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ABSTRACT

Usability of open source systems is becoming a relevant topic for investigation given the proliferation of open source
software. General assumptions do not favor a positive relationship between the existing open source development model and
good usability due to a host of social context reasons. In this paper we provide empirical evidence on this issue through a
case study using an open source project called Ganttproject. Results point to likely deficiencies in the open source model. An
analysis of this phenomena and some potential solutions for improving open source usability are proposed.
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INTRODUCTION

The unique open source development model features massive distributed collaboration, peer review, incremental
development, and evolution through quick version release. User participation is the cornerstone of open source success, and
is also where the distinction between users and developers becomes blurred. Despite the fact that numerous studies have
examined the evolution of open source software from a functionality point of view, there has been little discussion on open
source usability, especially as it relates to whether user contributions actually help to improve open source usability.

The literature suggests that there is little evidence that OSS projects devote much resources to usability improvement, or a
demonstration of a strong relationship between the unique OSS development model and better software usability (Nichols
and Twidale, 2003; Twidale and Nichols, 2004). The arguments tend to revolve around the idea that usability is an art form
that requires a dedicated effort from a usability expert (or a team of experts). This argument is based on two premises: 1)
usability experts don't "do" open source projects, and 2) dedicated efforts are impossible for the open source development
paradigm (Salmoni, 2004) (Benson, Muller-Prove et al., 2004). While these assertions are based on current observations of
OSS, there is still a great potential for the open source movement to address usability. We offer some reasons for this
statement: OSS projects have begun to attract usability engineers; there is a great flexibility for usability professionals to
contribute; there is a large user base for usability testing; and it is possible to build automatic bug reporting features into
software (Salmoni, 2004). This paper provides further insights into this issue and offers in-depth discussions to support our
viewpoints through the use of a case study.

A SOCIAL CONTEXT ANALYSIS

One of the intangible motivations to participate in OSS development is self-satisfaction and desire to enhance one’s
reputation among community members. The implication for usability is that “when programmers produce open source
software, since they are largely scratching their own itch, they tend to produce software for themselves, and in particular be
perfectly content with the (programmer-oriented) user interface” (Pemberton, 2004).

The social context of open-source software development does not include the typical user and so it may be unreasonable to
expect their interests to be represented in the programs, not to mention specific efforts to accommodate human diversity
required by fine usability engineering as described by (Shneiderman, 1998; Messerschmitt, 2004) suggests that software
(usability) defects are typically misunderstandings of users’ need and “opening source code” does not help. He argues that for
naïve users, testers, program managers, marketers, salespeople and customer service play a crucial role in understanding their
needs. Because these users typically are unable to participate in OSS development, therefore most OSS lack usability from
the perspective of naïve users.
Furthermore, ‘hard’ algorithmic problems have a greater value in the ‘reputation market’ than issues of usability (Nichols,
Thomson et al., 2002; Twidale and Nichols, 2004) found that similar to traditional software development, it is difficult for
usability advocates to establish legitimacy arguments against countervailing expert-user functionality-centric claims. These
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assumptions have been validated through several usability evaluations of OSS projects. (Nichols, Thomson et al., 2002)
evaluated the OSS project Greenstone and identified four design issues that generated these usability problems:

• Developer-user knowledge gap
• Developer-user working context difference
• Developer-user interaction style gap
• Unclear and misused documentation

(Benson, Muller-Prove et al., 2004) identifies the following problems with the GNOME project despite the efforts and
resources devoted to the usability aspects of this effort:

• Communication: Non-technical users might be intimidated by dedicated bug reporting channels that require complicated
procedure for registration and knowledge for accessing complex bug databases.

• Early input: Efforts for usability improvement usually come after the interface have been built. Compare to software
functionality that benefits from releasing source code early and frequently in order to get feedback, usability might suffer
from this type of “later release”.

• User profiles: There is no shared or documented vision of GNOME’S target audience.

• Process: No obvious usability methodology is employed. Many developers contribute during their spare time, so they are
understandably reluctant to follow heavyweight processes.

In general, it is fair to assume that the social context of OSS development has set a number of barriers to usability
improvement. That also explains why many successful OSS projects are operating systems and compiler types that require
little human-computer interaction.

A CASE STUDY

To validate the assumptions put forth earlier, we conducted a usability evaluation case study using an open source software
called Ganttproject. Gantt chart, developed by Henry Laurence Gantt, is a useful and well-known project management tool
that uses graphical representation to display and manage tasks against the progression of time. Ganttproject is an open source
software that offers computerized Gantt chart creation and maintenance capability. Launched in 2003, this project has
evolved into a popular tool in the open source community. The current version is 1.10.3. It is available for free download at
http://ganttproject.sourceforge.net.  We chose Ganttproject not only because it is a GUI application, but also because it was a
work-in-progress at version 1.9.8 so that we would be able to assess how usability problems were raised and addressed after
one year as the software becomes more mature.

