
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2005 Proceedings Americas Conference on Information Systems
(AMCIS)

2005

A Logic Based Modeling Approach to Managing
Workflow Policy Changes
Harry J. Wang
University of Arizona, jiannan@eller.arizona.edu

J. Leon Zhao
University of Arizona, lzhao@eller.arizona.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2005

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2005 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Wang, Harry J. and Zhao, J. Leon, "A Logic Based Modeling Approach to Managing Workflow Policy Changes" (2005). AMCIS 2005
Proceedings. 320.
http://aisel.aisnet.org/amcis2005/320

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301342814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2005%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005?utm_source=aisel.aisnet.org%2Famcis2005%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2005%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2005%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005?utm_source=aisel.aisnet.org%2Famcis2005%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005/320?utm_source=aisel.aisnet.org%2Famcis2005%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Wang and Zhao A Logic-based Modeling Approach to Managing Workflow Policy Changes

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

A Logic-based Modeling Approach
to Managing Workflow Policy Changes

Harry J. Wang
Department of MIS

University of Arizona
Tucson, AZ 85721

jiannan@eller.arizona.edu

J. Leon Zhao
Department of MIS

University of Arizona
Tucson, AZ 85721

lzhao@eller.arizona.edu

ABSTRACT

Workflow management systems are becoming increasingly important in the automation of business processes. In order to
ensure proper workflow execution, workflow policies must be specified with respect to users, roles, and tasks. In today’s
dynamic business environment, successful organizations must be able to respond to new customer demands and market
opportunities with flexibility and speed. However, without systematic management of workflow policies, changes in
organizational structure and process models can lead to inconsistent workflow specifications. Thus far, research in the change
management of workflow policies has been scant. In this paper, we propose a logic-based approach to address this problem.
Our contribution is three-fold: 1) a modeling language based on predicate logic is proposed, which is succinct and expressive
enough to represent process model, organization model, and workflow polices; 2) workflow policy consistency in a dynamic
changing environment is formally defined and analyzed based on the proposed language. 3) two algorithms are developed to
check and enforce the policy consistency. To the best of our knowledge, this is the first work focuses on the formal analysis of
workflow policy change management.

Keywords

Workflow Management, Workflow Policy, Change Management, Predicate Logic, Modeling Language.

INTRODUCTION

Today, Workflow Management Systems (WFMSs) are widely used by organizations to coordinate activities, streamline
business processes, and support e-business (Stohr and Zhao, 2001). A workflow usually consists of a set of well-defined tasks,
which must be matched with agents (either human or machine) in accordance with workflow policies, e.g., a person cannot
approve a check issued by him/herself (Bertino, et al., 1999; Georgakopoulos, et al., 1995). The workflow system must ensure
that the workflow policies are consistent. However, given that large WFMSs are often deployed in organizations where the
organizational model, the process model, the users, and roles change often, maintaining the consistency of workflow policies
can be extremely difficult (Ribeiro and Guedes, 1999; van der Aalst, 2001). Moreover, in the era of on-demand business,
companies need to change their business model frequently to respond to new customer demand and market opportunities.
Dynamic changes in process and organization model can lead to inconsistent workflow policies without proper management,
which may result in costly processes and system breaches. Although there has been a noticeable amount of research in adaptive
workflow (Ellis and Keddara, 2000; Ellis, et al., 1995; van der Aalst, 2001) and workflow authorization constraints (Atluri and
Huang, 1996; Bertino, et al., 1999; Casati, et al., 2001; Huang and Atluri, 1998; Wu, et al., 2002), there is lack of methodology
for managing workflow policies under consistent process and organization changes.

In this paper, we propose a logic-based approach to workflow policy management. In particular, we present a modeling
language based on predicate logic, which is used to represent, the process model, the organizational model, and workflow
policies. Using this language, we formally define and analyze the consistency of workflow policies in a dynamic environment.
Moreover, we develop algorithms to automatically check and enforce the consistency of workflow policies. System architecture
and implementation issues are also discussed to integrate our approach into existing workflow management systems.

The rest of the paper is organized as follows. In the next section, we briefly review the literature in workflow authorization
constraints, dynamic workflow changes, and process and organization modeling. Then we present a logic-based modeling
language followed by the definition and analysis of workflow policy consistency in a dynamic environment. Subsequently, we
present the algorithms for automatic checking and enforcement of workflow policy consistency and demonstrate their
functionality via an example. Finally, we discuss architectural and implementation issues before concluding our research and

 2982

mailto:jiannan@eller.arizona.edu
mailto:lzhao@eller.arizona.edu

Wang and Zhao A Logic-based Modeling Approach to Managing Workflow Policy Changes

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

outlining a future research plan.

