
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2005 Proceedings Americas Conference on Information Systems
(AMCIS)

2005

Understanding Manager and Developer
Perceptions of the Relative Advantage,
Compatibility, and Complexity of Function Points
and Source Lines of Code
Steven Sheetz
Virginia Tech, sheetz@vt.edu

Linda Wallace
Virginia Tech, wallacel@vt.edu

David Henderson
Virginia Tech, davidlhenderson@vt.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2005

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2005 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Sheetz, Steven; Wallace, Linda; and Henderson, David, "Understanding Manager and Developer Perceptions of the Relative
Advantage, Compatibility, and Complexity of Function Points and Source Lines of Code" (2005). AMCIS 2005 Proceedings. 384.
http://aisel.aisnet.org/amcis2005/384

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301342851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2005%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005?utm_source=aisel.aisnet.org%2Famcis2005%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2005%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2005%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005?utm_source=aisel.aisnet.org%2Famcis2005%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005/384?utm_source=aisel.aisnet.org%2Famcis2005%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Sheetz et al. Developer and Manager Perceptions of FP and SLOC

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

Understanding Manager and Developer Perceptions of the
Relative Advantage, Compatibility, and Complexity of

Function Points and Source Lines of Code

Steven Sheetz
Virginia Tech
sheetz@vt.edu

David Henderson
Virginia Tech

davidlhenderson@vt.edu

Linda Wallace
Virginia Tech

wallacel@vt.edu

ABSTRACT

Software measures are recommended for the effective management of software development projects. Innovation diffusion
theory (IDT) provides perspective for understanding managers’ and software developers’ perceptions of the relative
advantage, complexity, and compatibility of software measures. This paper describes the results of a survey in which
software developers and managers identified a software measure and then answered IDT-based questions about the measure.
Two of the most commonly identified measures were source lines of code (SLOC) and function points (FP). Overall,
participants indicated that FP have greater relative advantage, compatibility, and complexity than SLOC. Developers
indicated that FP have greater relative advantage, compatibility, and complexity than SLOC. Managers, however, did not
perceive a significantly greater relative advantage and compatibility for FP over SLOC, but did perceive FP to be more
complex than SLOC.

Keywords

Software Measures, Function Points, SLOC, Practitioners, Innovation Diffusion, Survey

INTRODUCTION

A software measure, or metric, is any tool that provides a quantitative indication of some attribute of software such as size,
complexity or quality. Measures provide insight that enables project managers or software developers to improve the
development process, or the software itself. Function points (FP) and source lines of code (SLOC) represent the two most
common software measures for estimating software size and monitoring programmer productivity (Fenton & Neil, 1999;
Heiat & Heiat, 1997; Kemerer, 1993).

Researchers have often encouraged practitioners to use FP to achieve improvements in software development processes. Yet,
practitioners still commonly use SLOC (Fenton & Neil, 1999). This study evaluates practitioner perceptions of FP and
SLOC along the innovation diffusion theory (IDT) dimensions of relative advantage, compatibility, and complexity to
understand why SLOC continue to be used extensively.

Hall and Fenton (1997) describe a “troublesome gap” between developer and manager perceptions of software measures. If
developers fail to perceive the advantages of software measures, they may not accept them (Fenton & Neil, 1999). Similarly,
poor decisions can result if managers fail to understand a software measure or developers’ perceptions of the measure. Thus,
this study attempts to understand whether a gap in perception exists between developers and managers regarding SLOC and
FP.

This paper is organized as follows: Section II provides a synthesis of prior research on FP and SLOC and suggests how IDT
could explain the adoption of either measure, Section III discusses the research methodology, Section IV discusses the
results, Section V provides a discussion of the results and implications for software development practice and Section VI
offers concluding remarks.

