
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

The Role of Interpretive Evaluation in Engineering
Information Systems Requirements
Galal H. Galal
Middlesex University - U.K., galal@acm.org

Janet T. McDonnell
University College London, j.mcdonnell@cs.ucl.ac.uk

Ray J. Paul
Brunel University, ray.paul@brunel.ac.uk

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Galal, Galal H.; McDonnell, Janet T.; and Paul, Ray J., "The Role of Interpretive Evaluation in Engineering Information Systems
Requirements" (2000). AMCIS 2000 Proceedings. 420.
http://aisel.aisnet.org/amcis2000/420

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/420?utm_source=aisel.aisnet.org%2Famcis2000%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The Role of Interpretive Evaluation in Engineering Information Systems
Requirements

Galal H Galal, School of Computing Science, Middlesex University, London, UK, Galal@acm.org
Janet T McDonnell, Department of Computer Science, University College London, UK, J.McDonnell@cs.ucl.ac.uk
Ray J Paul, Department of Information Systems and Computing, Brunel University, UK, Ray.Paul@Brunel.ac.uk

Abstract

The requirements for complex systems inevitably change
continuously. Any successful software or information
systems engineering approach needs to observe this
simple fact. This paper argues for the critical importance
of formative evaluation activities in any non-sequential, or
learning-based RE process. We argue that evaluation with
its focus on understanding and interpreting the evaluation
results, is distinct from measurement. We also outline how
evaluation activities can be performed from an
interpretivist perspective, in a way that systematically
informs formative evaluation activities during gradual,
experimental requirements engineering activities.

Key words

Requirements engineering; non-sequential process
models, interpretive evaluation; qualitative data in
requirements engineering; qualitative research methods in
requirements engineering.

Introduction

It has been repeatedly asserted that requirements
engineering is the software and information systems
development activity that most influences the quality and
life-cycle costs (Boehm, 1981; Roman, 1985; Schach,
1993). Experience has shown that for all but the most
trivial information systems, it is extremely hard to produce
a complete and valid (in the sense of producing the
desired effects) set of requirements. This difficulty of fully
pre-specifying a system has spawned proposals for
process models that rely on a sequence of short specify-
develop-evaluate cycles. The aim is to enable the lessons
learned from relatively cheap trials with prototypes, or
similarly partially-engineered systems, to inform later
development. We refer to these models collectively as
non-sequential process models, The entire concept of a
non-sequential process model relies crucially on an
evaluation component to support the exploration of
requirements.

This paper starts by considering the fundamental ideas
behind three main non-sequential models. It then moves
on to discuss what is critical in evaluation activities make
them operate in a reliable way. The paper then
distinguishes between evaluation and measurement, and
throws some light on the philosophical and technical

issues that surround evaluation in particular. It is then
argued that it is the "interpretive" side of evaluation that
matters most to complex information systems: what do the
lessons learned from deploying a system increment or a
prototype mean for the host setting, and what obligations
will the host system have to meet? Lastly, the paper
briefly outlines a particular approach, based on the
Grounded Theory method from the social sciences, to
make a interpretive stance a practical option for
information systems evaluation.

Developing Requirements Incrementally

In the development of complex information systems,
the specification of requirements includes a functional
aspect expressed in terms of the services that the system
needs to perform; and a non-functional aspect referring to
performance and quality attributes such as response time,
reliability, usability and so on. However, it has for some
time been recognised (Boar, 1984; Gilb, 1988) that the
requirements of substantial information systems cannot be
fully articulated prior to implementation effort. Often this
position is stated simply as "the users can not know all of
their requirements in advance". Other critiques focus on
the shortcomings of the traditional “Waterfall” view of the
system development process, in which activities are
assumed to occur in a strictly sequential manner (see for
example McCracken & Jackson, 1982; Pressman, 1994).
These insights have led to the emergence of a number of
alternative process models that do not assume that a
complete or final statement of requirements exists.
Examples of these are Prototyping (Carey, 1990), the
Evolutionary Model (Gilb, 1988) and the Spiral Model
(Boehm, 1986). Each of these models make assumptions
about what are the most critical aspects of the problem,
e.g. the user interface, the scope of the system, or certain
types of risks. All such models presume a form of
experimental, limited-scale system engineering activity
followed by an evaluation which forms the basis of further
design decisions.