BRIEF LITERATURE REVIEW

Workflow consists of a set of well-defined tasks. To ensure that these tasks are executed by appropriate personnel, certain
authorization mechanisms must be in place. Role-based, task-based, temporal access control models have been developed to
facilitate workflow authorization management (Wu, et al., 2002). Atluri and Huang (1996) proposed a workflow authorization
model to synchronize authorization flow with the workflow. Bertino et al. (1999) presented a logic-based framework for the
specification and enforcement of workflow authorization constraints. They categorize workflow security policies into three
categories, namely, static, dynamic, and hybrid policies, where static policies can be evaluated without executing the workflow,
dynamic policies can only be evaluated during the execution of workflow, and hybrid policies can by partially verified without
executing the workflow. Their work focused on the automatic role and user assignment to tasks without violating any
constraints. Casati et al. (2001) studied workflow authorization constraints using active database technology. A constraint is
described by an ECA (event-condition-action) rule based on workflow instance, time, and history. However, none of those
research efforts has thus far addressed the dynamic change problem of workflow policies.

The ability to respond effectively to changes is an important issue in WFMSs (van der Aalst, 2001). Workflow changes can
cause inefficiencies, inconsistencies, and high costs if not properly handled (Ellis, et al., 1995). Different type of process
changes have been discussed (Sadiq, et al., 2000) and mathematical formalisms have been proposed to analyze the process
changes (Ellis, et al., 1995; van der Aalst, 2001). Until now, how process changes can affect workflow policies has not been
explicitly studied.

The design of WFMSs requires the specification of process structures and organizational model. There has been extensive
research efforts on the process modeling, resulting in many process modeling methods, such as UML activity diagram (OMG,
2003), Petri Nets (van der Aalst, 1998), and Logic-based approach (Bi and Zhao, 2004; Davulcu, et al., 1998). Besides the
process flow perspective, organizational perspective is also important for workflow management systems (zur Muhlen, 2004).
An organizational model is essential for the workflow engine to determine who must perform a task and what policies should be
enforced (van der Aalst, et al., 2003). An organizational model represents the structure of an organization, which is usually a
hierarchy of roles and users (Basu and Kumar, 2002; Stohr and Zhao, 2001). A user can play multiple roles and a role can have
multiple users (Sandhu, et al., 1996). Several organizational meta models have been proposed to make WFMSs more
“organizationally aware” (Cheng, 1999; Jablonski and Bussler, 1996; van der Aalst, et al., 2003; zur Muhlen, 2004). However,
there is lack of a unified approach to modeling process, organization, and policies, making the analysis of workflow policies
difficult. Our previous work (Wang and Zhao, 2004) studied the problem of workflow policy changes at a conceptual level; in
this paper we extend our previous work by providing formal definitions and a logic-based analytical framework.

A WORKFLOW EXAMPLE

In this section, we present a workflow example that we will use throughout the rest of the paper. A requisition approval
workflow is represented using an UML activity diagram in Figure1, and each task is described in Table 1. Note that 6t , 9t , and

13t ,which are underlined in the figure, are executed by machine agents,.

Legend: Start End Fork/Join Branch/Merge

Purchase
Request

Supervisor
Approval

Fund
Checking

Mgmt.
Approval

Purchasing

Disapproval
Notification

Print PO

Inventory
Checking

Back
Order

Shipping Billing

Timeout

Archiving

t1 t2

t3 t4

t5 t6

t7

t8 t9

t10 t11

t12

t13

Figure 1. Requisition Approval Workflow

 2983

Wang and Zhao A Logic-based Modeling Approach to Managing Workflow Policy Changes

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

Task Name Description
1t Purchase Request Employees submit purchase request.

2t Supervisor Approval The supervisor of task initiator approves the request

3t Fund Checking When request amount is greater than 1000, a checking is conducted to make
sure there is sufficient fund.

4t Mgmt. Approval When fund is sufficient, higher level manager needs to approve.

5t Purchasing Purchase Request is reviewed and sent to inventory. PO is requested to be
printed.

6t Print PO PO is printed.

7t Inventory Checking Inventory checking. If in stock, start shipping; otherwise back order.

8t Back Order The requested item is back ordered.

9t Timeout Timeout is trigger when back order cannot complete after a certain period of
time. A timeout notification is also sent to the purchase requestor.

10t Shipping Item is shipped.

11t Billing Proper department is billed for the items ordered.

12t Archiving The purchase transaction information is summarized and archived.

13t Disapproval Notification The requestor is notified that his/her purchase request is declined via email.
Table1. Task Descriptions

The role hierarchy associated with the workflow is presented in Figure 2. The employee appointment information (user-role
assignment) is as follows: GM: {John}; ED: {Joe}; PD: {Jason}; AD: {Maggie}; SE:{Eric, Ray}; PC:{Peter}; IC:{Sam};
DC:{Dan, Jack}; AC:{Steve, Ben}.

Engineering
Director

(ED)

Purchasing Director
 (PD)

Purchasing Clerk
 (PC)

Inventory Clerk
 (IC)

Software Engineer
(SE)

Accounting Director
 (AD)

Accounting Clerk
 (AC)

General Manager
(GM)

Distribution Clerk
(DC)

Figure 2: Organizational Structure

To ensure the proper execution of the workflow, roles and users may be assigned to tasks and workflow polices should be
specified to enforce business requirements. The workflow policies for the requisition approval workflow are given below:

1p : any employee can submit purchase request.

2p : 2t (Supervisor Approval) must be executed by the supervisor of the purchase requestor.