 3017

mailto:sheetz@vt.edu
mailto:davidlhenderson@vt.edu
mailto:wallacel@vt.edu

Sheetz et al. Developer and Manager Perceptions of FP and SLOC

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

BACKGROUND

Function Points (FP) and Source Lines of Code (SLOC)

FP and SLOC represent the two most commonly used software sizing and productivity monitoring software measures
(Fenton & Neil, 1999). FP are designed to measure system size by quantifying the amount of functionality provided to the
user in terms of the number of inputs, outputs, and files (Albrecht & Gaffney, 1983; Kemerer, 1993; Orr & Reeves, 2000).
SLOC is a classic and simple software measure used to measure the amount of code in a program. FP and SLOC constitute
competing substitutes for estimating software size and for monitoring programmer productivity (Kemerer, 1987; Ray, 1993).
Although prior academic research maintains that FP are superior for estimating software size and for monitoring programmer
productivity, SLOC are still commonly used (Fenton & Neil, 1999).

Prior Research on Perceptions of Software Measures

Although prior research has discussed the advantages and disadvantages of FP and SLOC, few researchers have examined
practitioner perceptions of software measures. Hall and Fenton (1997) examined software developer and project manager
perceptions of software measurement programs, without investigating specific measures. The authors found that managers
were generally more positive about using measures than developers. This study digs deeper than the Hall and Fenton (1997)
study by examining practitioners’ perceptions of two competing software sizing and productivity monitoring measures— FP
and SLOC— using an IDT-grounded framework.

Innovation Diffusion Theory and the Desirable Properties of Software Measures

Rogers (1983) defines an innovation as any product or process which is perceived to be new by a potential adopter. A
software measure constitutes an innovation for many developers and managers. Without the use of software measures,
managers must control the complexity of the software development process “by the seat of their pants”. Software measures
allow managers to introduce a new level of rigor into the software development process. The replacement of haphazard
techniques that are congruent with the culture of software developers is necessary to mitigate software development cost and
schedule overruns. Furthermore, given the purported advantages of FP over SLOC, practitioners should perceive FP as an
innovation.

IDT states that several factors affect the adoption of an innovation: relative advantage, compatibility, complexity, trialability,
and visibility. Research has determined that the first three factors are the most important in terms of explaining the adoption
of many innovations. Rather than predicting the adoption of software measures, we apply these constructs as a framework to
understand the perceptions of practitioners regarding FP and SLOC. Thus, issues of volitional control of the adoption of the
measure are not relevant to the current study. However, the IDT constructs provide a valid framework for understanding
practitioner perceptions of FP and SLOC.

In the software measurement literature, researchers have proposed various properties that software measures should possess.
Henderson-Sellers (1996) provides a useful summary of the desirable properties of software measures. These desirable
properties of software measures have been mapped into the IDT constructs as shown in Table 1.

Relative advantage is the perceived net value of an innovation. The more the perceived benefits exceed the perceived costs,
the more likely the innovation will be adopted. In the context of FP and SLOC, relative advantage is the ability of the
software measure to provide more accurate size estimates and monitor programmer productivity.

The literature suggests that FP are more applicable throughout the entire life cycle than SLOC. FP can be used continuously
throughout the entire systems development life cycle (SDLC), whereas SLOC can only be calculated during the coding phase
(Low & Jeffrey, 1990; Jones, 1991). Not only can FP be estimated early in the life cycle, they can also be recalculated as
development continues (Fenton & Pfleeger, 1996).

Research also suggests that FP are more normative than SLOC. FP employs a normative standard for calculation that obtains
FP estimates through a formalized set of procedures. FP are supported and endorsed by an independent standards body, the
International Function Point User Group (IFPUG). On the contrary, SLOC lacks a normative, standardized counting process
(Armour, 2004; DeMarco, 1982; Low & Jeffrey, 1990).

Prior literature also suggests that FP are more predictive than SLOC. FP are superior to SLOC for software size estimation
purposes because they provide managers with accurate a-priori estimates of software size (Low & Jeffrey, 1990).