We refer to these alternative process models,
collectively. as non-sequential process models. These,
although they vary in detail depending on the priorities
given to system engineering issues, have in common an
underlying assumption that it is inherent in the nature of
complex information systems that their requirements
cannot be fully specified in advance.

1102

Since all the above models rely on initial, exploratory
development of the system, the quality of feedback (from
the experiments) is rather sensitive to how the first
increment (or prototype) of the system is devised. This
initial product needs to "excite" the users to engage with it
extensively so that the feedback is as rich, and hence as
useful, as possible. The aim is to maximise the number of
problem areas uncovered early in the development. This
suggests that some ordering of requirements is important,
to decide which mix of functional and non-functional
requirement should be implemented in the first prototype1.
By the same argument care needs to be given to the
structure, scope and content of each subsequent increment
or prototype.

The Importance of Evaluation

It is for non-sequential process models that evaluation
acquires a particularly critical nature. Poor evaluation
simply nullifies the value of engineering the system in an
incremental fashion in the first place. We believe that the
construction of suitable evaluation frameworks should be
included within the scope of the domain analysis, which is
already an essential task in requirements engineering.

Aims of evaluation in non-sequential process models
include assessment of aspects of quality such as the
usability of the human-computer interface and the
system’s functionality. Although individual process
models characterise this differently, all models give
attention to assessment of a system's impact on the social
and organisational settings into which it is introduced. The
subjective nature of many of the qualities of information
systems (Iivari, 1988) implies that in-process evaluation
frameworks need to be sensitive to the subjective and
qualitative aspects of the information system and its
stakeholders. The results of evaluation are an essential
source of information. They are vital for subsequent
iterations of design and build activities. The evaluation
findings lead to changes, refinements and shifts in
priorities which can affect functional requirements, the
system’s architecture or aspects of its detailed design.
These shifts may constitute fundamental changes to the
way the design problem is framed. Experience with the
developing system itself will also lead to changes in the
criteria which are relevant for successive evaluation
activities. It is clear that as far as non-sequential process
models are concerned, and their underlying exploratory
orientation, the construction of evaluation frameworks,
that are systematically derived from and strongly
grounded in the context of the system’s use should be one
of the requirements engineer’s chief concerns.

1 We would like to add here that the same question arises
for a COTS approach to systems building. It might not be
practical or wise to procure all needed COTS at the
beginning, and thus an approach that aims at gradually
exploring and prioritising the objectives of the domain is
probably more effective.

Where qualitative requirements are taken into account
there is too often a lack of rigour in the process. We
simply look over the users' shoulders while they
experiment, or we collect their (essentially ad-hoc)
comments on the system to incorporate into plans for a
later increment (again in an ad-hoc way). This all means
that the process of gathering, integrating and interpreting
the results of experimenting with an increment is too much
a matter of chance, and thus prone the leaving out of vital
information that might enhance the quality of the system.
There is no solid foundation on which to base the
inevitable task of making trade-offs between design
alternatives. The whole process is non-systematic and
highly susceptible to random influence from the systems
developers or those in close contact with them.

We cannot simply introduce rigour by focussing on
evaluating what can be easily measured. Evaluation is not
the same as measurement. Evaluation concerns
comprehensiveness, integration and interpretation;
whereas the act measurement seeks to describe particular
properties, which are characteristically single-
dimensional, according to agreed standards and following
agreed procedures. Different measures tend not to
integrate with one another to convey a multi-dimensional
holistic perspective; they are also not directly concerned
with merit which is what evaluation seeks to establish (see
Scriven, 1991). Therefore, it is not sufficient to quantify
particular aspects of software and information systems,
but it is vital to carefully consider how meanings, and
hence actions, might be attached to various discoveries.
This sense of evaluation is particularly important for
formative evaluation: that which aims at contributing to
the shaping of the programme or artefact being evaluated.
This is exactly what we seek to achieve when we conduct
evaluations of information systems or prototypes.

