence diagrams and class definitions (Satzinger, et al.,
2004). There is no equivalent of structure chart for program design in the OO methodology. The closest equivalent is the
package diagram, which is developed from class diagrams, sequence diagrams, statechart diagrams, and collaboration
diagrams. There is no single repository like data dictionary in case of structured approach, which holds all data for input,
output, data storage, and process description. However, the three-layer approach of a system during the design phase
containing a view layer, a domain layer, and a data access layer is more appropriate for today’s business system as well as the
development environment.

We have tried to develop a diagram like Figure 3 in case of the OO methodology that depicts the steps required in designing
the system components. This is illustrated in Figure 5, which is developed from Figure 2; however, emphasis is placed on the
models especially the design models. Without getting into the details of any model, one can just understand the complexity of
designing program and user-interface components by looking at the number of arrows originating from various models and
leading to these components.

Pitfalls in the Implementation

Moving from the design to the implementation phase in the OO approach further complicates the matter. Why should we talk
about the class model at the beginning of the analysis phase and then discuss about the relational database in the
implementation phase; why not implement the system in an object-oriented database? According to Satginger et al. (2002),
the object-oriented approach views an information system as a collection of interacting objects that work together to
accomplish tasks - there are no process or programs; there are no data entities or files. This statement seems to be
contradicting when authors discuss about the relational database in the design phase and continues that in the implementation
phase. Use cases and sequence diagrams are very useful in understanding events triggered by external agents through user

 3080

Rob Practical Complexity of Object-Oriented Approach

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA, August 11th-14th 2005

interfaces. They provide an understanding of the user interface as well as the program codes of a system – leading to the
implementation of these components using already known object-oriented languages.

The depiction of data for a business system through a class diagram sometimes seems to be more of educational than
realistic. In the object-oriented text, Dennis et al. (2002, p.195) wrote, “During analysis, classes refer to the people, places,
events, and things, about which the system will capture information. Later, during design and implementation, classes can
refer to implementation-specific artifacts like windows, forms, and other objects used to build the system.” The first sentence
refers to data typically in a database and second sentence refers to user interface. Thus, the statements provide confusion as to
whether the class diagram is for the user interface, or the database, or both. Development of the design classes (user interface,
application domain, and database) from the analysis classes is not clear in many texts. The class diagram also contains
methods an individual object can perform; however, it is only applicable to the application domain. Many authors fail to
clarify this fact. The object diagram depicts interaction between individual objects, which is only applicable to the application
class, not in the data class if data are stored in rows and columns.

Furthermore, in the OO methodology, new classes are added to the business or domain-related class diagram for user-
interface, other system networks, and communication links. However, most authors only elaborate the user-interface class,
which is well understood by programmers, as it is part of the development environment. Defining buttons, text boxes, radio
buttons, as well as events triggered by these controls is a knowledge gathered in a programming course – repeating this
discussion in a SAD text not only increases the volume but also looses sight of the business domain to be modeled.
Furthermore, the OO approach goes into considerable detail of how a program should be developed. It is important to have a
description of the business process as well as the associated programs, but how it should be implemented can be left to the
programmers.

Comparison between the two Approaches

According to Dennis et al. (2002), UML is nothing more than a notation – it does not dictate any specific approach to
developing information systems. Even though it is unlikely, it is possible to develop an information system using a traditional
approach, such as structured systems development or information engineering, and to document the analysis and design using

Figure 5. Evolution of systems design components from the analysis and design models in case of the OO approach

 3081

Rob Practical Complexity of Object-Oriented Approach

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA, August 11th-14th 2005

the UML. This reflects the intricacies of using true OO methodology in developing an information system. Table 1
summarizes some advantages and disadvantages of traditional and OO approaches to systems development.

Structured Approach Object-Oriented Approach

Logical steps of SDLC: Analysis, Design, and
Implementation

Repeating all phases of SDLC during each
iteration

Few models to deal with Many models to deal with
There are clear-cut documentation at the end of
each phase

There are no documents per see; all information is
contained within the model descriptions

Focuses mainly on the business aspects of a
system and deals with other components such as
user interface, network architecture, processing
architecture separately

Starts with the business aspects of a system but
deals with other components such as user interface,
network architecture, processing architecture
together as the analyst moves from the
requirements models to design models

A small and consistent vocabulary to follow
through the life cycle

A large and changing vocabulary during various
phases of the life cycle

Process models are the focus of understanding
user requirements

Use cases are the focus of understanding user
requirements

Easy to from analysis models to design models Design models depend on many analysis models

Easy to extract design information for systems
components such as user-interface, application
programs, and database or files

Very complex to extract design information for
systems components

Business logic of a process is described by the
process description using structured English,
decision tables, and decision trees

