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ABSTRACT

Finding a common pattern among nucleic acid sequences in a given database is an important yet relatively difficult problem
in computational biology. Such a pattern is useful for describing the characteristics of a certain family of nucleic acid
sequences, and can also be used for classification purposes as well as examine the closeness of two organisms. In this paper,
we present a global pattern extraction tool named GAPE which can be applicable in computational biology to describe a
certain family of nucleic acid sequences with common features. The algorithm utilizes an optimized Genetic Algorithm (GA)
framework to drive the evolution of desirable patterns. A specialized par-wise alignment algorithm is aso introduced to
efficiently examine the closeness of a sequence to aregular expression pattern. Experimental resultsusing real biological data
are shown to indicate the effectiveness of the tool.

Keywords

Patten extraction, motif discovery, classification, genetic algorithm

INTRODUCTION

Functionally related nucleic acid sequences share some common elements which correspond to residues conserved during
evolution due to their important structura or functional roles (Rigoutsos and FHoratos, 1998; Hertz and Stormo, 1999). This
property allows researchers to identify matching nucleic acid sequences that have similar functional behaviors as a given
sequence or pattern. This type of operation isreferred to as pattern matching in the computational biology. Pattern matching
problems has been well studied and various tools are available, include alignment algorithms (Needleman and Wunsch, 1970)
and BLAST (Altschul, Gish, Miller, Myers and Lipman, 1990). Patterns are not only limited to concrete nucleic acid
sequence strings. Rather, researchers alow patterns to contain regular expression operatorsto increase their expressive power
and flexibility (Brazma, Jonassen, Eidhammer and Gilbert, 1998; Conklin and Farrah, 1998). Other extensions (Quest and
Ali, 2004) also provide a mechanism for users to define the number of errors allowed, where different numbers can be used
to control the degrees of similarity of imperfect matches all owed.

In addition to pattern matching, another useful operation based on the property of common elements shared in nucleic acid
sequences is to find a global pattern of a family of sequences that are functionally related. Global pattern is essentially a
representative of a given family. It contains the common local moatifs discovered in the family, and the expressions used to
connect these motifs due to the variations in between them. These variations may be expressed in forms of some grammar
(e.g. regular expression). Global patterns would be desirable for example if we can find a pattern of DNA sequences of
people who carry a certain type of cancer. This pattern can then be used to compare against other sequences to determine
whether they carry the same type of cancer or not. We call the process of generating the common non-contiguous global
pattern the pattern extraction problem.
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Pattern extraction problems can be understood as a reverse process of pattern matching. Unfortunately, the algorithms used to
solve pattern matching problems areirreversible, thus cannot be applied to solve pattern extraction directly. Most of the tools
available for pattern discovery/extraction mainly concentrate at local levels, which are often referred to as motif discovery
tools. They employ either a profile or pattern representation of a motif. In a profile-based method, a motif is represented by a
position-specific scoring matrix. Packages that employ this type of representation include GibbsDNA (Lawrence, Altschul,
Boguski, Liu, Neuwald and Wootton, 1993), MEME (Bailey and Elkan, 1995) and CONSENSUS (Hertz and Stormo, 1999).
In a pattern-based method, a motif is represented as a string. These strings may contain mismatching information or even
regular expression operators. Packages that employ pattern representation include TEIRESIAS (Rigoutsos and Floratos,
1998), WINNOWER and SP-STAR (Pevzner and Sze, 2000). Ancther form of pattern-based method recently introduced by
Buhler and Tompa named Projection uses locality-sensitive hashing to search for motifs (Buhler and Tompa, 2002; Raphael,
Liu and Varghese, 2004).

Since the above methods concentrated on local matifs, they may not be suited to extract the global pattern of a nucleic acid
family. In this paper, we present an optimized Genetic Algorithm (GA) based approach to extract non-contiguous global
pattern of a given nucleic acid family. The GA smulates an evolutionary process to optimize the strings containing the
pattern information of this family during the process. The optimizations of the GA can be described as follows: the initial
patterns are generated through an efficient cluster analyss procedure in order to increase accuracy, where each individual
pattern is a continuous string  representing some common elements found in the family; genetic operators named mutation,
crossover and fusion take sufficient advantages of alignment results among nucleic acid sequences to drive the evolution of
desirable patterns, and they ensure the common local motifs obtained in the current patterns are carried out to the next
generation; in addition, a post-GA procedure is applied to generate a transformed pattern in a regular expression by
incorporating the GA-generated pattern with the original nucleic acid sequences in the family. The patterns obtained by our
method contain local motifs along with regular expression operators, and it may be further processed to extract local motifs
aswedll. In addition, the obtained global pattern can be used to search for matching sequences within nucleic acid databases,
or to test the membership of new sequences for classification purposes.