The literature suggests that FP are more prescriptive than SLOC (Fenton, 1996). For example, FP can be used to identify
scope creep by repeating estimates at major milestones in the development process. Similarly, FP are a better productivity

 3018

Sheetz et al. Developer and Manager Perceptions of FP and SLOC

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

monitoring tool because FP, unlike SLOC, can be compared across languages. Thus, managers can determine if a tool,
language or environment is more productive when compared with others (Albrecht & Gaffney, 1983; Low & Jeffrey, 1990;
Ray, 1993). By identifying unproductive elements of the software development process and monitoring scope creep, FP
allow managers to better diagnose problems and suggest solutions.

Software measures must also be sensitive to changes in the software to provide the necessary feedback to adjust processes.
As the size of the software increases through additional requirements, SLOC and FP will also increase. Thus, SLOC and FP
should both be sensitive to changes in the software.

Desirable Properties of
Software Measures

Definition

Relative Advantage
 Life Cycle Applicability The degree to which the measure can be applied throughout the SDLC.
 Normativeness The degree to which there is a standard, typical, or normal range of

“acceptable” values for the measure.
 Predictiveness The ability of the software measure to estimate an important attribute

to be realized in the future.
 Prescriptiveness The ability of the software measure to not only diagnose problems but

suggest solutions.
 Sensitivity The degree to which the measure is sensitive to changes in the

attribute(s) measured.
 Timeliness The degree to which the measure provides feedback in time to affect

the outcome.
 Validity The degree to which the software measure assesses the attributes it

purports to measure. The degree to which it has been empirically tested
and supported.

Compatibility
 Data Availability The degree to which the data required to calculate the measure are

readily available given the products and processes currently used.
 Language Independence The degree to which computation of the measure does not depend on

the programming language used.
Complexity

 Automation The degree to which the collection of data for the measure and the
measure’s calculation and interpretation are computerized.

 Calculation Ease The degree to which the value of the measure is easy to calculate.
 Intuitiveness The degree to which the measure’s behavior conforms to intuition.
 Understandability The degree to which the measure is easy to understand. The degree to

which the measure is free of mental effort.
Table 1: Constructs associated with relative advantage, compatibility, and complexity of software measures

Timeliness is also an important property of a software measure if the measurements provided are to be used to guide projects.
SLOC, however, it is not timely because it cannot be calculated until the coding phase (Dolado, 1997; Fenton & Pfleeger,
1996; Kemerer, 1992; Moser, Henderson-Sellers, Misic, 1999). FP are substantively more timely than SLOC because they
can be computed earlier in the SDLC than SLOC.

Validity is often mentioned as a necessary property for successful measures (Henderson-Sellers, 1996). FP have been
criticized as unreliable because they depend on subjective estimates rather than objective data (Mahmood, Pettingell,
Shaskevich, 1996). Although SLOC represents an objective measure because it is calculated by the compiler, estimating
SLOC before the coding phase requires expert judgment. (Matson, Barret, Mellichamp, 1994). Hence, its reliability and
validity as an estimate of software size is dependent on the experience of the analyst.

 3019

Sheetz et al. Developer and Manager Perceptions of FP and SLOC

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

In sum, the literature suggests that FP exhibit greater life cycle applicability, normativeness, predictiveness, prescriptiveness,
and timeliness than SLOC. Both measures appear to exhibit sensitivity to changes, and both have validation issues. Overall,
however, the literature indicates that FP have a relative advantage over SLOC.

Compatibility represents the degree to which an innovation is perceived as consistent with existing values, past experiences,
and current needs. Compatibility is important for adoption for two reasons. First, the more an innovation intersects with
existing values and beliefs, the more likely it will be adopted. Second, the more an innovation fits with existing practices, the
fewer the startup difficulties and conversion costs involved in adoption.

The literature suggests that the data required to calculate SLOC are more readily available than the data required to calculate
FP. FP measures must be extracted from design documents; SLOC can be easily calculated from any programming
environment that contains code (Moser et al., 1999).

FP are considered more programming language independent than SLOC (Albrecht & Gaffney, 1983; Low & Jeffrey, 1990).
SLOC essentially penalizes higher-level languages; programmers who code in higher-level languages appear less productive
than programmers who code in lower-level languages (Jones, 1991).

