
Association for Information Systems
AIS Electronic Library (AISeL)

ACIS 2001 Proceedings Australasian (ACIS)

2001

Improving Software Development: The
Prescriptive Simplified Method
Ilona Box
University of Western Sydney, i.box@uws.edu.au

Jeff Ferguson
University of Western Sydney, j.ferguson@uws.edu.au

Follow this and additional works at: http://aisel.aisnet.org/acis2001

This material is brought to you by the Australasian (ACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in ACIS 2001
Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Box, Ilona and Ferguson, Jeff, "Improving Software Development: The Prescriptive Simplified Method" (2001). ACIS 2001
Proceedings. 13.
http://aisel.aisnet.org/acis2001/13

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Facis2001%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2001?utm_source=aisel.aisnet.org%2Facis2001%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis?utm_source=aisel.aisnet.org%2Facis2001%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2001?utm_source=aisel.aisnet.org%2Facis2001%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/acis2001/13?utm_source=aisel.aisnet.org%2Facis2001%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Proceedings of the Twelfth Australasian Conference on Information Systems

Improving Software Development: The Prescriptive Simplified Method

Ilona Boxa and Jeff Fergusonb

aSchool of Management
University of Western Sydney, Quakers Hill, Australia

i.box@uws.edu.au

bSchool of Computing and Information Technology
University of Western Sydney, Parramatta, Australia

j.ferguson@uws.edu.au

Abstract

We describe the Prescriptive Simplified Method (PSM), a software development method, based upon UML and
use cases. PSM uses a traditional software development cycle and embeds use case development in the system
construction phase. PSM has been used in three pilot studies. These studies support PSM as a viable means of
transitioning lay people to novice system developers. This paper defines PSM and a teaching approach. Our
overall goal is to validate both by tracking the development of a cohort of students, from the beginning of their
training through to their early experiences in industry.

Keywords

IS education, IS training and development, IS development methods and tools, IS development strategies, IS life
cycle activities, IS skill requirements

INTRODUCTION

There are several motivations to our work. There is a shortage of IT professionals; this has been well reported in
scholarly and popular press. Mass education has meant a change in the type of student at university (Biggs
1999). There is a need for graduates to have good software development skills (Hellens et al. 2000). Our
experience with IS development methods available in texts has been that they are targeted above the ability of
the majority of the students. These factors lead us to develop a new method the Prescriptive, Simplified Method
(PSM) and a teaching approach for it.

Jayaranta reported that, in 1994, there were over 1,000 brand name information system development
methodologies worldwide. The advent of the Unified Modelling Language (UML) as a standard has made the
debate for object-oriented over structured methods more persuasive. The combination of UML with use cases
has great practical value (Constantine and Lockwood 1999, Jacobson et al. 1992, Larman 1998; henceforth
referred to as earlier use case approaches). These methods are thorough and quite complex.

So why develop yet another method? When teaching these earlier use case approaches to lay people we had a
number of difficulties. The earlier use case approaches, and the associated texts, often assume prior knowledge
of information systems development. Students found some approaches ambiguous about when use case
development starts, when the project starts, what is delivered at the end of use case development and at the end
of a project. It was difficult to cover the knowledge of the business view and the system developer view while
also teaching the complexities of these approaches. When teaching earlier use case approaches, we taught that
each use case should deliver an increment useable by the client. However, in practice, the use cases need to be
integrated into an application framework to create a product. Also, good programming practices such as
pseudocode, modularisation and program structures still apply in object-oriented development.

The above difficulties led us to develop the Prescriptive Simplified Method (PSM) to transition lay people to
novice developers. PSM is specifically targeted at developing software applications for business (as opposed to,
for example, control systems), which allows for considerable simplification over earlier use case approaches. In
earlier use case approaches, use case development is diffused throughout the entire method. In PSM, use case
development is explicit and localised. PSM uses a traditional software development cycle and embeds use case
development in the system construction phase. We do not claim that our method is of industrial strength. (For
example, we have not included packages or components to deal with networking systems.) Rather it is the place
to start for a lay person so that he/she can become a novice system developer. Once novices gain more
experience we expect that they will be able to adapt to any new development method they may encounter.