One of the tools available for protein and nucleic acid sequences classification is called HMMER (Eddy, 1998). It is a
biological sequence analysis tool which uses profile Hidden Markov Models (Eddy, 1998) as its underlying structure. The
idea of HMMER is to study the sequences from a given database in order to construct a hidden Markov model (HMM)
profile for classification. New sequences to be classified are sent to the profile and scores are computed based on the
probahilities. Different from HMMER, our tool takes a pattern based approach for classification. Since the pattern obtained
by our extraction algorithm optimally describes the characteristics of a given database, new sequences can be compared
againg this pattern to examine whether they carry the same characteristics as the pattern. Scores are assigned to each
comparison, which are used to estimate the membership of the tested sequences.

Most of the components used in our tool are implemented using Java, with the exception of a multiple sequences alignment
(MSA) tool named ClustalW (Thompson, Gibson and Higgins, 1994). We have chosen to use ClustaW because it is well
developed and widdy accepted by many researchers. We examined the effectiveness of the tool using a real biological
database Rfam obtained from (Jones, Bateman, Marshall, Khanna and Eddy, 2003). Pattern extraction and classification are
applied on eight distinct families in the database. The average classification accuracy among these eight familiesis 99.5%.

GENETIC ALGORITHM BASED PATTERN EXTRACTION (GAPE)

Given a set of nucleic acid sequences, the problem of pattern extraction isto find an optimal global pattern such that it can be
used to express the common features of these sequences. The extracted pattern can serve for classification purposes to
determine whether a given sequence is within this family or not, which is very useful in computational biology. The
challenge, however, is that optimal patterns may not be easily discovered due to huge data sizes and lack of knowledge.
Therefore, finding optimal approximations of such patternsis the objective.

A tool, called GAPE, isintroduced for pattern extraction in this paper. The overview of GAPE can be illustrated using Figure
1. Each oval in the figure represents a component of the tool. Data Management gives users ability to organize nucleic acid
data. For example, nucleic acid data needs to be represented in FASTA format and then stored into data repository. Once the
data file is successfully loaded into the system, pattern extraction may be performed. The final output is organized and
displayed back onto the interface and the next set of operations may continue. GAPE also gives users abilities to perform
nucleic sequences classification and further extract local motifs aswell, based on the obtained pattern.
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Figure 1. Overview of GAPE

Interface

Pattern Extraction

The flowchart of the pattern extraction algorithm is shown in Figure 2, which consists of two major components. genetic
algorithm processing and pattern construction. The genetic algorithm processing component is shown in the central portion
of the flowchart. Devel oping this component involves three parts: 1) design of an initia population construction mechanism,
2) design of applicable fitness functions, and 3) design of three GA operators for offspring generation. Each of these partsis
carefully designed to satisfy our specific domain of problems. The pattern construction component as shown in the right
hand portion of the flowchart is needed because optimal solutions obtained by the GA are strings containing only common
elements found the sequences. It may lack the power to express e ements where base residues vary in different sequences.
Therefore, the GA-generated string may need further processesin order to incorporate information gathered from the original
nucleic acid sequences regarding different variations of certain elements.

OPTIMIZED GENETIC ALGORITHM

The GA isamodd of machine learning which derives its behavior from a metaphor of the processes of evolution in nature.
This is done by the creation within a machine of a population of individuals. The individuals in the population then go
through a process of evolution: use GA operators to generate offspring of a given population, and then use a fitness function
to select the more fitted individual s to form the next generation of population. This evolution process repeats till the optimal
solution is found or no further improvements can be made.