Overall, the literature suggests that FP are more programming language independent than SLOC, yet the data required to
calculate SLOC are more readily available than the data required to calculate FP. Thus, no firm conclusions can be drawn
regarding the compatibility construct from our analysis of previous research.

Complexity represents the degree to which an innovation is difficult to understand and use. Less complex innovations are
easier to understand, are easier to implement and less frustrating to use; thus, all else being equal, the lower the perceived
complexity, the more likely the innovation will be adopted.

FP are more difficult to automate and more complex to calculate than SLOC. SLOC can be easily calculated and do not
require subjective counting procedures (Fenton & Neil, 1999). The procedures for counting FP are labor-intensive, require
expertise and experience, and do not lend themselves to automatic data collection (Heiat & Heiat, 1997; Kemerer, 1993;
Moser et al.., 1999; Tate & Verner, 1991). SLOC are also more intuitive than FP. Unlike FP, SLOC can be easily
visualized; for example, developers and managers alike can easily visualize 1000 lines of code. FP, on the other hand, are
more difficult to visualize (Fenton & Pfleeger, 1996).

Given that SLOC can be more easily calculated than FP, that the calculation of FP cannot be easily automated, and that
SLOC are more intuitive than FP, the literature suggests that SLOC are less complex than FP.

RESEARCH METHODOLOGY

Instrument Development and Validation

In the first stages of the research project, the authors examined the literature to identify the desirable properties of software
measures. The desirable properties defined by the existing literature are presented in Table 1.

A survey instrument was developed that included items for each desirable property. The participants addressed the items
using a 5-point likert scale ranging from strongly disagree to strongly agree. These items were integrated into a
comprehensive list and changes were made until agreement was reached on the wording and meaning of each item. The
items were then randomly placed into a document and 20 professors were asked to group similar items together. The goal of
this step was to provide an initial check into the face validity of the categories and item measures. Any items not placed with
the others in their category by at least 70% of the respondents were candidates for revision or deletion.

In the next phase, demographic items were added to the survey. The survey was pre-tested with 15 individuals who had
experience with software measures and changes were made to the survey as a result of their feedback. When completing the
survey, respondents were asked to identify software measures with which they were familiar. From the list they created, they
were asked to select one measure and describe how the measure should be used. Subjects were then asked to assess the
measure by responding to the items developed from the desirable properties on a scale ranging from strongly disagree to
strongly agree.

Data collection involved three groups of subjects beginning in late 2003 and ending in summer 2004. The first group
consisted of members of the computer software measurement Usenet group. An e-mail was posted to the group asking them
for assistance in completing a web-based survey. The second source was individuals who are members of the information
systems special interest group of the project management institute (PMI-ISSIG). The members of this group were sent an e-
mail from the ISSIG coordinator asking them to participate in the web-based survey. Additional participants were obtained

 3020

Sheetz et al. Developer and Manager Perceptions of FP and SLOC

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

from members of a software measures user group at a large consulting company, yielding a total of 184 responses to the
survey. Of the 184 responses, 70 subjects selected FP or SLOC. Therefore, the analysis presented in this paper is limited to
these 70 responses.

RESULTS

Seventy of the participants who completed the survey identified either FP or SLOC; of these 70 participants, 28 were
developers and 42 were managers. To investigate developer and manager perceptions of FP and SLOC, several analyses were
conducted. First, the perceptions of the developers and managers for FP and SLOC for the constructs of relative advantage,
compatibility, and complexity were compared across all participants. Second, IDT constructs and associated desirable
properties measures were used to compare developers’ perceptions of FP to SLOC, and to compare managers’ perceptions of
FP and SLOC. Third, perceptions of developers and managers were compared for FP and SLOC. All comparisons used
independent sample t-tests.

The average respondent was 44 years old with 19 years in the software industry and had used software measures for 5.4
years. Developers and managers had about the same amount of experience and were similar in age.