Proceedings of the Twelfth Australasian Conference on Information Systems

This paper will describe our research method, the pilot studies that contributed to the refinement of PSM, the
PSM and the teaching approach we have used.

RESEARCH METHOD

This paper describes the first of four stages anticipated to take several years.

Stage One

Stage one is largely complete and took two years. Stage one was exploratory and developmental; the major
outcome being the PSM, which was initially developed and then modified during pilot studies. We initially
developed PSM from our experience with other methods, structured and object-oriented. The first two pilot
studies have resulted in some refinement of the method. We are refining the PSM and developing the teaching
approach in a third pilot study.

Stage Two

Stage two will involve the instruction of lay people in the PSM, and measuring the student outcomes. (In fact,
PSM is currently being taught, but as the teaching materials and techniques are under development, the transition
of the students from lay people to novice developers is not being measured.) The instruction is bottom-up, in two
components.

1. In the first component, students learn the tasks, tools and techniques of PSM.

2. In the second component, students learn the structure and means of producing project deliverables.

To assess and measure the change in the knowledge and skill level of the individuals participating in stage two,
prescribed tasks on two set projects and questionnaires will be used. Interviews will be conducted with a subset
of the stage two group to gather qualitative data about the instruction mode and PSM.

Stage Three

During stage three the novices from stage two will be grouped into teams of two or three people. Each group will
be assigned a (non-critical) project from a genuine enterprise outside the university (henceforth referred to as
"the client"). An experienced developer will supervise the groups during the 24 to 33 weeks available for each
project. Supervision will be directed toward assisting project management and organisational behaviour issues,
not remedial instruction in PSM, nor direct involvement in the actual development of the product. The supervisor
will be interviewed to discover if additional instruction about the PSM took place. Clients will be interviewed
during the project. At the first interview, their prior experience with information systems development will be
established. At subsequent interviews, clients will be asked to identify where the project is placed in regard to
PSM. Student groups will be interviewed to discover any difficulties experienced with PSM such as gaps in
knowledge or skills and ability. The quality of the deliverables from the groups and of their respective final
product will be assessed. Sufficient data is to be gathered that will correlate the quality of the product, the PSM,
client satisfaction and skill level of the novice system developers.

Stage Four

Stage four will focus on individuals from the groups in stage three who have entered into system developer roles
in industry. The individuals and the employers will be interviewed a number of times over a year. Evidence of
the further use of PSM by the former students will be gathered. An assessment of the employer's and individual's
skills in object-oriented information system development will be made during the year, with two goals. First, to
compare change in skill level, of both the former student and their organisation. Secondly, to assess the influence
of the former student on any organisational change, and to link that change to PSM.

PILOT STUDIES

The aim of the pilot studies was to test the completeness of the description of PSM. Completeness in this context
meaning that the materials about PSM provide enough information for the students to understand, comprehend
and apply the method.

In the first pilot, students applied the PSM to develop, in collaboration, a single project. The project was
developed up to the point of full specification prior to coding. (The pilot was similar to the research method
stage two, second component as described in the previous section.) A group of 40 students were taught over 16
weeks. The prior skill levels of the group members were diverse. Some had no prior background in object-
oriented tasks and techniques. Just over half the group had received instruction in structured methods. The



Proceedings of the Twelfth Australasian Conference on Information Systems

remainder of the group had received instruction in an object-oriented development method based on the text by
Larman (1998). (Larman assumes his audience has prior knowledge of information system development.) The
entire group was instructed on object-oriented software development in the context of PSM. This pilot resulted in
some changes to the PSM. The changes included additional clarity of the specification of entry and exit criteria
at a level comprehendible by the students. This first pilot will be repeated with a group that will have more
homogeneity of knowledge and skill with PSM.

The second pilot of PSM occurred with two people over 8 weeks. This pilot focused on the stage two, first
component, that is, the instruction in the tasks and techniques of PSM. Instruction typically occurred for twice a
week for two hours at each session. Each individual also sought additional instruction to clarify the business
requirements of the project and to monitor the accuracy of his/her completed tasks. This pilot resulted in minor
PSM refinements to the works describing the tasks and techniques. (Space does not permit the inclusion of all
these instructions). The refinements mainly added clarity and finer detail to the descriptions of the techniques.