The optimized GA used in our agorithm follows the same technique as described above. In this section we emphasize the
three major effortsin the design of the optimized GA for nucleic acid pattern extraction: 1) each individual in the population
isrepresented as a string of residues, which is used to express the common parts found in the given nucleic acid sequences. In
order to carry out these common parts information, initial population is constructed based on a fast cluster andysis
procedure; 2) fitness functions are designed to reflect all sequencesin the database; 3) GA operators are redesigned because
“too much” change may be made to the individualsif standard operators were performed in our specific domain of problems.
These changes are explained in detail in therest of this section.

Construction of the initial population

Construction of an initial population is an important procedure in GA mainly because al offspring are depended on it. Asa
result, a better initial population generally yields a faster termination. However, the term better isloosdy defined and varies
depending on the domain of the problem. Another challenge is that the initial population should be generated in a timely
fashion in order not to cumber the overall efficiency.

The initial population construction employed in our optimized GA uses a fast dtatistical anadysis indicated as “cluster
analysis’ in the flowchart. The idea of using cluster analysis is borrowed from a multiple sequence alignment tool named
ClustalW (Thompson and Gibson et a., 1994), though different measures are used in our implementation. The procedure
binds moreidentical sequencesin the database together, which are then used to form strings that contain their common parts.
Thus more common el ements may be collected in our initial population by using thisheurigtic.
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Figure 2. Flowchart of pattern extraction algorithm

Table 1 illustrates the cluster analysis procedure. A matrix is used to record the percentage identity of each DNA comparing
againgt another in the database. Percentage identity of two sequences is computed as follows:

Number of Identical Residues” 100
Lengthof theSmaller Sequence

Percentageldentity =

Although a more sophisticated measures may be used, they may require much more time hence reduce the overall efficiency
of the algorithm. The following table shows the fully computed percentage identity table of the 5 sequences given on the | eft
hand sde in Table 1. Since the percentage identity matrix is symmetric, only the lower half needs to be computed. To
compute the percentage identity of sequence 1 and 2, we first need to determine the length of the smaller sequence: it is the
length of sequence 1, i.e., 5. The next step isto get the number of identical residues: positions 1, 4 and 5 are the only places
where sequence 1 and 2 has identical residues, thus the number is 3. By plug in these values into the above formula, we can
obtain the percentage identity of sequence 1 and 2, whichis3” 100/ 5= 60. Similarly, the rest of the table can be computed.
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ID Sequence Sequence ID 1 2 3 4 5
1 BRACTT 1

2 ACGTITA 2 G0

3 AGCTI 3 20 | 60

4 BRCT 4 100 30 | 75

5 ATCTIG 5 80 | 30 | &80 [ 73

Table 1. Cluster analysis— per centage identity score

Once the percentage identity table has been constructed, the initia population construction procedure scans through the
matrix and searches for the two nucleic acid sequences that produced the highest score in the current matrix (break ties
randomly). Longest common subsequence of the two selected sequences is then obtained and stored into the initial
population. The corresponding score of these two sequences in the percentage identity table is then set back to 0; hence they
will not be re-selected again as a pair. They are, however, still digible to be paired up with other sequences depending on
their corresponding scores. This process repeats until all individualsin the initial population have been initialized.

Fitness function of genetic algorithm

A goad fitness function is an essential part of GA because it determines which individuas in the current population will be
kept while the rest of them will be discarded. It varies depending on the problem and should reflect the properties of the
subject to be optimized.

The fitness function employed by GAPE is best average score. Each individual in the population is pair-wise aligned with
each sequence in the database and its average alignment score is recorded. The ones with higher average score will be
assigned a higher value. This function is applied to guard each generation till the termination of GA. It guarantees that the
newer generation is a least as good as the previous ones. After the current generation has been sdected, then it is the
responsi bility of the GA operatorsto construct the next generation to be examined.

Genetic algorithm operators

GA operators are responsible for constructing the offspring based on a given population. The GA operators have to maintain
the majority of the characterigtics of the individualsin the current population while making some minor changesto see if they
are better off using fitness function.

Three GA operators have been developed for the pattern extraction tool. These operators follow the essential idea of standard
GA operators that better individuals (i.e, strings with higher scores assigned by the fitness function) have a greater chanceto
be selected to produce offspring. These three operators are discussed as follows.

Mutation operates on a single individual and generates one child. It randomly picks a position in the string and replaces the
base character at this position with a different base character. This operator is mainly used to get around the local optimum.