Scale reliabilities were calculated to evaluate how well the items developed for each desirable property measured that
property. The resulting scale reliabilities are presented in Table 2. Most of the scales attained minimum acceptable levels of
scale reliability of .7 or above (Nunnally, 1978).

Desirable Property Cronbach’s
Alpha

of
Items

Relative Advantage
 Life Cycle Applicability .706 4
 Normativeness .786 3
 Validity .701 4
 Predictiveness Na 1
 Timeliness Na 1
 Prescriptiveness .859 4
 Sensitivity Na 1
Relative Advantage .891 18

Compatibility
 Data Availability .482 3
 Language Independence .877 3
Compatibility .699 6

Complexity
 Automatable .722 4
 Calculation Ease .751 3
 Intuitiveness Na 1
 Understandability .641 2
Complexity .804 10

 na – Not Applicable due to one item measure.

Table 2: Desirable Properties Scale Reliabilities.

The statistically significant comparisons of the means for the groups indicate that, overall, participants perceived FP to have
greater relative advantage, compatibility, and complexity than SLOC. Results for software developers mirrored those of all

 3021

Sheetz et al. Developer and Manager Perceptions of FP and SLOC

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

participants; managers, however, did not perceive a significant difference on the relative advantage and compatibility
constructs between FP and SLOC. Table 3 shows the associated means and p-values for the relative advantage, compatibility
and complexity constructs.

Innovation Diffusion Construct All Participants
means, p-value

Relative Advantage FP = 3.69
 SLOC = 3.28, p=.002***

Compatibility FP = 3.65
 SLOC = 3.22, p=.015**

Complexity* FP = 2.93
 SLOC = 3.75, p=.000***
Developers
means, p-value

Managers
Means, p-value

Relative Advantage FP = 3.79
SLOC = 3.15, p=.001***

FP = 3.61
SLOC = 3.33, p=.145

Compatibility FP = 3.83
SLOC = 3.36, p=.055*

FP = 3.49
SLOC = 3.12, p=.166

Complexity* FP = 2.90
SLOC = 3.76, p=.000***

FP = 2.95
SLOC = 3.75, p=.000***

 * As the means for complexity increases, it indicates that the measure is decreasing in complexity

 *** p < .01, ** p < .05, * p < .10

Table 3: Differences in Relative Advantage, Compatibility, and Complexity for all Participants, Developers, and Managers.

Developer and Manager Perceptions of FP and SLOC

Table 4 illustrates developer and manager perceptions of FP and SLOC.

Developers indicated that FP were significantly better than SLOC for all desirable properties of the relative advantage
construct except sensitivity. This reveals that developers view FP as more applicable across the SDLC, have more normative
standards, are better for predicting success, are more prescriptive, and provide more timely information than SLOC.
Although managers and developers differed on several of the properties associated with relative advantage, they both agreed
that FP are more valid than SLOC.

We also compared perceptions of desirable properties between managers and developers for FP and SLOC for the relative
advantage construct (see column 3 of Table 4). There were no significant differences for any of the properties for SLOC,
suggesting that both groups have similar views of the relative advantage of SLOC. Developers and managers differed on
some of the properties for FP; developers believed more strongly than managers that FP are predictive and applicable across
the life cycle. Managers believed more strongly than developers that FP are sensitive to changes in the software.

In terms of the compatibility construct, both developers and managers indicated that FP are more programming language
independent than SLOC. Managers indicated that the data required for SLOC calculations are more readily available than the
data required for FP calculations. Comparing the perceptions between managers and developers for FP and SLOC for the
compatibility construct shows that developers believed more strongly than managers that FP are language independent.

In terms of complexity, developers and managers agreed that SLOC are easer to understand, easier to calculate and easier to
automate than FP. Although managers indicated that SLOC behaves more according to intuition than FP, developers
indicated that SLOC and FP are equally intuitive. Comparing perceptions between managers and developers for FP and
SLOC for the complexity construct indicates that developers believed more strongly than managers that FP are intuitive.