At the time of writing, the third pilot of PSM is in its twelfth week of a thirteen week study. This pilot
commenced with 93 participants. It is anticipated that about 50 participants will complete the study. This pilot
repeated and overlapped the second pilot. Instruction typically occurred once a week for three hours. A small
number of the total group sought additional instruction to clarify the business requirements of the project and to
monitor the accuracy of his/her completed tasks. So far this pilot has resulted in the discovery that the case study
describing the exemplar project needs to detail all business requirements so that they can be mapped to tasks and
models in the PSM.

One significant outcome of the pilot studies was the need for complete and relevant examples of all of the tasks,
entry and exit criteria. We believe that lay people need the examples as they have very little vision about what
their work will become and have little ability to imagine the final product. A completely worked project will
accompany PSM with copious annotations between PSM instructions, the exemplar project and the developer's
working papers.

THE PSM

PSM (Figure 1) is a software development cycle (SDC) with embedded use case development cycles (UCDC).
PSM phases are system investigation (SI), system definition (SDef), system construction (SC), system
deployment (SDep) and system in use (SIU). Each UCDC has five phases: analysis (A), design (D), construction
(C), testing (T) and integration (I). Tables 1 and 2 indicate the entry and exit criteria of the SDC and UCDC
phases, respectively.

Increment 1 Increment 2

component
completion

Increment n

Figure 1 The Prescriptive Simplified Method

SI SDef SC SDep SIU

...

component
completion including
increment integration

UCDC

component
completion including
increment integration

Software Development Cycle

UCDC

A D C T I

A D C T I

A D C T I

UCDC

milestone milestone milestone milestone



Proceedings of the Twelfth Australasian Conference on Information Systems

The specification of entry and exit criteria does not preclude overlap from phase to phase nor the discovery of
knowledge about the project relevant to other phases or tasks in the project. The PSM encourages the use of the
note notation, specified in the UML, to record discoveries.

During the SDef phase, high level use cases are identified, categorised and ranked. Each use case identified in
the SDef phase is dealt with in rank order. The development of the highest ranked use case may commence
before the SDef phase is completed. In the SC phase, a use case may be developed as one increment, or be
integrated with other use cases to form an increment. Each use case has its own UCDC. UCDCs may run
consecutively, or have concurrent or staggered starts. The first pilot had thirteen use cases, the UCDCs had
concurrent starts. The three use cases developed during the second and third pilots had staggered starts. Figure 1
shows three UCDCs with staggered starts. As each UCDC is completed the executable component is integrated
with the executable component from previous use cases.

In earlier use case driven approaches, use case development is diffused throughout the entire method. In PSM,
use case development is explicit and localised. PSM uses a traditional SDC and embeds the UCDC in the SC
phase. Use case development in PSM is instigated after the high-level use cases are identified and ranked.
Because PSM uses an SDC, the client/manager (who may have no background in systems development) has a
clear and linear view of the project. Progress can be measured and delineated by the milestones at the end of
each phase. Only the development team need be concerned with the iterative development of use cases and the
overlap of tasks from one phase to the next. The user(s) of the function(s) delivered by any one use case need
only be involved in the UCDC for that use case.

The description of all phases of the SDC and UCDC has been standardised. The repetitive nature of the layout,
we believe, helps students anticipate what to look for and where to look while learning PSM. Figure 2 shows the
template for describing any PSM phase. Section 1.1 ("Purpose of the Phase") presents the context of the phase. It
defines when the phase starts, whether it is part of a UCDC or the SDC. The ambiguity about starts and ends of
use case development and project development is removed.

Section 1.2 ("Responsibilities") defines the roles of project participants. Our experience prior to PSM was that
students had difficulty separating the roles and apportioning tasks among project participants. For example, the
students often neglect the user as the source of requirements after the initial phase of the development cycle.
With judicious choice of learning tasks, students use this section to overcome these difficulties. This section
reinforces the need for the project to have management approval as each milestone or phase exit criterion is met.
Both the developer and business views are discussed and contrasted in this section.