3p : 3t (Fund Checking) must be executed by an Accounting Clerk (AC).

4p : the role associated with 4t (Mgmt. Approval) must be the supervisor of the role that executes 2t .

5p : 5t (Purchasing) is handled by a Purchasing Clerk (PC)

6p : 7t (Inventory Checking) is conducted by an Inventory Clerk (IC).

7p : 10t (Shipping) must be handled by a Distributed Clerk (DC).

8p : 11t (Billing) must be handled by a Distributed Clerk (DC).

9p : 12t (Archiving) is handled by a Purchasing Clerk (PC).

10p : 1t (Purchase Request) and 3t (Fund Checking) cannot be done by the same person.

11p : 10t (Shipping) and 11t (Billing) must be handled by the same person.

 2984

Wang and Zhao A Logic-based Modeling Approach to Managing Workflow Policy Changes

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

12p : 6t , 9t , 13t are executed by machine agents.

Policies 1p through 9p are role-task assignment policies. Policy 10p is an instance of separation of duties policy, whereas

11p is a binding of duties policy. Moreover, 2 4 11 12, , ,p p p p are dynamic policies, which can be evaluated only during workflow
execution. From this example we can see that the specification of workflow polices refers to the process model and
organizational model for the information about tasks, users and roles. In the next section, we present a logic-based modeling
language to unify the representation of the process, organization, and workflow policies.

A FORMAL LOGIC-BASED MODELING LANGUAGE

The modeling language is based on predicate logic and its syntax is similar to Prolog, one of the well-known logic
programming languages (Rowe, 1988). Our language can be compiled and interpreted by most Prolog-based reasoning systems.
In this language, facts are treated as explicit rules as their bodies are empty (Bertino, et al., 1999). There are four major
components, namely, Process Rules, Organizational Rules, Policy Rules, and Auxiliary Rules.

A process model can be constructed from five primitive workflow blocks (WfMC, 1999) as shown in Figure 3.

Sequence Fork Join Branch Merge

Figure 3. Building Blocks for Workflow Modeling

We use { | [1,...,]}iT t i n= ∈ to denote the set of tasks in a given workflow. st and et represent starting and ending nodes
respectively. The set of predicates used to represent the five workflow building blocks are shown in Table 2.

Predicate Description
(,)i jnext t t task directly leads to taski jt t

1 2
(,[, ,...,])

ni j j jfork t t t t
1 2

task leads to a list of parallel tasks [, ,...,]
ni j j jt t t t

1 2
([, ,...,],)

ni i i jjoin t t t t
1 2

a list of parallel tasks [, ,...,] converges to task
ni i i jt t t t

1 2
(,[, ,...,])

ni j j jbranch t t t t
1 2

after task exactly one of the tasks in [, ,...,] is to be executed
ni j j jt t t t

1 2
([, ,...,],)

ni i i jmerge t t t t
1 2

any task in [, ,...,] can trigger task
ni i i jt t t t

Table 2. Process Modeling Predicates

Using these predicates, the requisition approval workflow in Figure 1 can be expressed as shown in Figure 4. Note that
whenever Fork/Join and Branch/Merge are directly connected in a process model, a dummy task dt is inserted in between to
help the modeling.

1(,)snext t t , 1 2(,)next t t , 2 3 5 13(,[, ,])branch t t t t , 3 4 13(,[,])branch t t t , 4 5 13(,[,])branch t t t , 5 6 7(,[,])fork t t t ,

7 8 10(,[,])branch t t t , 10 11(,)next t t , 8 7 9(,[,])branch t t t ,
19 11([,],)dmerge t t t ,

16 12([,],)djoin t t t , 12 13([,],)emerge t t t
Figure 4. Logic Representation of the Workflow in Figure 1

In order to help with process analysis, we define the concept of Task Reachability. We say that jt is reachable from it , if there

exists at least one path from it to jt in the process model. Intuitively, one task can be reached by another task if they are next to
each other or they are directly connected to a routing construct that is of the type Fork, Join, Branch, or Merge. Task reachability
is recursively defined in Figure 5.

1 2
(,[, ,..,])

ni i i imember t t t t means that it is a member of the list
1 2

[, ,..,]
ni i it t t .

Definition 1: Task Reachability

 2985

Wang and Zhao A Logic-based Modeling Approach to Managing Workflow Policy Changes

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

(,) (,)i j i jreach t t next t t←

1 2 1 2
(,) (,[, ,..,]), (,[, ,..,])

n ni j i j j j j j j jreach t t fork t t t t member t t t t←

1 2 1 2
(,) ([, ,..,],), (,[, ,..,])

n ni j i i i j i i i ireach t t join t t t t member t t t t←

1 2 1 2
(,) (,[, ,..,]), (,[, ,..,])

n ni j i j j j j j j jreach t t branch t t t t member t t t t←

1 2 1 2
(,) ([, ,..,],), (,[, ,..,])

n ni j i i i j i i i ireach t t merge t t t t member t t t t←

(,) (,), (,)i j i k k jreach t t next t t reach t t←

(,) (,)i j j ireach t t reach t t←

Figure 5. Definition of Task Reachability

Now, we can use queries to analyze some properties of the workflow. For instance, query 9 11? (,)reach t t− returns No, because

9t and 11t are on the different branches of a Branch construct. Moreover, we assume that if a task it exists in the
workflow ? (,)s ireach t t− is always true.