 3022

Sheetz et al. Developer and Manager Perceptions of FP and SLOC

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

IDT Construct
 Desirable property Developer Manager

FP
SLOC

Relative Advantage
 Life Cycle Applicability FP: 4.19

SLOC: 3.54,
 p = .002 ***

FP: 3.83
SLOC: 3.12,
 p = .165

p = .038 **
p = .200

 Normativeness FP: 3.79
SLOC: 3.00,
 p = .006 ***

FP: 3.71
SLOC: 3.0,
 p = .240

p = .701
p = .255

 Predictiveness FP: 4.05
SLOC: 3.14,
 p = .038 **

FP: 3.44
SLOC: 3.47,
 p = .931

p = .017 **
p = .518

Prescriptiveness FP: 3.42
SLOC: 2.86,
 p = .073 *

FP: 3.09
SLOC: 2.85,
 p = .465

p = .224
p = .991

 Sensitivity FP: 2.86
SLOC: 3.29,
 p = .353

FP: 3.64
SLOC: 3.53,
 p = .713

p = .012 **
p = .572

 Timeliness FP: 3.86
SLOC: 2.86,
 p = .004 ***

FP: 3.52
SLOC: 3.18,
 p = .328

p = .202
p = .514

Validity FP: 3.95
SLOC: 3.21,
 p = .002 ***

FP: 3.92
SLOC: 3.54,
 p = .033 **

p = .780
p = .168

Compatibility
 Data Availability FP: 3.48

SLOC: 3.52,
 p = .864

FP: 3.31
SLOC: 3.76,
 p = .038 **

p = .416
p = .360

 Language Independence FP: 4.17
SLOC: 3.19,
 p = .007 ***

FP: 3.68
SLOC: 2.57,
 p = .002 ***

p = .075 *
p = .150

Complexity
Automatibility FP: 2.64

SLOC: 3.82,
 p = .000 ***

FP: 2.95
SLOC: 3.87,
 p = .000 ***

p = .168
p = .773

 Calculation Ease FP: 3.19
SLOC: 3.81,
 p = .004 **

FP: 3.12
SLOC: 3.73,
 P = .017 **

p = .435
p = .918

Intuitiveness FP: 3.29
SLOC: 3.29,
 p = 1.00

FP: 2.60
SLOC: 3.12,
 p = .089 *

p = .020 **
p = .676

 Understandability FP: 2.81
SLOC: 3.79,
 p = .000 ***

FP: 2.86
SLOC: 3.85,
 p = .000 ***

p = .820
p = .825

*** p < .01, ** p < .05, * p < .10

Table 4: Comparisons of Developer and Manager Perceptions of FP and SLOC for Desirable Properties.

 3023

Sheetz et al. Developer and Manager Perceptions of FP and SLOC

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

DISCUSSION

Supported findings

For the relative advantage construct and its associated desirable properties, the perceptions of developers appear more
congruent with the existing literature than the perceptions of managers. Developers indicated that FP have greater relative
advantage than SLOC; managers, however, showed no significant differences for this construct. Developers indicated that FP
are more applicable across the life cycle, more normative, more predictive, more prescriptive, and more timely than SLOC.
Results for managers failed to achieve significance for any of these properties.

Although the literature appears inconclusive regarding whether FP are more compatible than SLOC, developers indicated that
they view FP are more compatible than SLOC. Managers, however, did not perceive a significant difference in compatibility
between FP and SLOC.

Prior research maintains that using FP are more complex than SLOC; results support this assertion for both managers and
developers. Consistent with existing research, managers and developers agreed that the calculations for SLOC are easier to
automate and that SLOC are easier to calculate. Managers also indicated that SLOC are more intuitive than FP.

Overall many of the findings and assertions of previous research were supported by the participants. This implies that
practitioners are receiving the important messages associated with improving software development processes using software
measures.

Unsupported findings

Contrary to assertions from prior literature, developers did not perceive significant differences between FP and SLOC for
either the data availability or the intuitiveness properties. The literature suggests both that FP and SLOC exhibit validation
issues; managers and developers, however, agreed that FP are more valid than SLOC. Additionally, although the prior
literature appears inconclusive as to whether FP or SLOC are more understandable, both managers and developers agreed
that SLOC are more understandable than FP.