Section 1.3 ("Software Development Method Tasks") contains the tasks for each phase. Our choice of tasks is a
limited set that can be used to develop a phase from start to finish (as described in tables 1 and 2). The set is not
all the available models in UML. We intentionally limited the set to one that covers system development in a
simplified way for the development of business information systems (and not, for instance, control systems). Our
method is intended for educational and industry training environments. It is the place to start for a lay person,
such as a student or new recruit, so that he/she can become a novice system developer. A novice system
developer would have sufficient skills to be a worthwhile contributing member of a software development team.
Once novices gain more experience we expect that they will be able to adapt to any new development method
they may encounter. Also, because of the standardised layout of PSM, the novices will know what to look for in
any other methods they encounter.



Proceedings of the Twelfth Australasian Conference on Information Systems

Phase Entry Criteria Exit Criteria
System
Investigation

Some form of proposal. It may be
anything from a verbal request to a
written document that has the vote
from the board of directors of the
organisation.

Statements of

• The Problem

• The Client

• The Business Functions

• The Risks

• The Business Case

• The Project Plan, in general with more detail
about the System Definition Phase Plan

System
Definition

System Investigation Phase output,
plus management approval and
resource commitment.

• High level use cases

• Use case diagram

• Ranked use cases (categorised as core or adjunct)

• Analysis Class Diagram

• Project development plan (based on use cases)

• Detailed plan for System Construction Phase
(based on use cases)

• Management/owner/user agreement
System
Construction

System Definition Phase output, plus
management approval and resource
commitment

For the system construction phase

• One Design Class Diagram supporting all
constructed use cases (an evolution of the
Analysis Class Diagram)

• Beta release software product

• Updated Project development plan (based on use
cases)

• Detailed plan for System Deployment Phase
(based on constructed and integrated product)

For each use case constructed

• An expanded essential use case (including a full
set of alternative courses of events),

• A real use case,

• A design transition table,

• Contracts,

• Collaboration diagrams

• Method specifications

• An executable component that was integrated to
form part of the final product

• A complete and executed test plan

• Management/owner/user satisfaction with the
executable component

System
Deployment

System Construction Phase output:-
The System Deployment Plan,
Beta software release,
management approval and
resource commitment

• Completed system installation, user training and
user system acceptance

• Project termination (subsequent
enhancement/maintenance should be a separate
project)

System In Use System Deployment Phase output
and management acceptance of
project completion

• Significant changes or enhancements to the
existing system are requested

• Management approval for a new project to
commence

• Commitment of resources to undertake the
System Investigation Phase

Table 1: Phases, Entry and Exit Criteria for the Prescriptive Simplified Method



Proceedings of the Twelfth Australasian Conference on Information Systems

Phase Entry Criteria Exit Criteria
Analysis System Definition (& System Investigation)

Phase output, plus management approval
and resource commitment
Preliminary System Construction Phase
output
Any previous UCDC output

• An expanded essential use case
(including a full set of alternative
courses of events)

• An analysis class diagram (evolved to
support the use case)

• UCDC team satisfaction with the other
exit criteria

Design All previous software development method
phase output plus management approval and
resource commitment
Preliminary System Construction Phase
output
Any previous UCDC output
From this UCDC

UCDC Analysis Phase output

• An enhanced expanded essential use
case,

• A real use case,
• A design transition table,

• System event contracts,

• Collaboration diagrams

• A design class diagram (evolved to
support the use case)

• Method specifications

• UCDC team satisfaction with the other
exit criteria

Construction All previous software development method
phase output plus management approval and
resource commitment
Preliminary System Construction Phase
output
Any previous UCDC output
From this UCDC

UCDC Design Phase output

• An executable component ready for
testing

• Source code for the component

• UCDC team satisfaction with the other
exit criteria

Testing All previous software development method
phase output plus management approval and
resource commitment
Preliminary System Construction Phase
output
Any previous UCDC output
From this UCDC

UCDC Design Phase output

• A complete and executed test plan

• An executable component tested to use
case level, ready for integration with
other components at the same
development stage

• UCDC team satisfaction with the other
exit criteria

Integration All previous software development method
phase output plus management approval and
resource commitment
Preliminary System Construction Phase
output
Any previous UCDC output
From this UCDC

UCDC Test Phase output

• An increment of the beta release
product

• Management/owner/user satisfaction
with the integrated executable
component

Table 2: Phases, Entry and Exit Criteria for the Use Case Development Cycle (Embedded in the System
Construction Phase of the Prescriptive Simplified Object-Oriented Method)



Proceedings of the Twelfth Australasian Conference on Information Systems

A task is described in section 1.3.1. PSM is a top-down approach to development. We emphasise in this section
the detail and knowledge about the system that is being captured.