The central characteristic of the formative, in-process
evaluation of putative information systems is that the raw
material with which it must deal is primarily qualitative.
Qualitative data are the unstructured and non-numeric
data, such as interview and observational material. This is
the type of data that is encountered first and which
predominates in information system development. Even if
numeric measurements are to be applied, the decisions as
to which categories of data to be observed, and what
interpretations are derived from it are essentially
qualitative. It is therefore vital that an effective approach
to evaluating evolving information systems has to pay
close attention to the rigorous handling and analysis of
qualitative data.

Having now established the status, nature and role of
evaluation that we advocate for supporting incremental or
prototyping-based requirements engineering process, we
now proceed to give details of the approach that we have
devised for dealing with this problem.

1103

A Methodological Response

From the above discussion of the aim of evaluation
during requirements engineering and the type of the data
that arises, we arrive attwo methodological imperatives:

1. Focus on formative, interpretive evaluation.
2. Attend to qualitative data and methods suitable

to its analysis.

We have looked at the social and human sciences,
which are rich with methods that operationalise the two
aims above, and selected the Grounded Theory method to
construct our framework.

In short, Grounded Theory aims at producing theory
from data in a rigorous and systematic fashion, hence the
term "grounded". Grounding in this case refers to the
grounding of any theoretical proposals put forward in the
data available: all the data and nothing but the data. The
process is fundamentally iterative, with sources of data
periodically "sampled" as the evolving theory takes shape
and gaps or inconsistencies are uncovered. Particular
techniques address the problem of the establishment of
"concepts" and "terms" that apply to the phenomenon
under study. In fact, even the selected phenomenon itself
may be altered as a result of the analysis if, for example,
the data suggests that another phenomenon integrates the
data in a more coherent way, and better accounts for the
various observations that triggered the analysis in the first
place.

Data
collection

Data
storage

Open coding
(select and name
categories)

DATA
PREPARATION

INITIAL
ANALYSIS

CORE
ANALYSIS

OUTCOMES

Domain theories

Objectives

Constraints

Strategic and Interpretive
Scenarios

Graphics

Models

Risks

Relate
categories

(Axial coding)

Select and
 elaborate core

category
(Selective coding)

Figure 1: Core steps in Grounded Theory analysis
(adapted from Pidgeon et al., 1991)

Figure 1 above summarises a set of steps that
operationalise the main concepts of Grounded Theory. For
more information on the method, the reader is referred to
(Pidgeon et al., 1991; Strauss & Corbin, 1990,1998).

1104

The following steps summarise our approach for
effecting formative, qualitative data-oriented evaluation of
information systems during their development:

Step 1) Collect and code qualitative data that
characterises the "informational need" situation in the
domain concerned. (It is also possible to build a series of
“fit” constructs related to this need, but we do not expand
on this aspect of our work in this paper due to scope
limitations.) Typically a number of iterations are entered
into until the data categories are stable and as fully
developed as possible, meaning that such categories fully
fit and account for all the primary data collected. This
analysis can be done with respect to a number of
contextual levels within which the informational need
exists (such as these of environment, organisation,
domain and system as illustrated in Figure 2 below). This
step approximates two types of analyses known as
"Selective Coding" and "Axial Coding" in the Grounded
Theory literature.

Figure 2: The flow between “need” and “fit” theories at
four levels of analysis.

Step 2) Systematically relate the data categories in one
or more theoretical formulations that account for the
informational need in a process-oriented writing style
showing cause, effect, interactional and contextual
relationships. This is done with the aid of an organising
device known as the "paradigm model”, proposed by
Strauss and Corbin. The paradigm model is used to
integrate the various concepts reached in a causal/
relational form. The paradigm model organises the data
categories into the roles of phenomenon, conditions,
actions and interactions and consequences. After relating
concepts in this way, a central category is selected, around
which a "story-line" is developed and written. The story-
line is in effect a theoretical formulation that attempts to
characterise the phenomenon of interest.

 [This step is based on the "Selective Coding". The
theoretical framework that organises the data is causal,
and is based on that devised by the originators of the
Grounded Theory method. The causal nature of the
paradigm model was found very useful in our work in
organising the multifarious concepts gleaned during the
analysis. The central category that we tried to explain in
each case was related to the “informational need” present
in the situation, which is arguably the essence of any
requirements engineering activity.]