In order to model organizational model, we propose a set of organization predicates and rules as shown in Table 3. We use
{ | [1,...,]}iR r i m= ∈ and { | [1,..., ,]}iU u i l ma= ∈ to denote a set of roles and a set of users respectively. In particular, mau is

used to represent a machine agent. The role privilege inheritance rule says that a role inherits all the privileges of the roles that
it manages. The user privilege inheritance rule is defined similarly.

Organization Rules Description
(,)i jmanage r r ir manages jr

(,)i jmanage u u For all ,i i j ju r u r∈ ∈ if ir manages jr then

iu manages ju

(,)i jrole u r User iu plays role jr

(,) (,), (,)i j i k k jmanage r r manage r r manage r r← role privilege inheritance rule:

(,) (,), (,)i j i k k jmanage u u manage u u manage u u← user privilege inheritance rule:

Table 3. Organizational Rules

The organizational model in Figure 2 can be expressed as the logical statements in Figure 6. Note that because GM is the
highest manager, he/she manages him/herself denoted by (,)manage GM GM . We also assume there is always a role named
“Machine Agent (MA)” with users represented by mau .

manage(GM,GM), manage(GM,ED), manage(GM,PD), manage(GM,AD), manage(ED,SE), manage(PD,PC),
manage(PD,IC), manage(PD,DC), manage(AD,AC), role(John,GM), role(Joe,ED), role(Jason,PD),
role(Maggie,AD), role(Eric,SE), role(Ray,SE), role(Peter,PC), role(Sam,IC), role(Jack, DC), role(Dan, DC),
role(Steve,AC), role(Ben, AC), role(mau ,MA)

Figure 6. Logical Representation of the Organizational Model in Figure 2

Now we can reason about the organizational model. For instance, the answer to the query ? (,)manage X Eric− shows the
supervisor of Eric, which is Joe in this case. Query ? (,)manage Jason Eric− returns No, because Jason is not the manager of
Eric.

One important step in workflow design is to assign resources to tasks and specify policies to constraint task assignments
and execution. To facilitate this design step, we propose task assignment rules as shown in Table 4.

Task Assignment Rules Description
_ (,)i jr execute r t Role ir is assigned to execute task jt

_ _ (,)i jcannot r execute r t Role ir is not allowed to execute task jt

_ (,)i ju execute u t User iu is assigned to execute task jt

 2986

Wang and Zhao A Logic-based Modeling Approach to Managing Workflow Policy Changes

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

_ _ (,)i jmust u execute u t User iu must execute task jt

_ _ (,)i jcannot u execute u t User iu is not allowed to execute task jt

_ (,) _ _ (,)i j i ju execute u t must u execute u t← iu must execute task jt implies iu

execute task jt

_ (,) (,), _ (,)i j i k k ju execute u t role u r r execute r t← If kr can execute task jt and iu belongs to

kr then iu can execute task jt

_ _ (,) (,), _ _ (,)i j i k k jcannot u execute u t role u r cannot r execute r t← If kr cannot execute task jt and

iu belongs to kr then iu cannot execute
task jt

Table 4. Task Assignment Rules

Then the workflow policies defined for the requisition approval workflow can be formally expressed as follows:

1p : 1_ (,)ir execute r t

2p : 2 1_ (,) (,), _ (,)i i k kr execute r t manage r r r execute r t←

3p : 3_ (,)r execute AC t

4p : 4 2_ (,) (,), _ (,)i i k kr execute r t manage r r r execute r t←

5p : 5_ (,)r execute PC t

6p : 7_ (,)r execute IC t

7p : 10_ (,)r execute DC t

8p : 11_ (,)r execute DC t

9p : 12_ (,)r execute PC t

10p : 3 1_ _ (,) _ (,)i icannot u execute u t u execute u t← or 1 3_ _ (,) _ (,)i icannot u execute u t u execute u t←

11p : 11 10_ _ (,) _ (,)i imust u execute u t u execute u t← or 10 11_ _ (,) _ (,)i imust u execute u t u execute u t←

12p : 6_ (,)mau execute u t , 9_ (,)mau execute u t , 13_ (,)mau execute u t
Figure 7. Logical Representation of the Workflow Polices

In order to facilitate the formal analysis, some auxiliary predicates are necessary, which are presented in Table 5.

Auxiliary Rules Description
(,)count Q n Count the number of different answers of query Q and return the value to n

(,)findall Q S Find all the different answers of query Q and return them to a set S
(,)findone Q S Find only one answer of query Q if any and return it to a set S

, , , ,= < > ≤ ≥ Comparison Predicates
Table 5. Auxiliary Rules

Some useful queries are explained as follows:

3(_ (,),)icount u execute u t n : this returns the total number of users assigned to task 3t (Fund Checking), which is 2.
((,),)s i tfindall reach t t S : this returns all the tasks in the workflow. For our example, { | [1,...,11]}t iS t i= ∈
(,), ((,),)i i i j rmanage r r findall manage r r S : this returns all the roles in the organization model. For our example, Sr={GM, ED,

PD, AD, SE, PC, IC, DC, AC,MA}
((,),)i j r ufindall role u r S + : this returns all the roles and users in the organization. The set of users can be retrieved

by \u r u rS S S+= .