Protocol analysis

A "protocol" is a record of a step-by-step procedure. Protocol Analysis using the think aloud method represents an effort to
uncover the thinking process of a software system user in order to analyze aspects of the software that contributes to its
usability as well as the elements that detracts from its usability.  In this method, one records the step-by-step procedures of a
user "thinking out loud" while trying to use a certain computer system (Boren and Ramey, 2000) By encouraging the user to
think out loud through the course of a series of tasks one can gain insight into the difficulties the user experiences in making
the system perform its tasks and conform to the user’s expectations of how the system should respond to inputs.  To the
extent possible, the researcher performing the analysis is removed from the situation except for providing, as needed,
encouragements to the subjects to continue to describe their activities. If the protocol analysis is conducted successfully, the
transcript of the session will be a report on the usability of the system tested.

Our first task was to find out usability problems of Ganttproject version 1.9.8. To do this, we conducted a protocol analysis
using Ganttproject version 1.9.8. Six human subjects with different backgrounds and expertise were asked to go through five
typical tasks that cover the major functionalities of the tool. The detailed steps of the protocol analysis are summarized in
table 1. The protocol analysis yielded ten significant usability problems. These problems are documented in Appendix 1.
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Steps Description
Software introduction Briefly introduce Ganttproject software to the subject and show a flash animation

of typical usage of the software.
Experiment introduction Explain the purpose of the experiment, the tasks to be performed by the subject,

and the role of the observer.
Sign consent form The  subject  is  asked  to  sign  a  consent  form  to  agree  to  participate  in  the

experiment.
Conduct protocol analysis The subject goes through the five tasks while “thinking-aloud”. All subject

verbalizations during task execution are recorded for later analysis. For the
observer, we followed the guideline suggested by (Someren et al., 1994) to get
least observer interference and maximum subject output.

Filling out questionnaire A questionnaire about the software interface is filled out by the subject
Protocol analysis The recorded protocol is reviewed and analyzed to uncover usability problems

encountered during the subject’s task execution process.
Table 1 – Protocol analysis steps

A retrospective study on usability improvement

The current version of Ganttproject is 1.10.3 as of December 8, 2004. It has been over a year since our protocol analysis was
conducted. We have subsequently reexamined whether the usability issues identified in our project are addressed by the latest
version.

As an open source project, Ganttproject uses the standard bug reporting and feature request mechanisms provided by
sourceforge.net (the largest open source hosting site worldwide). Any user feedback could be submitted to both repositories.
Since the launch of the project, there have been 168 bugs and 149 feature requests submitted to the repository. For the 149
feature requests, 108 are still open (not resolved yet) and 41 are closed.  For our study, whether these bugs and feature
requests are classified as usability-relevant issue is based on the Jacob Nielsen’s usability heuristics
(http://www.useit.com/papers/heuristic/heuristic_list.html).

Table 2 shows how usability problems found by our protocol analysis and by other Ganttproject users are distributed among
different usability categories. The symbol “*” represents one usability issue. In the bug repository, only three of the bugs are
related to usability. As for feature requests, 37 of those are usability relevant.

Heuristics Think
aloud

Bug
reporting

Feature requests
(closed)

Feature
requests (open)

Visibility of system status A7 ** ******
Match between system and the real world ***
User control and freedom A1, A4 *
Consistency and standards A4, A10 *
Error prevention A3, A5, A8 *
Recognition rather than recall A6, A7 * *
Flexibility and efficiency of use A2 ********* *******
Aesthetic and minimalist design A9 ** *** **
Help users recognize, diagnose, and recover from errors
Help and documentation *

Table 2 – Usability problems found

Findings

• Our protocol analysis method discovered ten usability problems. Over a one-year period, only four of them (A2, A5,
A6, A10) have been resolved and implemented in the latest version. Only two of the ten usability problems (A1 and A3) were
also identified and reported by other users.
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• The bug reporting mechanism of open source apparently is not considered as an appropriate channel for reporting
usability problems by users. An analysis of the bug repository only finds three usability relevant problems.

• Feature requests form a large repository for usability enhancement suggestions. However, most of the requests are
submitted by advanced users as they frequently look for new features that enable “flexibility and efficiency of use” and
“visibility of system status”, which are only two aspects of usability heuristics.

• It is evident that if no formal usability testing (such as think aloud) is performed, open source projects would still
lack the effective mechanisms to discover usability problems, especially those encountered by typical or non-experienced
users, such as error prevention. This issue might be alleviated by explicitly establishing channels to remedy this such as
“usability bug reporting”, or more advanced web-based usability testing methods.

• Typical open source projects do not have sufficient resources to address usability problems and enhancement
requests. For example, one response for a request to add “undo” feature to the software is that “… Yes I think, after
reformatting the soft... Because for the moment it's a quit difficult to implements it...”.

MECHANISMS FOR IMPROVING OPEN SOURCE USABILITY

The results of our case study reveal potential deficiencies in the current open source development model as it relates to
usability, especially when the end-users are not computer professionals. In light of this problem, researchers and practitioners
have proposed a number of mechanisms including:

• Instituting formalized procedures to enforce usability guidelines might be difficult in OSS projects unless project
leaders are able to enforce control and direct resources to support such efforts. For instance, the well known GNOME and
KDE projects have published Human Interface Guidelines to help developers write applications that are consistent with the
GNOME and KDE environment, although how the guidelines are actually followed is unknown. Even though applying
guidelines seems to be a feasible approach, it might be a problem with OSS since it tries to bring more formalized process
and style into OSS development, thus violating the “OSS philosophy”. Furthermore, certain obvious drawbacks of guidelines
are they can range from general recommendations to specific style guide (Jeffries, Miller et al., 1991), they are usually
maintained as prescriptive checklists without context and examples, and only a small portion of guidelines are kept in
designers’ working memory.