Step 3) Using the categories coded earlier, and with
the aid of the processual accounts (using various
instantiations of the paradigm model) made for the
phenomenon under investigation, a set of "projected
scenarios" are constructed. It is against these scenarios
that system increments or prototypes are evaluated. These
scenarios are developed in collaboration with the system's
clients and users, against the background of qualitative
data collected and their analyses.

Step 4) The evaluation is effected by using the
projected scenarios as a guide against which an increment
of the system is evaluated: both dynamically in terms of
the cause-effect relationships it describes, and statically in
terms of the concepts that feature in it. The concepts are in
effect monitors that are used to assess whether a part of
the system is operating, or is benefiting the organisation,
as originally envisaged. The results of this evaluation can
point to new requirements. These are hard to uncover with
less systematic or less comprehensive evaluation.

Example of application

We have applied our framework to a case study
involving the development of a document management
system for a law practice in London. There were a number
of sources for the (mainly qualitative) data collected. The
prime source of data was around 10 semi-structured and
unstructured interviews conducted with users, other
stakeholders of the system, as well as outside legal experts
to help in characterising the wider environment. The other
sources of data included observational notes made by the
researcher while acting in the role of a trainer/ consultant
in the document management technology employed. A
total of 18 visits to the organisation concerned were made
in this role. Given the practical role that the main
researcher played in this project, and the organisation’s
keen interest in getting involved with document
management technologies, data collection was relatively
easy. The only problem was the occasional unavailability
of lawyers for interview or comment on analysis results.
(The lawyers involved charged their time to clients in
units of 6 minutes, which meant it was easy to quantify
potential loss of fee for time allocated to activities related
to the project.) This meant that at times it was necessary to
remind the clients that their close and timely involvement
was essential to the successful deployment of the system.

system

domain

organization

environment

need

need

need

fit
fit

fit

1105

Below, we show sample instantiations of the steps that
we introduced above.

Step 1: We analysed qualitative data at the levels of
the immediate domain, at which the need for a system had
arisen; the organisation that contains the domain; and the
wider environment.

The result of the analysis is a set of concepts and terms
that relate to the software or information system in
question. Table 1 below shows how the properties of the
“Case” category were organised and described.

We must point out here that the procedure is
considerably more sophisticated than merely selecting
interesting-looking terms or nouns. Grounded Theory
procedures prescribe a set of techniques for continuous
cross-comparison and refinement of any selected terms.
Note also that the loci in the data where various properties
arose are indexed in the table inthe column headed "Data
location ref.".

Concept: Cases

Property Dimensional
range

Value Data
location
ref.

Duration v. long...
short

Variable RS2

Managed by lawyer type Client partner RS13
Assigned to personnel

types
a team
(partner,
lawyer,
secretary)

RS13

Constrained
by

procedure
types

court rules &
procedures,
time limits

VM2

Generates document
types

lists, memos,
attendance
notes

VM11

Table 1: Concept table for “Case”

Step 2: Relate the established concepts in a theory-like
formulation, with causal links as appropriate. Each level
of analysis will have a "theory-of-need" developed that
narratively articulates and links the concepts that bear on
the system (the phenomenon) in question. An example of
such a theory is given below:

Domain-level need theory

The large and loosely structured
volumes of documents {causal
condition/context} that a typical
law practice {causal condition}
has to deal with is such that a
significant amount of time and
money {intervening condition} is
expended on managing the documents

involved in any particular case
within acceptable performance
indicators {intervening
condition}. The documents managed
have very dynamic (changing)
relevance to any particular case
and to each other {context}.
Document relevance is normally
decided by a lawyer. Current
personnel have a limited IT
experience {context}, which gives
rise to the current manual system
and its procedures
{action/interaction strategies}.
This leaves scope for improving
the effectiveness and efficiency
of the document management process
{consequence}.

Note that the underlined terms are those uncovered
during analysis, and are typically further described and
indexed in the data as we have shown in Table 1.

Step 3: Using both the terms and theories developed
through the analysis, and in consultation with the system
users and clients, we developed a set of "projected"
scenarios against which the system is evaluated. A
fragment of such a scenario is given below:

A Projected Scenario

Providing an informational artefact that maintains
document descriptions (entered by user) and enables
document management and production in an acceptable
and usable way

leads to =>
easy and acceptable operation of an alternative

(automated) document management system

which leads to =>
more cost effective (faster and

cheaper) document management in the domain concerned.