The technique to develop the artefact for each task is described in section 1.3.1.1. We go to some length to
prescribe exactly how to do the task. The three pilot studies have shown that it is critical for the students to be
able to independently repeat the task. Therefore, the technique must be of fine detail. We took full advantage of
existing "best practice" to describe the techniques. For instance we used structured programming and
pseudocode to write method specifications. The meticulous and accurate nature of system development is
emphasised throughout the PSM. The technique also describes the testing and quality assurance that should be
done while doing the task.

The artefact (section 1.3.1.2) is the outcome of the task, having followed the technique. It is the tangible
evidence that the technique has been followed, including the testing and quality assurance elements within the
technique.

Section 1.4 ("Work Product Quality and Testing") explicitly draws attention to the testing that should be done
with peers and other project participants. Section 1.4 reminds the student that system development is a team
effort and describes how the team tests and assures quality at the end of each phase.

Prior to PSM, our experience was that students had difficulty constructing a deliverable at the end of each phase.
Section 1.5 describes the deliverable that needs to be presented to show that a phase has been completed. This
section also clearly sets out what will signify the end of the phase, that is the production of a complete, accurate
and meticulously done deliverable.

The final section deals with phase review. Again our experience with students prior to PSM, was that students
tended to gather requirements, feverishly work through the project and only delivered to the client at the very
end of the project. The students do not seek management review frequently. As in the previous two sections, this
section draws the work of each phase together to a certain conclusion that the students present to the client.

Figure 2 - Standardised Description of PSM SDC and UCDC Phases
1. Phase

All phases start with an introduction that positions the phase in the life cycle.
1.1 Purpose of the Phase

A description of what work will be done, and why it will be done.
1.1.1 Entry Criteria

More detail about the entry criteria (as described in Table 1 and 2).
1.1.2 Exit Criteria

More detail about the exit criteria (as described in Table 1 and 2).
1.2 Responsibilities

A description of who is responsible for the work that will be done, and why it will be done be a
particular role. Presented using the following four headings.
1.2.1 Project Leader
1.2.2 System Developer
1.2.3 Business Manager/User
1.2.4 Project Owner

1.3 Software Development Method Tasks
A prescription of each task, how (in very fine detail) the task is done and what will be produced.
Presented using the following three headings for each task.
1.3.1 Task Name

1.3.1.1 Technique
1.3.1.2 Artefact

1.3.2 Task Name
… etc …

1.4 Work Product Quality and Testing
A description of the standard the work should be and when and how peer and management
reviews take place.

1.5 Phase Deliverables
A description of the actual deliverable for the phase.

1.6 Phase Review
A description of the review process for the phase.



Proceedings of the Twelfth Australasian Conference on Information Systems

THE TEACHING APPROACH

PSM is intended for instruction, therefore we have also developed a teaching approach to accompany the PSM.
The approach is bottom-up. Our approach is to first engage deep learning about the skills of system development
tasks with surface learning about the UCDC and SDC. We follow up with deep learning about the deliverables,
the SDC and UCDC. The third encounter with PSM is an independent undertaking by the students of a non-
critical project from a genuine enterprise. A non-critical project means the enterprise is not jeopardised in any
way if the project should fail or not meet all requirements. The enterprise is genuine. It is outside the university.

The PSM states that the SI phase is usually done by experienced developers and often with the support of
financial advisers, especially for the business case. When students learn about the PSM for the first time (as in
stage two, first component of this research project) it is recommended that a complete set of SI phase entry and
exit criteria be provided. Our experience prior to PSM was that the enormity and complexity of the project
overwhelms the students when they are faced with having to meet the SI exit criteria. When students learn about
the PSM for the second time (as in stage two, second component of this research project) a partial set of exit
criteria is provided. The students write the problem, client, and project plan (given the restrictions of submission
dates and university datelines this is a very structured task). They also review and complete the business
functions. It is during stage three that the students are expected to meet all phase exit criteria independently.