Business logic of a process is described by use
case scenario, use case description, interaction
diagram, and activity diagram

Does not dictate any model for the development
environment

Three-layer approach to systems design is closely
analogous to a development environment

Identification of input and output to the system
is simple and they are extracted from the
input/output data-flows in the data-flow diagram

Input and output information are scattered in many
sequence diagrams as input/output messages.
Separate classes describe the data

All data necessary for designing and developing
a system is found in a single repository called
data dictionary

There is no single repository for data; they are
scattered with class definitions and use case
descriptions

Development of programs through subroutines
and functions are left to the programmers at the
implementation phase

Development of programs is conceived at the
requirements phase through defining classes,
methods, and messages, and continues through the
design phase

Detailed programming knowledge is not
necessary for successful analysis and design

Detailed programming knowledge is necessary for
successful analysis and design

Appropriate for developing documents and then
start programming; hence programming can be
outsourced

UML iterative approach requires continuous
development and testing; hence programming can
not be outsourced

Easy to manage systems development project,
as tasks are defined in phases, through output
documents, and especially the hardest part -
programming, which is defined through
program modules in a top-down fashion

Not easy to manage systems development project
as models require continuous revisiting, and the
hardest part which is programming that depends on
packages - are complex; thus task duration is hard
to quantify

Table 1. Comparison Between the two Approaches of Systems Development

 3082

Rob Practical Complexity of Object-Oriented Approach

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA, August 11th-14th 2005

DILEMMA BETWEEN THE SAD AND SOFTWARE ENGINEERING TEXTS

Software Engineering (or Software Design) is a text typically used in an introductory course in the Software Engineering
program (Budgen, 2003; Pressman, 2000; Sommerville, 2000). The topics covered in this course are subsequently elaborated
in courses such as requirement engineering, software engineering processes, and verification and validation. Thus there are
separate texts for each of these courses. This defines the vigorousness necessary for the software engineering processes in
operation- or mission-critical systems. Typically, there is only one Systems Analysis and Design course taught in an MIS
program and also recommended by some MIS curricular models (Davis, et al., 2002; Longenecker, et al., 1999). Only the
Software Engineering text can be compared with the Systems Analysis and Design text. According to Schach (2004), “the
Unified Process is intended for use in developing large, complex information systems. In order to be able to handle the many
intricacies of such information systems, the Unified Process is itself large. It would be hard for an instructor to cover every
aspect of the Unified process in a single course.” Incorporating OO approach within the traditional approach in the same text
further complicates the subject matter and confuses the reader.

CONCLUSION

We have discussed some of the intricacies of the object-oriented concepts and the Unified Process of systems development
methodology as compared to the structured approach. In the structured approach, there are only three models to deal with,
while in the OO approach there are about thirteen models, and these models evolve as an analyst moves from analysis to
design. UML defines a large set of diagramming techniques, but most SAD texts focus on a smaller set of most commonly
used techniques due to its complexity. In the era of object-oriented programming, object-oriented modeling is desirable, but
what we are lacking is a clear definition of steps as an analyst moves from the activities of analysis to design and from design
to implementation. There are so many diagrams for each business function, that in all probability the analysts and
programmers will so get bogged down with diagramming, that they will fail to see the implementation of all the diagrams.

In the structured approach, design of system components such as input, output, program modules, files and database evolve
logically from the DFDs, while in the OO approach there are many models to deal with and most authors fail to clarify the
steps of designing the systems components. As the ultimate goal of a systems analysis and design methodology is to design
the system components, there should be clear definitions of how to extract required information from the various OO models
that can lead to the designing of the system components.

Furthermore, the structural methodology and Unified Process are two completely different paradigms of systems
development methodology. The phases of the traditional approach do not match with those of the Unified process. Thus
overwhelming a student with two different approaches and with a large number of models may not serve the purpose of
acquiring the full concept of OO methodology; rather it might have an adverse effect with a conclusion that OO methodology
is complex and convoluted. Furthermore, mixing up the structured methodology and the OO methodology in a single text not
only confuses the students but the authors as well.

In conclusion, we would like to recommend that if we are to teach the object-oriented approach, we should have a separate
text for it and it should not present various OO models according to the phases of the traditional structured approach, rather it
should focus on the evolution of the models leading to the design of system components. Furthermore, there should be a
standard set of models for the OO methodology as well as a clear definition of steps as an analyst moves from one set of
models to the next.

REFERENCES

1. Booch, G, Jacobson, I. and Rumbaugh, J. (1999), The Unified Modeling Language User Guide, Addison-Wesley,
Reading, MA.

2. Brown, D. (2002), An Introduction to Object-Oriented Analysis: Objects and UML in Plain English, John Wiley &
sons, New York.