The union of process rules sR in Figure 4, organization rules oR in Figure 6, and policy rules pR in Figure 7 is referred as
Workflow Specification (WS). In fact, the goal of conceptual workflow design is to produce a consistent WS such that the
workflow can be executed successfully.

 2987

Wang and Zhao A Logic-based Modeling Approach to Managing Workflow Policy Changes

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

Definition 2: Workflow Specification (WS) Consistency
((,),)s i tfindall reach t t S , ((,),)i j r ufindall role u r S + , (,), ((,),)i i i j rmanage r r findall manage r r S , \u r u rS S S+=

A WS is consistent if the following conditions hold:
1. , such that (_ (,),), 1i t j u j it S u S count u execute u t n n∀ ∈ ∃ ∈ ≥

2. ∃ , such that _ (,) and _ _ (,)i u i j i ju S u execute u t WS cannot u execute u t WS∈ ∈ ∈

∃ , such that _ (,) and _ _ (,)i r i j i jr S r execute r t WS cannot r execute r t WS∈ ∈ ∈

Figure 8. Definition of Workflow Specification Consistency

We define that a WS is consistent if 1) at least one user has been assigned to each task; 2) there is no contradictory information
in WS. For instance, 1 1_ (,)u execute u t and 1 1_ _ (,)cannot u execute u t are contradictory due to the fact that they cannot be
satisfied at the same time. The definition ofWS consistency is formalized as shown in Figure 11.

ANALYSIS OF WORKFLOW POLICY CHANGES

Business processes must change with the customer demands and market opportunities. Due to acquisitions and mergers,
companies’ organization models also often undertake changes. Without a systematic management, these changes can lead to
inconsistent workflow policies. In this section, we apply the logic-based language proposed in the previous section to analyze
the changes of workflow policies.

Process model changes can be categorized into three categories: 1) task insertion, 2) task deletion, 3) structure modification
(Sadiq, et al., 2000). Similarly, there are three types of organization model changes, namely, 1) insertion and deletion of roles 2)
insertion and deletion of users 3) relocation of roles and users. The changes in process model and organizational model
correspond to the changes in process rules sR and organization rules oR , resulting in a new workflow specification WS. Now
the question is whether the new WS is consistent or not. In order to cope with the changes, the previous definition of WS
consistency needs to be extended. Intuitively, the existence of the users, roles and tasks of the logic statements in WS must be
verified. The extended WS consistency is formally defined as follows:

Definition 3: Extended Workflow Specification (WS) Consistency
((,),)s i tfindall reach t t S , ((,),)i j r ufindall role u r S + , (,), ((,),)i i i j rmanage r r findall manage r r S , \u r u rS S S+=

A WS is consistent if the following conditions hold:
1. , such that (_ (,),), 1i t j u j it S u S count u execute u t n n∀ ∈ ∃ ∈ ≥

2. ∃ , such that _ (,) and _ _ (,)i u i j i ju S u execute u t WS cannot u execute u t WS∈ ∈ ∈

∃ , such that _ (,) and _ _ (,)i r i j i jr S r execute r t WS cannot r execute r t WS∈ ∈ ∈

3. t r uS S S S= ∪ ∪

1 1(_ (,),) such thati jfindall r execute r t S S S⊆

2 2(_ _ (,),) such thati jfindall cannot r execute r t S S S⊆

3 3(_ (,),) such thati jfindall u execute u t S S S⊆

4 4(_ _ (,),) such thati jfindall cannot u execute u t S S S⊆

5 5(_ _ (,),) such thati jfindall must u execute u t S S S⊆

Figure 9. Definition of Extended Workflow Specification Consistency

Workflow Specification Consistency Checking and Enforcement

Based on the new definition of workflow specification consistency, we develop an algorithm for the automatic consistency
checking as shown in Figure 10.

 2988

Wang and Zhao A Logic-based Modeling Approach to Managing Workflow Policy Changes

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

Algorithm 1: Workflow Specification (WS) Consistency Checking Algorithm
INPUT: 1) Workflow Specification including process rules sR , organization rules oR , and policy rules pR
OUTPUT: 1) SUCCESS if the WS is consistent

2) REDUNDANT if there is at least one redundant policy
3) INVALIDATED if there is at least one invalidated policy
4) CONTRADICT if there is at least one pair of contradict policies
5) MISSING if there is at least one task with no user assigned to it

((,),)s i tfindall reach t t S
((,),)i j r ufindall role u r S +

for each logic statement ist in pR :

execute: 1(_ (,),)i jfindall r execute r t S , 2(_ _ (,),)i jfindall cannot r execute r t S , 3(_ (,),)i jfindall u execute u t S