• Large corporations to contribute to the open source projects using their expertise and resource of usability
engineering (Benson, Muller-Prove et al., 2004; Nichols, McKay et al., 2003). More importantly, such commercial support
and control would be able to not only direct more resources required to improve usability, but also could bring usability
experts into OSS projects. One example is that, from March 2001, Sun has conducted formal usability testing and established
usability community for GNOME project.

• Automated usability testing is another approach to reduce cost, increase consistency and reduce human involvement,
which is a limitation of OSS projects (Nichols, McKay et al., 2003; Salmoni, 2004). Automated testing requires less resource.
However, due to the fact that OSS development teams do not even invest sufficient time in conducting functionality testing
because they believe peer review and user contribution would find the bugs (Zhao and Elbaum, 2003), and thus whether
usability testing would get enough attention from development team is still questionable.

• From a post-deployment reporting perspective, (Nichols, McKay et al., 2003) proposes to improve the design of bug
reporting  capability  of  OSS  in  order  to  take  advantage  of  the  large  user  base,  especially  non-active  users  that  are
geographically spread. This seems to be the most promising way to improve OSS usability because it opens up a new channel
for the typical users to contribute. Not only automated methods for extracting usability information can be used (Hilbert and
Redmiles, 2000), but also a well-designed bug reporting process would assist in capturing more cognitive information from
typical users. Since experienced users are able to find and fix so many functionality bugs, why can’t non-experienced (more
typical) users find usability bugs? The key success factor for this method is that a good communication channels must be
established for non-expert users to contribute because typically, as we noted before, these users can be intimidated by the
complicated procedure to record bugs into repository. One example, called critical incident reporting, is to embed bug
reporting mechanism into the software so that both system state information and user subjective comments can be transmitted
back during system usage. The screenshot from an open source software “more.groupware” (shown in Figure 1) illustrates
this method.
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Figure 1 – Bug reporting embedded in the software

Despite the fact that methods like critical incident reporting opens up new channels for typical users to contribute, there
remains a problem that limits the effectiveness of such approaches: unlike usability experts, typical users don’t have
sufficient knowledge about usability. Unfortunately, the end-users have usually, and perhaps subconsciously, blamed
themselves for difficulties with awkward user interfaces (McCoy, 2002). Therefore, research efforts should also focus on
how to train end-users or provide effective assistants for them to inspect the software quickly discover usability problems.
Such knowledge transfer should not be based on long-term training but on quick context-based usability knowledge base
such as usability patterns (van Welie and van der Veer, 2003).

CONCLUSION AND FUTURE WORK

The results of our case study point to the weak tie between open source development model and usability. First, the
community-based development model is yet to establish an appropriate channel for reporting usability problems. Second,
most of the contributing users tend to be experienced ones. Their requests for usability improvement do not necessary reflect
those requirements of typical or non-experienced users.

Under the circumstance of lacking resources to conduct formal usability evaluations, getting the typical users to become
involved through remote usability evaluation seems to be the most viable approach. Further research in this direction must
answer the following two important questions: How to establish effective communication mechanisms to get such users
involved? How to effectively transfer usability knowledge to contributing users?

A limitation of our experiment is that only one open source project was studied, which clearly may not reflect the
comprehensive situation of the entire open source community. Therefore, future studies will not only expand the sample size,
but also the range of open source projects from various categories.

APPENDIX 1: USABILITY PROBLEMS FOUND BY THE CASE STUDY

A1. There should be redo and undo functionality that stores the last x number of actions so that users can go back several
steps when they realize their mistake or go forward if they want to.

A2. There should be an ability to drag and drop tasks.

A3. When a new task is created, a pop up box should ask the user at what level to create the task. Currently by default it is
created as a sub task of the currently selected task. This could get confusing.

A4. The time scrolling function by dragging the mouse in the right pane can be handy, but can also get confusing and
frustrating.

A5. Because of cut being the first item on the context menu both my subjects inadvertently left clicked to close the context
menu and deleted the task.

A6. Open command always defaults to MyDocuments even when you have already opened or saved to another directory. It
should default to the most recent directory at least within a session.
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A7. The interface for selecting resources is somewhat confusing. It is hard to realize that there is a drop-down box for
selecting existing resources. People tend to type in directly the resource name in the ID box.

A8. The Duration textbox should prevent users from entering non-numerical information.

A9.It is a little redundant and confusing to have “start-date”, “end-date” and “duration” fields for each task and it seems to be
a bug that all other fields do not change correspondingly and correctly when any one of them is changed.

A10. To modify an existing resource, users should be able to open the Property dialog box by double-clicking. (Nichols and
Twidale 2003)
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