Note that the scenario, by itself, appears extremely
simple. However, the important point here is that every
term that features in the scenario, and in fact significant
parts of the processual aspects of the scenario itself, have
been fully grounded in the data collected at the various
levels of analysis.

Step 4: Using the scenario as a guide, we were able to
conduct a systematic discussion as to the merits of the
deployed system increment. The scenario served as a
background against which various interpretations were
derived, and these informed the clients’ decisions about
which features. It also supported their appreciation of
what changes to the working environment were needed to

1106

make most effective use of the system being introduced.
The evaluation occurred in two dimensions: dynamically
in terms of the cause-effect relationships that the theories
describe, and statically in terms of the concepts that
feature in them. The concepts in effect acted as monitors
or poles around which evaluation data were collected and
integrated.

Our approach to using procedures based on Grounded
Theory in evaluating system increments has helped us deal
successfully with a huge quantity of qualitative data, to
sift through and understand it, and to reach those all too
important "interpretations" of the result of the experiment
from the point of view of the host setting. Moreover, the
responsibilities of the host setting towards the system
became much clearer to the parties involved, in terms of
what they were and their degree of criticality to the
system.

Another, rather surprising, observation concerns the
speed and ease with which the system's users and clients
understood our formulations about how the organisation
is, and how it may be in the future, affected by the type of
system they desire. This occurred during a session where
users and clients were presented with all the terms that we
uncovered on small 3"x5" record cards: one side has the
term it describes, the other has its properties as suggested
by the data. The set of cards (25 in total), were laid on
large flip-chart sheets on which the four levels of analysis
(System; Domain; Organisation and Environment) were
drawn as onion-skin layers. The annotated flip-chart
sheets were used as a white board, but put on a table in a
way resembling military field maps. No subsequent
sessions were needed to address the same topics. The
clients comments on the relevance and accuracy of the
formulations presented were solicited and these were
found to be both highly accurate (but not totally so) and
fully relevant.

Outcomes

In terms of the particular problem under study, the
formulations that we obtained, were highly rated by the
clients for the way it helped them further understand and
conceptualise the relevance of the system to their
organisation. It also enabled them to appreciate the
significance and magnitude of organisational changes
necessary for deploying the proposed document
management system. We translate this to real benefits of
our approach in planning for business process re-
engineering (BPR) efforts, often found necessary – if on a
limited scale – for new IT systems. Although all
categories of users understood and approved the changes
proposed, it was not possible to test the efficacy for these
changes in practice. However, the intention was not to
provide a perfect or final set of interventions, but to
provide the method needed for deriving them, as well as

the conceptual background against which they can be
juxtaposed and evaluated in a rigorous way.

A somewhat surprising observation was the way in
which relatively IT-innocent stakeholders readily
assimilated the analysis presented, the evidence being the
ease with which they amended some of the concepts
presented to them, in terms of property values and
location on the model. The scenarios were read as causal
relationships between concept cards that were placed on
the System, Domain, Organisation and Environment bands
of analysis.

The system’s architect also commented that the field
evaluation and other analysis results correlated
significantly with his perception of the system, and that
the majority of facilities found to be lacking in the study
were scheduled for addition to the system. The system’s
architect also commented that areas of risks uncovered in
the analysis “would have been useful in setting
appropriate priorities and targets during development”. A
list of risks and constraints was one of the products of
applying our approach. These produced valuable insights
relating to issues that were of concern at some point
during the engineering of the technical system.

From the wider system design point of view, the
systematic analysis of data about the increment in use
enabled us to design “environmental accommodations”
that were defensible on the basis of the data. These
included particular procedures aimed at overcoming
system utilisation problems, such as primary document
coding.

From the point of view of the analysis work, the
Grounded Theory-based approach helped in organising
and analysing a very large volume of diffuse qualitative
data. For example, 231 initial concepts were
systematically and comprehensively condensed into 35
concepts and their properties. These were used to derive
formulations that contributed to characterising,
understanding, relating and prioritising requirements.
Moreover, by virtue of the way theoretical formulations
were reached, a remarkable degree of traceability was
achieved. Every single “concept” in the theories
expressing requirements, as well as the scenarios was
traceable all the way back to the original data and through
the intermediate analyses.