4(_ _ (,),)i jfindall cannot u execute u t S , 5(_ _ (,),)i jfindall must u execute u t S

compute 1 2 3 4 5S S S S S S= ∪ ∪ ∪ ∪
if S t r uS S +⊆ ∪

break
elseif S ()t r uS S +∩ ∪ = ∅

return REDUNDANT and ist
exit

elseif
return INVALIDATED, ist and \ (())t r uS S S S +∩ ∪
exit

 endif
 endif
 endif

endfor
execute 6({ _ (,), _ _ (,)},)i j i jfindone r execute r t cannot r execute r t S

 if 6S ≠ ∅
return CONTRADICT and 6S
exit

 endif
execute 7({ _ (,), _ _ (,)},)i j i jfindone u execute u t cannot u execute u t S

if 7S ≠ ∅
return CONTRADICT and 7S
exit

 endif
for each i tt S∈
 execute (_ (,),)j icount u execute u t n
 if 0n =
 return MISSING and it
 exit
 endif
endfor
return SUCCESS

Figure 10. Workflow Specification Consistency Checking Algorithm

Given a WS, Algorithm 1 cannot only check its consistency, but also pinpoint each policy that causes the inconsistency if any.

 2989

Wang and Zhao A Logic-based Modeling Approach to Managing Workflow Policy Changes

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

In particular, the policies causing the inconsistency are classified into four categories, namely, Redundant, Invalidated,
Contradict, and Missing policies. Proper actions must be taken according to the type of the policy to remove the inconsistency.
Redundant policies can just be deleted or disabled. Invalidated policies can be further subdivided into policies invalidated due
to the deletion of tasks and policies invalidated due to the deletion of users and roles. The first type of invalidated policies can
be removed without further investigations if all the tasks involved in the policy have been deleted, otherwise appropriate
modifications to the policy are needed. For the second type of invalidated policies, the users and roles that have been deleted
must be replaced properly, where privilege inheritance and delegation may provide solutions. For contradictory polices, further
study of the policies is needed to solve the contradiction, which is out of the scope of this paper. For missing polices,
appropriate role-task assignments can address the problem.

As we mentioned before, dynamic security policies, such as separation of duties and binding of duties can only be evaluated
during the execution of workflow. In the workflow execution phase, when a task is activated, we use Algorithm 2 to enforce the
WS consistency.

Algorithm 2. Workflow Specification (WS) Consistency Enforcement Algorithm

INPUT: 1) Workflow Specification checked using Algorithm 1.
OUTPUT: 1) CHECK and Updated Policy Rules pR if the algorithm completes successfully, otherwise

2) FAIL and the task it where at least one policy cannot be enforced.

upon each activation of task it do:
 execute (_ _ (,),)j icount must u execute u t n // enforce binding of duties
 if 0n ≠

return CHECK and exit
 endif
 execute (_ (,),)j icount u execute u t n

 for 1k = to n // enforce separation of duties
 add _ (,)

kj iu execute u t to pR
 run Algorithm 1
 if Algorithm 1 returns SUCCESS
 return CHECK and exit
 else
 remove _ (,)

kj iu execute u t from pR
 endif

1k k= +
 endfor
 return FAIL and it

Figure 11. Workflow Specification Consistency Enforcement Algorithm

To illustrate the proposed algorithms, assume the requisition approval workflow changes to the one shown in Figure 12. In
particular, task 7t (Inventory Checking) and 11t (Billing) is merged into 5t (Purchasing) as the result of process redesign. Due
to the adoption of a new technology, all the transaction information can be archived automatically by the system, which causes
the deletion of task 12t (Archiving). Furthermore, a new task 14t (Notify Purchase Requestor) is added to notify the purchase
requestor that the item has been shipped or is out of stock. Again, task 6t , 9t , 13t , 14t as underlined, are executed by machine
agents.

 2990

Wang and Zhao A Logic-based Modeling Approach to Managing Workflow Policy Changes

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

Purchase
Request

Supervisor
Approval

Fund
Checking

Mgmt.
Approval

Purchasing

Disapproval
Notification

Back Order Timeout

ShippingPrint PO

t1 t2

t3 t4

t5

t6 Notify Purchase
Requestor

t8 t9

t10

t13

t14

Figure 12. Modified Requisition Approval Workflow

The new process rules (sR) are shown in Figure 13.

1(,)snext t t , 1 2(,)next t t , 2 3 5 13(,[, ,])branch t t t t , 3 4 13(,[,])branch t t t , 4 5 13(,[,])branch t t t , 5 6 8(,[,])branch t t t ,

8 5 9(,[,])branch t t t , 6 10(,)next t t , 9 10 14([,],)merge t t t , 13 14([,],)emerge t t t

Figure 13. New Process Rules

There are also some changes in the organizational model. In particular, role Inventory Clerk (IC) is removed and one accounting
clerk Ben leaves the company. The new organization rules are shown in Figure 14.

manage(GM,GM), manage(GM,ED), manage(GM,PD), manage(GM,AD), manage(ED,SE), manage(PD,PC),
manage(PD,DC), manage(AD,AC), manage(GM,MA), role(John,GM), role(Joe,ED), role(Jason,PD),
role(Maggie,AD), role(Eric,SE), role(Ray,SE), role(Peter,PC), role(Dan, DC), role(Jack, DC), role(Steve,AC),
role(mau ,MA)

Figure 14. Modified Organization Rules

In order to check the consistency of the workflow policies after the changes in process and organization model take place. We
can use the new Workflow Specification (WS) as the input to run Algorithm 1, whose result is shown in the following table.