Developer and Manager Perception Gap

Results indicate that developers and managers have different perceptions about FP and SLOC. Overall, developers’
perceptions seem to be more congruent with the literature; that is, developers, more than managers, generally perceive the
value of FP over SLOC. For example, developers perceive the relative advantage and compatibility of FP over SLOC, but it
appears that managers do not. Furthermore, developers believed more strongly than managers that FP are predictive,
language independent, intuitive, and applicable across the life cycle. These results suggest developers better recognize the
benefits of FP.

Implications for practice

The findings in this study also help to explain why practitioners still use SLOC despite the advantages of FP. Both managers
and developers agreed that SLOC are less complex than FP. Complexity negatively impacts the adoption of a software
measure; thus, it seems that practitioners may still be using SLOC due to its simplicity. This implies that organizations
should invest in training that attempts to reduce the perceived complexity of FP and highlights the greater relative advantage
and compatibility advantages of FP over SLOC. Given that participants perceived greater complexity for FP than SLOC,
future research should also investigate ways to reduce the complexity of FP calculations.

Perhaps more importantly, developers perceived a greater relative advantage and compatibility of FP over SLOC, but
managers did not perceive significant differences for these constructs. This finding offers valuable insight into why
practitioners continue to use SLOC. If managers fail to perceive the relative advantage and compatibility of FP over SLOC
and perceive FP as more complex than SLOC, they may choose to adopt SLOC over FP. Managers, rather than developers,
often make the decisions in information systems departments. Thus, managers may make the department-wide decision to use
SLOC rather than FP because they fail to perceive the relative advantage and compatibility of FP and because SLOC are less
complex than FP. Future research should investigate why managers do not perceive significantly greater relative advantage
and compatibility for FP over SLOC.

Future research could investigate common IDT propositions relating the primary constructs to measures of adoption for
developers and managers. Similarly, the inclusion of non-adopters with knowledge of software measures is necessary to
determine if, as seems likely from the current study, that practitioners who select FP and practitioners who select SLOC have

 3024

Sheetz et al. Developer and Manager Perceptions of FP and SLOC

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

different causal models for the adoption of these software measures. Specifically, it seems that FP adopters may be more
focused on relative advantage, while SLOC adopters are more focused on complexity. It may also be interesting to
understand more about perceptions and goals of SLOC adopters through interviews or other qualitative techniques.
Furthermore, future research could investigate possible causal relationships among the desirable properties. For example, life
cycle applicability and language independence, even though assigned to different IDT constructs, address similar issues and
therefore could exhibit interaction.

Limitations

The primary limitation with this study is small sample size; a total of 70 subjects answered the survey for FP and SLOC. Of
the 70 subjects, 28 were developers and 42 were managers. Statistical power for the comparisons in Table 3 ranged from .45
to 1.0, averaging .85 for a significance level of .05. Thus, power of the sample is adequate.

A second limitation involves scale reliabilities. The scales for the data availability and understandability desirable properties
are below the traditional .7 alpha cut-off. Initially, scales were developed for each desirable property. However, during the
scale evaluation and refinement process, several items were eliminated, thereby resulting in some properties with single item
measures.

CONCLUSION

While the literature has maintained that FP are the superior measure for sizing and productivity monitoring activities,
researchers have not previously investigated practitioner perceptions of software measures using the theoretical framework of
Innovation Diffusion. This study contributes to the literature by evaluating practitioner perceptions of FP and SLOC along
the innovation diffusion dimensions of relative advantage, compatibility, and complexity. The findings in this study provide
insight into why practitioners still use SLOC despite the benefits of FP and reveal a perception gap between developers and
managers on several aspects of FP and SLOC.

Future research could investigate additional software measures in the context of innovation diffusion theory constructs and
attempt to identify the relative influence of the desirable properties identified in this study. Ways to reduce the disparities in
the views of managers and developers should result in greater adoption of FP, specifically education efforts directed at
managers seems necessary.