Crossover operates on two individuals and generates two children. Different from standard crossover, our two chosen
individuals may not have the same length. Furthermore, the operation must not destroy their common parts. Therefore, it is
very important that pair-wise alignment of these two strings is performed first. The procedure then randomly picks two
positions and interchanges the substring bounded inside these two positions. Finally the gaps created by alignment are
removed to form the two children. Notice that performing pair-wise alignment prior to crossover ensures that the common
elements obtained in the parents still remain in both children so that common residues in the current population areinherited.

The fusion operator aso operates on two individuals, but only generates one child by returning the longest common
subseguence of the two chosen individuals. The idea of this operation is to remove some of the noisesin the selected strings
to produce a more condensed individual containing purer common elements.

The following example illustrates these three GA operators. Each of these three operators has a probability associated with
them so that some will be performed more often than the others during execution. The current assignment of the probabilities
for mutation, crossover and fusion is 20%, 40% and 40%, correspondingly.
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Parent(s) Pick Position Crossover Child(ren)
(a) Mutation AATGA AATGA o AACGA
(b) Crossover i AATGAC AATAC
ATAC -BT-AL —ATGAC ATGAC
(c) Fusion ARTGAC _ = ATAC
ATACG

Figure 3. Thethree GA operators

This GA keeps searching for the optimal solution until termination criterion is satisfied. The termination criterion currently
employed by the tool returnstrueif the best individua in the population remains the same for N generations. A larger N value
yields more accurate result, but also takes longer time to terminate. The actual value of N may be determined by the users at
their preferences.

PATTERN CONSTRUCTION ALGORITHM

Upon termination of GA, the next step of the process is to generate a meaningful pattern that has the power to express its
family based on the string returned by GA. This process is called pattern construction. The GA-generated optimal string,
denoted as GA _String for simplicity, carries common eements obtained from the nucleic acid sequences. These common
elements, even though adjacent to each other in the GA_String, may appear apart in the original sequences, due to the
uncommon parts in between the common elements. Therefore, a mechanism must be provided in order to incorporate the
information carried in the original sequences into GA_String to form the final global pattern for thisnucleic acid family.

We use multiple sequence alignment (MSA) to achieve this incorporation. MSA locates and aligns the common dements
found in each record, which are later transformed into concrete base characters in the pattern. These common elements,
represented as concrete characters in GA_String, may not appear exactly the same in each of the original sequences, i.e.,
some minor variations are allowed. However, these common elements are representatives of the majorities. As oppose to
these concrete characters in GA_Sring, its gaps produced by MSA indicate the positions where base characters vary in
different records and no dominating character could be obtained. Combining these two observations together, concrete
characters and gaps in GA_String combine with original sequences will give us information needed to construct the desired
global pattern. The MSA component used in our tool is not implemented from scratch; instead, a slightly modified version of
the well developed MSA tool named Clusta W (Thompson and Gibson et al., 1994) is used. The most important modification
of ClustalW is the cluster analysis procedure: in addition to group sequences based on their pair-wise alignment score only,
the formation of the tree centers on the GA_String. Because the GA_String contains the common e ements obtained from the
family of sequences, this modified MSA agorithm determines the gap positions even more accurately.

The global pattern is defined usng a modified regular expression. The modification can be described as follows: 1) only one
regular expression operator, ‘[]’, is employed to represent a character class; 2) probability (computed using percentage)
information is incorporated into each character class, and is used to compute the closeness of a sequence comparing with the
obtained pattern. E.g., ‘[ A(. 7) T(. 1) - (. 2) ]’ impliesthat the probability of ‘A’ appear at this particular position is 70%,
where the probabilities for ‘T’ and ‘— (gap) would be 10% and 20% respectively. Notice that we do allow gaps to be
included into the character classes so that a sequence will not be reported dissmilar to the pattern solely because they are
shorter. Thisis to say that we focus more on the fact that whether a sequence contains the common elements found in the
family or not, rather than solely the length information. By incorporating percentage information into the modified regular
expression, more precise patterns can be generated. The global pattern generation processisformally presented below:

(1) Perform MSA of GA_String with the original sequences;
(2) Scansthrough thealigned GA _String:
a. If the current position is a base character, map it to the same base character;
b. Otherwise, map the current position to a character class containing al possible characters (including gap)
occurred in the current column, associated with their percentage information.
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GA_String
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Record2
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Record4
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G-AGGCGGCACARGC
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6CTRGCEACTIA-C]
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RegEx
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Generation