Output Description Action(s)
1 REDUNDANT and

6 7: _ (,)p r execute IC t
6p is redundant because of the

deletion of IC and t7
Delete 6p

2 INVALIDATED and
8 11: _ (,)p r execute DC t

8p is invalidated because of
the deletion of 11t

Delete 8p

3 INVALIDATED and
9 12: _ (,)p r execute PC t

9p is invalidated because of
the deletion of 12t

Delete 9p

4 INVALIDATED and 11p 11p is invalidated because of
the deletion of 12t

Delete 11p

5 MISSING and 14t 14t is new and no user is
assigned to it.

Assign a machine agent mau to 14t ,
Add 13 14: _ (,)nhp u execute u t to pR

6 SUCCESS WS is consistent N/A
Table 6. Results of running Algorithm 1 on the Workflow Specification after Changes

The new policy rules includes 1 2 3 4 5 7 10 12 13, , , , , , , ,p p p p p p p p p , which are consistent. During workflow execution phase, any
employee can initiate a purchase request and Algorithm 2 is used to enforce the dynamic policies when each task activates.
Suppose the accounting clerk Steve initiates a purchase request with an amount of $5000. Then 1_ (,)u execute Steve t is inserted
into pR after 1t completes. According to the policy 2p , accounting director Maggie will be assigned to execute 2t and

2_ (,)u execute Maggie t is added to pR . Algorithm 2 returns CHECK for both 1t and 2t . However, when task 3t is activated,

Algorithm 2 returns FAIL. This is because of the separation of duties policy 10p : 1t (Purchase Request) and 3t (Fund Checking)
cannot be done by the same person. 1_ (,)u execute Steve t implies 3_ _ (,)cannot u execute Steve t , so Algorithm 2 prevents
Steve from executing 3t and tries to find another eligible user for 3t . However, due to Ben’s leave, Steve is the only user of

 2991

Wang and Zhao A Logic-based Modeling Approach to Managing Workflow Policy Changes

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

role Accounting Clerk that is assigned to execute 3t . In this case, Algorithm 2 fails and the WS consistency cannot be enforced.
One possible solution is to assign Steve’s manager Maggie to handle 3t , but the detailed discussion on this issue is out of the
scope of this paper.

The modeling language we proposed is not intended as the end-user language for modeling process, organization and workflow
policies. It is an internal language used by system to conduct formal analysis. Next, we propose a system architecture for
integrating our approach with exiting WFMSs and related implementation issues are also discussed.

System Architecture and Implementation Issues

In order to incorporate the change management functionality we propose into WFMSs, we develop a system architecture as
shown in Figure 15. We assume that process model, organization model, and workflow policies are found in some existing
WFMSs, which requires the mapping component to convert the definitions into our logic representation. When the automatic
mapping is not available, a GUI tool is provided for the process designer to convert the proprietary definitions into our logic
format. The algorithms we propose are implemented in the Policy Checking and Enforcement component, which provides APIs
to workflow engines to do dynamic policy consistency analysis. Our approach uses a logic reasoning engine to do the analysis.
Given that our language is very similar to Prolog, many free Prolog-based systems can be directly adopted, e.g., B-Prolog
(http://www.probp.com/) and Strawberry Prolog (http://www.dobrev.com/).

Figure 15. System Architecture

CONCLUSION

In this paper, we proposed a logic-based approach to the analysis and enforcement of workflow policy consistency. Our
contribution is threefold: First, we proposed a formal language based on predicate logic to unify the modeling of process,
organization and workflow policies. We demonstrated that our language is expressive and can model all the basic workflow
constructs, role hierarchy with privilege inheritance, and workflow policies, such as role-based and user-based task assignment,
separation of duties, and binding of duties.

Second, based on the analysis of various changes in the process model and organization model, we formally defined a
framework of workflow policy consistency in a dynamic environment using our language. To the best of our knowledge, this is
the first attempt on the formal analysis of workflow policy changes.

Third, we developed algorithms to automatically check and enforce the consistency of workflow policies. The algorithms
cannot only check whether the policies are consistent after changes in process and organization model take place, but also
pinpoint the policies causing the inconsistency, which are categorized into four types: Redundant, Invalid, Contradict, and
Missing policies. According to the type of the policy, proper actions to resolve the inconsistency are also explained. The
functionality of the algorithms is demonstrated via an example. A system architecture is also presented to provide guidelines for
integrating our approach into existing workflow management systems.

Our future research plan includes 1) enhancing the language to support more complex organization model such as teams and
delegation; 2) enhancing the language to support more policies, such as task-based, temporal, team-based policies; 3)
developing a proof-of-concept system to further validate the logic-based approach.