REFERENCES

1. Albrecht, A. and Gaffney, J. (1983) Software Function, Source Lines of Code, and Development Effort Prediction: A
Software Science Validation, IEEE Transactions on Software Engineering, SE9, 6, 639-648.

2. Armour, P. (2004) Beware of Counting Code, Communications of the ACM, 47, 3, 21-24.
3. DeMarco, T. (1982) Controlling Software Projects, Yourdon Press, New York.
4. Dolado, J.J. (1997) A study of the relationships among Albrecht and Mark II Function Points, lines of code 4GL and

effort, The Journal of Systems and Software, 37, 2, 161-173.
5. Fenton, N.E and Neil, M. (1999) Software metrics: Successes, failures and new directions, The Journal of Systems and

Software, 47, 2, 149-57.
6. Fenton, N.E. and Pfleeger, S.L. (1996) Software Metrics: A Rigorous and Practical Approach 2nd edition, International

Thomson Computer Press, London.
7. Grupe, F.H. and Clevenger, D.F. (1991) Using Function Point Analysis as a Software Development Tool, Journal of

Systems Management, 42, 12, 23-26.
8. Hall, T. and Fenton, N. (1997) Implementing Effective Software Metrics Programs, IEEE Software, 14, 2, 55-64.
9. Heiat, A. and Heiat, N. (1997) A model for estimating efforts required for developing small-scale business applications,

The Journal of Systems and Software, 39, 1, 7-14.
10. Henderson-Sellers, B. (1996) Object-Oriented Metrics: Measures of Complexity, Prentice-Hall, Upper Saddle, NJ.
11. Jones, C. (1991) Applied Software Measurement: Assuring Productivity and Quality, McGraw-Hill, New York.
12. Kemerer, C.F. (1987) An Empirical Validation of Software Cost Models, Communications of the ACM, 30, 5, 416-429.
13. Kemerer, C.F. and Porter, S. (1992) Improving the Reliability of Function Point Measurement: An Empirical Study,

IEEE Transactions on Software Engineering, 18, 11, 1011-1024.

 3025

Sheetz et al. Developer and Manager Perceptions of FP and SLOC

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

14. Kemerer, C.F. (1993) Reliability of function points measurement, Communications of the ACM, 36, 2, 85-97.
15. Low, G.C. and Jeffery, D.R. (1990) Function Points in the Estimation and Evaluation of the Software Process, IEEE

Transactions on Software Engineering, 16, 1, 64-71.
16. Mahmood, M.A., Pettingell, K.J., and Shaskevich, A.I. (1996) Measuring productivity of software projects: A data

envelopment analysis approach, Decision Sciences, 27, 1, 57-80.
17. Matson, J., Barret, B., and Mellichamp, J. (1994) Software Development Cost Estimation Using Function Points, IEEE

Transactions on Software Engineering, 20, 4, 275-287.
18. Moser, S., Henderson-Sellers, B., and Misic, V. (1999) Cost estimation based on business models, The Journal of

Systems and Software, 49, 1, 33-42.
19. Nunnally, J.C. (1978) Psychometric Theory 2nd edition, McGraw-Hill, New York.
20. Orr, G. and Reeves, T. (2000) Function Point Counting: One program’s experience, The Journal of Systems and

Software, 53, 3, 239-250.
21. Ray, G. (1993) The lines of code alternative, Computerworld, 27, 8, 91-92.
22. Rogers, E. (1983) Diffusions of Innovations 3rd edition, The Free Press, New York.
23. Tate, G. and Verner, J. M. (1991) Approaches to Measuring Size of Application Products with CASE Tools, Information

and Software Technology, 33, 9, 622-628.

 3026

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2005

	Understanding Manager and Developer Perceptions of the Relative Advantage, Compatibility, and Complexity of Function Points and Source Lines of Code
	Steven Sheetz
	Linda Wallace
	David Henderson
	Recommended Citation

	tmp.1236846704.pdf.neYBE