3. Budgen, D, (2003), Software Design, Second Edition, Addison Wesley, New York.
4. Davis, G.B., Feinstein, D., Gorgone, J.T., Longenecker, Jr., H. E., & Valacich, J.S. (2002), IS 2002: An Update of

the Information Systems Model Curriculum, Proceedings of the Sixteenth Annual Conference of the International
Academy for Information Management, New Orleans, LA, pp. 76-82.

5. Dennis, A. and Wixom, B. H. (2000), Systems Analysis and Design, John Wiley & sons, New York.

 3083

Rob Practical Complexity of Object-Oriented Approach

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA, August 11th-14th 2005

6. Dennis, A., Wixom, B. H. and Tegarden, D. (2002), Systems Analysis and Design: An Object-Oriented Approach,
John Wiley & sons, New York.

7. Erickson, J. and Siau, K. (2004), “Theoretical and Practical Complexity of Unified Modeling Language: Delphi
Study and metrics Analysis,” Proceedings of the Twenty-Fifth International Conference on Information Systems.

8. George, J. F., Dinesh, B., Valacich, J. S. and Hoffer, J. A. (2004), Object-Oriented System Analysis and Design,
Prentice Hall, Upper Saddle River, NJ.

9. Grossman, M., McCarthy, R. V. and Aronson, J. E. (2004), “The Unified Modeling Language: An inquiry into
current practices and user perceptions,” Proceedings of the Americas Conference on Information Systems, New
York.

10. Hardgrave and Douglas (1998), “Trends in Information Systems Curricula: Object-Oriented Topics,” Americas
Conference on Information Systems.

11. Hoffer, J. A., George, J. F. and Valacich, J. S. (2000). Modern Systems Analysis & Design. Prentice Hall, Upper
Saddle River, NJ.

12. Hotjobs (2004), Yahoo! Hotjobs, http://hotjobs.yahoo.com/, accessed on July 15, 2004.
13. Johnson, R. A. (2002) “Object-Oriented Analysis and Design – What Does the Research Say?”Journal of Computer

Information Systems, pp. 11–15
14. Kendall, K. and Kendall, J. (2001). Systems Analysis and Design, 5th Edition. Prentice Hall, Upper Saddle River, NJ.
15. Longenecker, Jr., H. E., Feinstein, D. L., Haigood, B., and Landry, J. P. (1999), On Updating the IS.97 Model

Curriculum for Undergraduate Programs of Information Systems, Journal of Information Systems Education, (10:2),
pp. 5-7.

16. Monster (2004), Monster Job Search, http://www.monster.com/, Accessed on June 15, 2004.
17. Pressman, R (2000), Software Engineering: A Practitioner's Approach, Fifth Edition, McGraw Hill, New York.
18. Satzinger, J. W. and Jackson, R. B. (2003), Making the Transition from OO Analysis to OO Design with the Unified

Process, Communications of the Association for Information Systems, Volume 12, pp. 659-683.
19. Satzinger, J. W., Jackson, R. B., and Burd, S. D. (2004), Systems Analysis and Design in a Changing World, Third

Edition, Course Technology, Boston, Massachusetts.
20. Schach, S. R. (2004), Introduction to Object-Oriented Analysis and Design with UML and the Unified Process,

Irwin- McGraw Hill, New York.
21. Shah, V., Sivitanides, M and, Martin, R. (2004), Pitfalls of Object-Oriented Development,

http://www.westga.edu/~bquest/1997/object.html, Accessed on June 30, 2004.
22. Shelly, G. B, Cashman, T. J. and Rosenblatt, H. J. (2003), Systems Analysis and Design, Fifth Edition, Course

Technology, Boston, Massachusetts.
23. Sircar, S., Nerur, S.P., and Mahapatra, R. (2001), Revolution or Evolution? A Comparison of Object-Oriented and

Structured Systems Development Methods, MIS Quarterly, Vol. 25, No. 4, pp. 457-471.
24. Sommerville, I. (2000), Software Engineering, 6th Edition, Addison Wesley, New York.
25. Sim, E. R. and Wright, E. (2002), The Difficulties of Learning Object-Oriented Analysis and Design: An

Exploratory Study, Journal of Computer Information Systems, Winter 2001-2002, pp. 95-99.
26. Whitten, J. L., Bentley, L. D. and Dittman, K. C. (2003), Systems Analysis and Design Methods, Sixth Edition,

McGraw Hill, New York.

 3084

http://hotjobs.yahoo.com/
http://www.monster.com/
http://www.westga.edu/~bquest/1997/object.html

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2005

	Practical Complexity in Adapting Object Oriented Approach of Systems Analysis and Design
	Mohammad A. Rob
	Recommended Citation

	tmp.1236909373.pdf.DA5Az