The SDef phase also has a breakdown of the instruction to meet the exit criteria, similar to the SI phase described
above. Students are eased into the tasks of this phase. When students learn about the PSM for the first time (as in
stage two, first component of this research project) they write high level use cases, draw the use case and
analysis class diagrams. When students learn about the PSM for the second time (as in stage two, second
component of this research project) they rank use cases and devise the project development plan including the
detailed plan of the SC phase. It is during stage three that the students seek management/owner/user agreement.

The SC phase consists of one or more increments of the product. An increment contains one or more UCDC.
When students learn about the PSM for the first time (as in stage two, first component of this research project)
they write an expanded essential use case (including a full set of alternative courses of events). They also
complete a design transition table, write contracts and draw collaboration diagrams for all the system events in
the use case, and draw the design class diagram. When students learn about the PSM for the second time (as in
stage two, second component of this research project) they are expected to meet the exit criteria for the UCDC
with assistance. The students work on the project in teams. Each team is assigned a different use case. The
students are encouraged to integrate their use case with others though this is not enforced. (The more talented
students are likely to achieve this.) It is during the third stage that students have to integrate the executable
components of use cases and complete the SC phase.

The SDep phase is left till stage 3 of instruction. By this time the students are familiar with a work breakdown
structure. This will enable them to not only incrementally develop the product but also to incrementally develop
the user documentation.

Given the time constraints on university courses we believe the teaching approach is a sound method of
instruction of systems development. We have used part of the teaching approach during the pilot studies. We will
be testing the teaching approach during the second and third stages of the research study.

CONCLUSION

This paper has described both the PSM and a recommended teaching approach. PSM is distinctive from earlier
use case approaches because the role of use cases is explicit and localised. PSM uses a traditional software
development cycle and embeds use case development in the system construction phase. PSM has been used in
three pilot studies that have lead to some refinements. The pilot studies support PSM as a viable means of
transitioning lay people to novice system developers.

The teaching approach is bottom-up. That is, students begin by performing low-level tasks within the PSM
framework, where higher level tasks have been done for them. Later stages of the research project will evaluate
the efficacy of this bottom-up approach.

The definition of PSM and an accompanying teaching approach was merely the outcome of the first stage of our
project. Our overall goal is not to simply produce yet another method, but to validate it by tracking the
development of a cohort of students, from the very beginning of their training through to their early experiences
in industry.



Proceedings of the Twelfth Australasian Conference on Information Systems

REFERENCES

Biggs, J. (1999) Teaching for Quality Learning at University. Society for Research into Higher Education and
Open University, Buckingham, England.

Constantine, L. and Lockwood, L., (1999) Software for Use, Addison-Wesley, Reading, MA.

Hellens, L. von, Wong, S. and Orr, J., (2000) IT Skills Requirements: Perspectives from Industry, Proceedings
of the 11th Australasian Conference on Information Systems, Queensland University of Technology,
Brisbane, Australia.

Jacobsen, I., Christerson, M., Jonsson, P. and Övergaard, G., (1992) Object-Oriented Software Engineering,
Addison-Wesley, Reading, MA.

Jayaranta, N. (1994) Understanding and Evaluating Methodologies, NIMSAD: A Systemic Framework.
McGraw-Hill, Maidenhead.

Larmen, C. (1998) Applying UML and Patterns, Prentice Hall, NJ

COPYRIGHT

Ilona Box and Jeff Ferguson © 2001. The authors assign to ACIS and educational and non-profit institutions a
non-exclusive licence to use this document for personal use and in courses of instruction provided that the article
is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive licence to ACIS
to publish this document in full in the Conference Papers and Proceedings. Those documents may be published
on the World Wide Web, CD-ROM, in printed form, and on mirror sites on the World Wide Web. Any other
usage is prohibited without the express permission of the authors.



Proceedings of the Twelfth Australasian Conference on Information Systems


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2001

	Improving Software Development: The Prescriptive Simplified Method
	Ilona Box
	Jeff Ferguson
	Recommended Citation


	Microsoft Word - p13.doc