Obtained RegEx Pattern
[T(-4YG(.4)-(.2)]1[Cl.-4)=(.6)1[A({-6)T(.4)]GCCEGC[A(.2)T(.2)C(.2)G(.2)~(.2)]CA[A(.6)-(.4)]GC

(c)
Figure 4. Output construction processfor a smple pattern extraction problem

Figure 4 illustrates pattern generation process. Figure 4(a) shows the GA_String; The incorporation is done by performing
MSA as shown in Figure 4(b). Here, the first column contains T, G and gap ‘-'. The percentage information for T is 2
(occurrences) out of 5 (total records), i.e., 2/5=0.4. Similarly, we can calculate this information for G and gap, which are 0.4
and 0.2 respectively. Therefore, the first position is mapped to character class [ T(. 4) (. 4)-(.2)]. This procedure
continues on to the second column, and it ismapped to [ C( . 4) - (. 6) ] . After scanning through the entire GA_String, the
optimized regular expression pattern is obtained as shown in Figure 4(c). At this paint, finally, the desired global pattern of a
family of given nucleic acid sequences is successfully obtained.

CLASSIFICATION USING CLOBAL PATTERN

We firgt introduce a specialized pair-wise alignment agorithm method which is used to measure the closeness of a given
sequence with an obtained global pattern. The agorithm aligns a nucleic acid sequence with an obtained pattern represented
in the form of regular expression, using dynamic programming techniques. The dignment algorithm is smilar to Needleman-
Wunsch algorithm (Needleman and Wunsch, 1970), with two modifications: the gap penalty and matching information is
incorporated into the scoring matrix; and probabilities of each residue appearing at a particular position are taken into
consideration when computing the aignment scores.

The scoring matrix used in Needleman-Wunsch algorithm contains values for every possible resdue match. We have
extended this matrix to incorporate gap penaty information as well since gaps may be included in the character classesin the
specialized pair-wise alignment. Thefollowing is an example of such an extended matrix:

A T c ]
A 4
T 0 9
C ] -3 &
[] 0 -1 -2 B
-GapPenalty -SapPenalty -GapPenalty -GapPenalty [4+3+5+5)/4

Table 2. Specialized scoring matrix

In the extended scoring matrix, a gap (represented using ‘-’) is treated as a residue. The scores for matching any non-gap
residue with a gap is “-GapPendty”. This is consistent with subtracting the GapPenalty in Needleman-Wunsch algorithm.
The score for a gap-to-gap matching is needed so that the short nucleic acid sequences will not get low score due to their
shortness. For example, when aligning a sequence Swith a pattern P, if a character classin P at a particular position contains
gap, it implies that a gap is allowed at the same position in S This score is computed by taking the average of the exact
matching scores (scores on the diagonal).

The specialized alignment algorithm needs to take the probabilities of each residue in a character class into consideration.
Thus, we need to modify the alignment score computation procedure. In our modified regular expression, a concrete
character, e.g. “C’, may be expressed as “[ C(1) ] ”. Therefore, each character class (eg. “[ C(. 4) - (. 6) ] ") and concrete
character (e.g. “[ C(1)]") in the obtained pattern can be considered as a single token. Each token contains the possible
characters allowed at a particular position along with their probabilities. Thus, given a nucleic acid sequence S and a global
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pattern P, where S=s;S, ... Sy, (S denotes a base character) and P = pyp; ... pn (p; denotes a token), the alignment score of S
can be found by successively finding the best scorefor aligning sy, S, ... , S With py, P, ..., p," i1 [Lm] and " jT [Ln]. The

alignment scoreis calculated through amatrix M where each element of M is calculated as follows:

.‘:.Mi—l,j—l+$0re(si' pj) @
M j =maxj M; ;.o +score(-", p;)  (2)
M1 +soore(s,~")  (3)

where score(x, y) is obtained by score(x,y) = & (scoring_matrix(x,a)” prob(a, y)) and R is the set of residues as well as
"al A