 2992

http://www.probp.com/
http://www.dobrev.com/

Wang and Zhao A Logic-based Modeling Approach to Managing Workflow Policy Changes

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

REFERENCES

1. Atluri, V., and Huang, W.-k. (1996) "An Authorization Model for Workflows," Proceedings of the Proceedings of the 4th
European Symposium on Research in Computer Security: Computer Security, pp. 44 - 64.

2. Basu, A., and Kumar, A. (2002) "Research commentary: Workflow management issues in e-Business," Info. Systems Res.
13, 1, pp. 1-14.

3. Bertino, E., Ferrari, E., and Atluri, V. (1999) "The Specification and Enforcement of Authorization Constraints in
Workflow Management Systems," ACM Transactions on Information and System Security 2, 1, pp. 65-104.

4. Bi, H.H., and Zhao, J.L. (2004) "Applying propositional logic to workflow verification," Information Technology and
Management 5, 3-4, pp. 293-318.

5. Casati, F., Castano, S., and Fugini, M. (2001) "Managing Workflow Authorization Constraints through Active Database
Technology," Information Systems Frontiers 3, 3, pp. 319-338.

6. Cheng, E.C. (1999) "An Object-Oriented Organizational Model to Support Dynamic Role-based Access Control in
Electronic Commerce Applications," Proceedings of the Proceedings of the 32nd Hawaii International Conference on
System Sciences, pp. 8022.

7. Davulcu, H., Kifer, M., Ramakrishnan, C.R., and Ramakrishnan, I.V. (1998) "Logic based modeling and analysis of
workflows," Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems
pp. 25-33.

8. Ellis, C., and Keddara, K. (2000) "ML-DEWS: Modeling Language to Support Dynamic Evolution within Workflow
Systems," Computer Supported Cooperative Work 9, pp. 293-333.

9. Ellis, C., Keddara, K., and Rozenberg, G. (1995) "Dynamic change within workflow systems," Proceedings of the
Proceedings of conference on Organizational computing systems, pp. 10 - 21.

10. Georgakopoulos, D., Hornick, M., and Sheth, A. (1995) "An overview of workflow management: From Process Modeling
to Workflow Automation," Distributed and Parallel Databases 3, 2, pp. 119-153.

11. Huang, W.-K., and Atluri, V. (1998) "Analyzing the Safety of Workflow Authorization Models," Proceedings of the 12th
IFIP Working Conference on Database Security,

12. Jablonski, S., and Bussler, C. (1996) Workflow Management: Modeling Concepts, Architecture, and Implementation,
International Thomson Computer Press, London, UK.

13. OMG (2003) "Unified Modeling Language, Version 1.5, formal/03-03-01," Object Management Group, Mar. 2003.
14. Ribeiro, C., and Guedes, P. (1999) "Verifying workflow processes against organization security policies," Proceedings of

IEEE 8th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE '99)
pp. 190-191.

15. Rowe, N.C. (1988) Artificial Intelligence Through Prolog, Prentice Hall,
16. Sadiq, S.W., Marjanovic, O., and Orlowska, M.E. (2000) "Managing change and time in dynamic workflow processes,"

International Journal of Cooperative Information Systems 9, 1-2, pp. 93-116.
17. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., and Youman, C.E. (1996) "Role-based Access Control Models," IEEE

Computer 29, 2, pp. 38-47.
18. Stohr, E.A., and Zhao, J.L. (2001) "Workflow automation: overview and research issues," Info. Systems Frontiers:

Special Issue on Workflow Automation 3, 3, pp. 281-296.
19. van der Aalst, W.M.P. (1998) "The application of Petri nets to workflow management," Journal of Circuits, Systems and

Computers 8, 1, pp. 21-66.
20. van der Aalst, W.M.P. (2001) "Exterminating the Dynamic Change Bug: A Concrete Approach to Support Workflow

Change," Information Systems Frontiers 3, 3, pp. 297-317.
21. van der Aalst, W.M.P., Kumar, A., and Verbeek, H.M.W. (2003) "Organizational modeling in UML and XML in the

context of workflow systems," Proceedings of the Proceedings of the 2003 ACM symposium on Applied computing, pp.
603 - 608.

22. Wang, H.J., and Zhao, J.L. (2004) "Change Management of Workflow Security Policies," Proceedings of the Pre-ICIS
Workshop on Process Management and Information Systems, Washington D. C.,

23. WfMC (1999) "Workflow Management Coalition Terminology & Glossary, WfMC-TC-1011, Issue 3.0," Workflow
Management Coalition, February 1999.

24. Wu, S., Sheth, A., Miller, J., and Luo, Z. (2002) "Authorization and Access Control of Application Data in Workflow
Systems," Journal of Intelligent Information Systems 18, pp. 71-94.

25. zur Muhlen, M. (2004) "Organizational Management in Workflow Applications - Issues and Perspectives," Information
Technology and Management 5, 3, pp. 271-291.

 2993

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2005

	A Logic Based Modeling Approach to Managing Workflow Policy Changes
	Harry J. Wang
	J. Leon Zhao
	Recommended Citation

	tmp.1236824948.pdf.hiTtY