The limitations of the approach were that the style of
analysis mandated by Grounded Theory was very time
consuming. Also, the quality of this type of analysis
critically relies on the analyst’s skills and experience. The
reader is directed to Glaser (1978) for a discussion of the
techniques that can be used to develop the requisite skills
for Grounded Theory analysis, and to Strauss and Corbin
(1998) for a discussion on the types of skills required of a
Grounded Theory researcher.

1107

Conclusions

Evaluation is a fundamental and critical activity that
needs to be rigorously conducted in any gradual,
experiment-based, approach to requirements engineering
that aims at maximising what can be learnt from deploying
a system increment or a prototype. It is vital that such
evaluation makes full use of the soft, qualitative data
available in a way that can inform further system
development. It is also vital that the value of any such
experiment is fully explored through an interpretive
approach that formally seeks to establish such meanings
and implications through evaluation.

We have found that procedures based on the Grounded
Theory method from the social sciences went a long way
towards achieving our objectives in supporting
incremental and learning-oriented approaches to the
engineering of the requirements for complex information,
systems. This is achieved by making systematic use of the
soft, qualitative data that arise naturally during the process
of studying systems in use in the settings for which they
are being designed.

References

Boar, B. H. Application Prototyping, a requirements
definition strategy for the 80's New York: Wiley, 1984.

Boehm, B. Software Engineering Economics Englewood
Cliffs: Prentice-Hall, 1981.

Boehm, B. “A Spiral Model for Software Development
and Enhancement” ACM SIGSOFT Software Engineering
Notes, 11(4), 14-24, 1986.

Carey, J. M. “Prototyping: Alternative systems
development methodology” Information and Software
Technology, 32(2), 119-126, 1990.

Gilb, T. Principles of Software Engineering Management
Wokingham: Addison-Wesley, 1988.

Glaser, B. G. Theoretical Sensitivity Mill Valley,
California: The Sociology Press, 1978.

Guba, E. G., & Lincoln, Y. Fourth Generation Evaluation
Newbury Park, California: Sage, 1989.

Henerson, M. E., Morris, L. L., & Fitz-Gibbon, C. T. How
to Measure Attitudes Newbury Park, California: Sage,
1987.

McCracken, D. D., & Jackson, M. A. “Life Cycle Concept
Considered Harmful” ACM SIGSOFT Software
Engineering Notes, 7(2), 29-32, 1982.

Patton, M. Q. Qualitative Evaluation and Research
Methods (2nd ed.). Newbury Park, CA: Sage Publications,
1990.

Pidgeon, N. F., Turner, B. A., & Blockley, D. I. “The use
of Grounded Theory for conceptual analysis in knowledge
elicitation” International Journal of Man-machine
Studies, 35(2), 151-173, 1991.

Pressman, R. G. Software Engineering - A Practitioner's
Approach (4th ed.). New York: McGraw-Hill, 1997.

Roman, G. “A Taxonomy of Current Issues in
Requirements Engineering” in R. H. Thayer & M.
Dorfman (Eds.), Computer, April 1985. Reprinted in:
System and Software Requirements Engineering (pp. 14-
22 (Computer)). California: IEEE Computer Society
Press, 1985.

Schach, S. R. Software Engineering (2nd ed.). Boston:
Irwin, 1993.

Scriven, M. Evaluation Thesaurus (4th ed.). Newbury
Park, California: Sage Publications, 1991.

Sommerville, I., Rodden, T., Sawyer, P., Bentley, R., &
Twidale, M. “Integrating ethnography into the
requirements engineering process” in S. Fickas & A.
Finkelstein (Eds.), IEEE International Symposium on
Requirements Engineering: RE '93, (pp. 165-173), 1993.

Strauss, A., & Corbin, J. Basics of Qualitative Research,
Grounded Theory Procedures and Techniques. California:
Sage, 1990.

Strauss, A., & Corbin, J. Basics of Qualitative Research,
Techniques and Procedures for Developing Grounded
Theory (2nd ed.) California: Sage, 1998.

1108

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	The Role of Interpretive Evaluation in Engineering Information Systems Requirements
	Galal H. Galal
	Janet T. McDonnell
	Ray J. Paul
	Recommended Citation