‘*-'. E.g., in case of DNA sequences, R = {*A’, ‘'T", 'C’, ‘G, *-'}. Scoring_matrix(x, &) retrieves the score from the scoring
matrix for matching residue x with «; prob(e, y) is a short-hand notation used to express the probability of occurrence of « in
token y. Following this computation, the alignment score of Sand P is obtained at M. Intuitively, Equation (1) computes
the alignment score by matching the residue at position i in Swith the token a position j in P. Equation (2) computes the
score when agap isinserted at positioni in S and (3) computes the score when agap isinserted at position j in P. Notice that
in (2), if the probability of ‘-’ in the current token is 0, i.e., no gaps are allowed at this position, then the full gap penalty will
be taken. Similarly, thetokenissetto[ - (1) ] in (3) at al times, thus, the full gap penalty will always be taken if we try to
insert agap into the pattern during the procedure. In case a pattern contains only concrete characters, this alignment algorithm
behaves the same as Needleman-Wunsch algorithm. Therefore, we can also understand this specialized alignment algorithm
as the generalization of Needleman-Wunsch algorithm to the regular expression.

This specialized alignment score has the same property as the traditional one, that is, the more similar Sis comparing to P,
the higher score S will obtain. Therefore, all existing methods for pattern matching are still applicable using the new
algorithm, and classification model can be constructed base on the global pattern and the scoring information.

To construct a classification modd, the specialized alignment algorithm is performed on the fina pattern with each sequence
in the training data file. The average alignment score and standard deviation is recorded. In fact, the classification mode

cons sts of the pattern obtained, the average alignment score avg(score), and the standard deviation . Once such amodel has
been constructed, a new sequence may be submitted for classification. Thetool alignsthe input sequence with the pattern and
records its aignment score. Estimation of membership is made based on how far away this alignment score is from the
average in terms of . If the difference is within o, the input sequence is highly likely to be a member of the family; on the
other hand, if the differenceisgreater than2” s , we rgect the sequence stating that it is probably not amember. Therefore, a
fina score of a sequence denoted as the GAPE score is introduced. GAPE score of a sequence Sis essentially the alignment
score obtained by aligning Swith the pattern, and then subtracted by the lower cutoff line. This is shown using formula (4)
bel ow:

GAPE Score= AlignmentScore- (avg(score) - 2° s) 4

Thus, sequences with non-negative GAPE scores are considered as members of the family; while sequences with negative
GAPE scores are considered not to be members.

EXPERIMENTAL RESULTS

The GAPE tool has been tested using real biological databases. The data used for testing is a part of Rfam obtained from
(Jones and Bateman, et al., 2003). We have tested multiple RNA families for pattern extraction and classification, and the
results are presented in this section.

The RNA sequences listed below is an RNA family example obtained from Rfam. The obtained pattern does carry the
common elements found in the training data. After performing MSA (results not shown here), on the positions where residues
vary too much for them to be considered as common elements, character classes are captured during pattern construction
procedure.
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The Complete Training Data:

Ggttttaacccagttactcaaggtacgotggagttctgacctttogaaagaaagtgtcaaacgactt taatttttggaaccgototgotggggteatccggtagagoaas
ggtttttacccagtatctcaaggtactaagggattccgaccatageccgactatgogtogacaaccaaattttttggaacagcctcaccggyggtca tecgggaggcaac
ggttttaacccagttaaccaaggttagcatgtattccgaccattogtaagagtgtgttgaataacaataatt tttggaacagottctteggggttateccgtcgaagcaas
gottttaacccagttaaccaaggttagcatggaattcgatcattogocaagaatgtgtocgaaacacaaaattttggacaagcttecct cggggtatcocgtgggagcaaa
ggttttaacccaagttaaccaaggttagecattgaatttogacctttogotaaaacgattgtgttgagaatecgttcaatttttggaactgoct tottogoggtatocggggaggcgas
ggttttaacccagttaattgaggttagcaataatttcgacctttogaaagattgtgttgaataacaataatttttggaacagottcttcggggatatecgatgaagcaas
ggttttaacccagttaaccaaggttagaatggattccgaccattogaaagagtgtgttgaataacaataatttttggaacagocttattcagggttatccgcaaaagatas
ggttttaacccagtttaaccaaggttagetgtcgtttcgatctoctcgaaagagtgtgtegaatagaaacaccaatttttygaaccgcocict togoggatat cocgttgaggcaaa
gotttttacccagttaaccaaggttagcattaaatttcgacctttocgcaagaacgcgttgaaatgocaaatecaatttttggaaccgcttecttcogggyaatccgttgaggcaas
gtttaaaacccagttaccaaggtaatt cggagttctgacctttocgaaagaaagogtcttttacgataaattttggattagttcagt cogggtttccggctgaacaaa
gogttttaacccagttaactaaggttagoattaatttcgacctttogaaagattgtgttgaataacaataatttttggaatttttggaaatattttoaggotgacagtggaggcaat
gottttaacccagttactcaaggtacgotggagttctgaccttacgaaagagagtgtcaaacaactt tadtttttggaaaagctocgctgggotta tocggcgaacgaasa
ggttttaacccagttaccaaggtaattocggagtttocgatctttogaaagagagtgtcgattgtgaacaatttttggaatagotctt coggggaato cggtcgggcaat
gttttttacccagtatctcaaggtactaagggattccgaccatagoct cgactatgtgtegocaaccaaactttttggatcagocttctoggggtoaa cocgggaggcgac
gaaaccaatcaatcaagaatgcccaaccctgattccgaccattoaaaagattgtgttgaataacaataacttttggaacagottcttoggggttat ccttogaageasaa
ggttttaacccagtatctcaaggtactacgggcgtctgaccttocacttgtggttgocgtcacaaacctcaat ttttggatagotcactcgyggaat ccgggcaggcaac

Obtained Pattern:

ggttttaaccc [a{.12)-(.88)] agttacccaaggttcgeog [t{.12)-(.88)] gaattccgacc [2a{.38)t{.62)] ttcga [E({.12)c(.06)-(.81)]
[a{.06)t{.08)-(.88)] [a(.06)-(.94)] [a(.06)-(.94)] [a(.81)g(.12)-{.06)] agagtgtgtcgaacaacaa [a{.06)c(.06)-{.88)] [a(.06)-(.94)]
[t{-12)c(.06)-(.81)] teatttttggaac [t(.06)-{(.94)] [t(-06)-(.94)] [t(.06)-(.94)] T[t{.06)-(-94)] [g(-06)-(.94)] [g(.06)-{.94)]
[a{.06) -(.94)] agcttcttocggggt [2(.31)t{.44)g({.0&8)c(.19)] atccgggaggcaaa [a(-44)t{.06)-{-50)]

The effectiveness of the classification method is also examined. Figure 5 illustrates the classification results performed on
four different Rfam families. In each figure, circles are used to denote the sequences within the same families as the training
data, and crosses are used to represent other segquences outside the testing families. Except a very few outliers, all sequences
within the families of the testing data scored above 0, where as sequences from other classes obtained much lower scores.
Notice that there are clear indications even for the outliers that have scored below 0 as well (they are still much higher than
scores obtained by sequences from outside the family). Total of eight randomly selected Rfam families are tested to
investigate the effectiveness of GAPE. The tota number of misclassified sequences for these eight families was 14 out of
3041, i.e, the overall accuracy for GAPE is99.5%. All of these misclassified sequences are false negative.
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Figure5. Classification results: GAPE Score3 0 U member of the family

Our experimental results for both pattern extraction and classification indicate that: the pattern we obtained to express a
nucleic acid family can be used for classification with satisfactory results, and more importantly, the pattern extraction
algorithm presented in this paper isindeed effective.
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CONCLUSION

Weintroduced atool taking an optimized genetic algorithm based approach to extract global nucleic acid patterns effectively.
The optimized GA algorithm simulates an evolutionary process to optimize the strings containing the pattern information of a
nucleic acid family during the process. This process ensures the obtained string contains the most common el ements among
these sequences. Major optimizations done on the design of the GA can be summarized as follows: the initia population of
GA is generated through an efficient cluster analysis procedure in order to increase accuracy; and optimized genetic
operators named mutation, crossover and fusion take sufficient advantages of alignment results among nucleic acid
sequences, and they ensure the common eements obtained in the current population are carried out to the next generation.
The optima string found by the optimized GA then goes through a pattern construction process to incorporate regular
expression operators to enrich its expressive power.

Testing results using real hiological data have shown that the patterns extracted by our tool are capable of representing their
family members. In addition, a classification modd can be constructed based on the obtained global pattern for anucleic acid
family. The classification models for multiple RNA families were verified usng sequences from within the family and
outside the family. Satisfactory results were obtained.
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